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Four lectures on holography and the AdS/CFT correspondence applied to condensed matter
systems.1 The first lecture introduces the concept of a quantum phase transition. The second
lecture discusses linear response theory and Ward identities. The third lecture presents
transport coefficients derived from AdS/CFT that should be applicable in the quantum
critical region associated to a quantum phase transition. The fourth lecture builds in the
physics of a superconducting or superfluid phase transition to the simple holographic model
of the third lecture.

I. INTRODUCTION: QUANTUM PHASE TRANSITIONS

Spurred by the concrete proposal of refs. [1–3] for an AdS/CFT correspondence, there are some
good reasons why holographic ideas have become so important in high energy theoretical physics
over the last ten years. The first and perhaps most fundamental reason is that the AdS/CFT
conjecture provides a definition of quantum gravity in a particular curved background space-time.
The second is that AdS/CFT provides a tool for studying strongly interacting field theories. These
lectures concern themselves with the second reason, but I will spend a paragraph on the first.

Given the lack of alternative definitions of quantum gravity, the AdS/CFT conjecture is diffi-
cult to prove, but the correspondence does give a definition of type IIB string theory in a fixed
ten dimensional background and by extension of type IIB supergravity. Recall that the original
conjecture posits an equivalence between type IIB string theory in the space-time AdS5 × S5 and
the maximally supersymmetric (SUSY) SU(N) Yang-Mills theory in 3+1 dimensions. (In our nota-
tion, AdS5 is five dimensional anti-de Sitter space and S5 is a five dimensional sphere.) Yang-Mills
theory, at least in principle, can be simulated on a computer as the continuum limit of a lattice
theory. The low energy limit of type IIB string theory is type IIB supergravity and the correspon-
dence must also yield a quantum theory of gravity. This line of reasoning has led to an improved
understanding black hole physics, including a tentative resolution of the black hole information
paradox and a better understanding of black hole entropy.

Nearly as fundamental and no less exciting is the prospect of using AdS/CFT to understand
strongly interacting field theories by mapping them to classical gravity. To see how the correspon-
dence can be used as a tool, recall that the interaction strength of maximally SUSY Yang-Mills
theory is described by the ’t Hooft coupling λ = g2

YMN . Through the AdS/CFT correspondence
λ = (L/�s)4 where L is the radius of curvature of AdS5 (and the S5), and �s is a length scale that
sets the tension of the type IIB strings.1 Strings are also characterized by a coupling constant,

1 These lectures were given at the Spring School on Superstring Theory and Related Topics, 23 – 31 March, 2009,
ICTP, Miramare, Trieste, Italy.

1 The tension is conventionally defined as 1/(2π�2s).
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gs, that describes their likelihood to break. The AdS/CFT dictionary relates the string coupling
constant to the gauge theory coupling via 4πg2

YM = gs. In the double scaling limit where N →∞
while λ is kept large and fixed, string theory is well approximated by classical gravity. Keeping
�s/L small means string theory is well approximated by gravity, while keeping gs small eliminates
quantum effects. Using the AdS/CFT correspondence, enormous progress has been made over the
last ten years in understanding the large N , large λ limit of maximally SUSY Yang-Mills theory
in 3+1 dimensions and its cousins.

Before moving on to an extensive discussion of condensed matter systems, let me briefly mention
that one of the most interesting ideas surrounding this flurry of activity mapping out the properties
of strongly interacting SUSY field theories with gravitational duals is that we might learn something
about quantum chromodynamics (QCD). At low energy scales, QCD is a quintessential example
of a strongly interacting field theory. Consider temperatures slightly above the deconfinement
transition, of the order of 200 MeV, where the baryons and mesons dissolve into a soup of strongly
coupled quarks and gluons. Such a non-Abelian soup is probably not so qualitatively different
from maximally SUSY Yang-Mills in the double scaling limit. Here is one example of an intriguing
application of holographic techniques. Experiments at the relativistic heavy ion collider (RHIC)
combined with hydrodynamic simulations suggest that the viscosity of the quark-gluon plasma is
very low (see for example ref. [4]). In contrast, perturbative QCD techniques yield a large viscosity
[5, 6], and lattice gauge theory requires a very difficult analytic continuation from the Euclidean
theory to extract such a transport coefficient (see for example ref. [7]). AdS/CFT yields, for
maximally SUSY Yang-Mills (and indeed for all its cousins in this double scaling limit) the low
value η/s = �/4πkB for the viscosity to entropy density ratio [8].

Putting aside QCD, in these lectures I will describe progress in applying holographic techniques
to condensed matter systems. QCD is not the only useful strongly interacting field theory. Field
theory has for a long time been a standard tool in a condensed matter theorist’s toolbox. For
example, near phase transitions, coherence lengths become long enough to allow a continuum
description of a crystal lattice or otherwise discretized system of atoms and molecules.

There are some structural and probabilistic reasons why QCD may not be the best candidate
for an application of holographic techniques. Asymptotic freedom of QCD means at high energy
scales the gravity dual will necessarily become increasingly stringy, and the correspondence loses
some of its simplicity and power. While finding a holographic dual for QCD may be like finding a
needle in the haystack of generalized AdS/CFT correspondences, the odds of finding a gravity dual
to a condensed matter system appear, at least superficially, to be better. There are hundreds of
thousands of pre-existing materials to consider. Moreover, using nano-lithography, optical lattices,
and other experimental techniques, we may be able to engineer a material with a gravity dual. This
last possibility raises the tantalizing prospect of better understanding quantum gravity through
material science or atomic physics.

An outline for the rest of these lectures is as follows:

• Using the notion of a quantum phase transition, in the rest of the first lecture I will frame
the connection between condensed matter systems and holography in a useful and hopeful
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way.

• The second lecture is a discussion of old and doubtless well known results in field theory. I
have devoted a whole lecture to these results for a few reasons. The first is that it is much
easier to understand what extra information AdS/CFT is giving us if we first understand
the limitations of field theory. The second is that while the first, third and fourth lectures
may not stand the test of time, the contents of this second lecture are true and probably
very useful in other contexts.

• In the third lecture, I will holographically compute field theory transport coefficients using
a very simple gravitational action consisting of an Einstein-Hilbert and Maxwell term:

S =
1
2κ2

∫
d4x
√−g(R− 2Λ)− 1

4g2

∫
d4x
√−gFμνFμν . (1)

I will connect these holographic results, in a qualitative way, to measurements of transport
coefficients in graphene and high temperature superconductors.

• In the last lecture, justifying the title of this lecture series, I will modify the gravitational
action by adding an order parameter that will produce a superconducting or superfluid
phase transition. I will focus on the case where the order parameter is a scalar, but one
could introduce a vector order parameter as well by promoting the Abelian Fμν in the action
above to an SU(2) gauge field.

A. Quantum Phase Transitions

The notion of a quantum phase transition in condensed matter systems provides our motivation
for using AdS/CFT. A quantum phase transition is a phase transition between different phases of
matter at T = 0. Such transitions can only be accessed by varying a physical parameter, such as a
magnetic field or pressure, at T = 0. They are driven by quantum fluctuations associated with the
Heisenberg uncertainty principle rather than by thermal fluctuations. We will be concerned with
second order quantum phase transitions in this lecture. Much of the discussion here is drawn from
ref. [9].

At T = 0 but away from a quantum critical point, a system typically has an energy scale Δ
perhaps associated with the energy difference between the ground and first excited state. Another
important quantity is a coherence length ξ characterizing the length scale over which correlations
in the system are lost. Let g be the physical parameter driving the quantum phase transition. At
the quantum critical point gc, we expect Δ to vanish and ξ to diverge, but not necessarily in the
same way:

Δ ∼ (g − gc)νz , (2)

ξ ∼ (g − gc)−ν . (3)

The quantity z, relating the behavior Δ ∼ ξ−z, is usually called the dynamical scaling exponent. At
the quantum critical point, the system becomes invariant under the rescaling of time and distance,
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t → λzt and x → λx. Different z occur in different condensed matter systems. For example,
z = 1 is common for spin systems, and we will see an example of such a system shortly. The
case z = 1 is special because the quantum critical system typically has a Lorentz symmetry and
the scaling becomes a part of a larger conformal symmetry group SO(d + 1, 2) for a system in d
spatial dimensions. These lectures will focus mostly on the z = 1 case because it is here that the
AdS/CFT dictionary is most powerful and well developed. Another common and familiar value
is z = 2. The free Schrödinger equation is invariant under z = 2 scalings, but there are other
examples as well, e.g. Lifshitz theories. Generic, non-integer z are possible.

Figure 1 shows a prototypical phase diagram for a system that undergoes a quantum phase
transition. Here the physical parameter is a coupling g, and the quantum phase transition occurs
at g = gc and T = 0. At low temperatures, we imagine the system is in one of two phases
well characterized by some order parameter(s). The solid blue lines in the phase diagram could
be classical thermal phase transitions or softer cross-overs, depending on the dimensionality and
nature of the system. The region between the dashed black lines is the quantum critical region
(QCR).

phase 2

T

g gc

QCR

phase 1

FIG. 1: A typical phase diagram involving a second order quantum critical point.

The usefulness of the notion of a quantum phase transition lies in a wished for ability to
understand the system in the QCR. The QCR is characterized by the requirement that T be large
compared to the dimensionally appropriate power of (g−gc). It seems reasonable to expect that the
effective scale invariant field theory valid at the critical point, now generalized to nonzero T , can be
used to predict the behavior of the system in the QCR. (We can generalize this discussion, replacing
T with some other external parameter or set of parameters — chemical potential, magnetic field,
etc.)
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B. The Quantum Rotor

The quantum rotor is a simple theoretical model that exhibits a quantum phase transition. The
model is described by the Hamiltonian:

H = gJ
∑
i

L̂2
i − J

∑
〈ij〉

n̂i · n̂j , (4)

where we are summing over a lattice (of arbitrary dimension) indexed by i and where 〈ij〉 indicates
a pair of nearest neighbor sites. Let n̂i be an N component vector such that n̂2

i = 1. The operator
L̂i is an angular momentum, and L̂2

i is thus the kinetic energy term for this vector n̂i which lives
on an N − 1 dimensional sphere. Taking J > 0, the interaction term in Ĥ will prefer to align the
n̂j . The kinetic energy, in contrast, is minimized by randomizing the n̂i such that 〈L̂2

i 〉 = 0. (For
more details about this model, see ref. [9].)

The quantum rotor exhibits a quantum phase transition as we tune the value of g. In the limit
g � 1, the sites on the lattice decouple from one another, and the system can be solved exactly.
In the ground state, the kinetic energy is minimized by taking 〈n̂i〉 = 0 such that 〈L̂2

i 〉 = 0.
Correlations between different lattice sites die off exponentially with distance,

〈0|n̂i · n̂j |0〉 ∼ e−|xi−xj |/ξ , (5)

where ξ is the correlation length. The lowest energy excitation is a particle where a single lattice
site has a nonzero 〈L̂2

i 〉, and this particle hops from site to site. There is an energy gap Δ+ ∼ gJ

associated with this particle. Because an external field will tend to align the n̂i, the ground state
in this limit is a paramagnet.

In contrast, in the opposite limit g 	 1, the system becomes magnetically ordered. It is
energetically favorable that 〈n̂i〉 
= 0 and for all of the vectors to align:

lim
|xi−xj |→∞

〈0|n̂i · n̂j |0〉 = N2
0 . (6)

This alignment spontaneously breaks rotational symmetry, and there must be an associated mass-
less Nambu-Goldstone boson. These massless bosons are spin waves, i.e. slow rotations in the
direction of 〈n̂i〉. Although there is no energy gap associated with this continuum of excited spin
wave states, one can define an energy scale Δ− associated with the kinetic term of the spin waves
— a spin stiffness. (High energy theorists might prefer the term pion decay constant.)

It seems reasonable to infer that there is a quantum phase transition between these two different
types of order for a critical value g = gc of the coupling. Referring to Figure 1, phase one for this
model would be magnetically ordered while phase two is the quantum paramagnet. As we approach
the critical point, it should be energetically easier for the spin waves to rotate more quickly in the
magnetically ordered phase or for particle excitations to form in the paramagnetic phase. Thus, as
g approaches gc, we expect the energy scale Δ± to vanish as a power of (g− gc). Also, as we move
out of the paramagnetic phase, the correlation length ξ should diverge as the vectors n̂i align.

The quantum rotor is more than a toy. On the experimental side, for two spatial dimensions and
N = 3, ref. [9] argues that the Hamiltonian models two sheets of La2CuO4, the parent compound of
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a high Tc superconductor I will discuss at greater length in a moment. On the theoretical side, the
continuum limit of this model should be very familiar to field theorists. It is the O(N) nonlinear
sigma model. The continuum Lagrangian takes the form

L = 1
2g̃2

(
|∂t	n(x)|2 − c2eff |∇	n(x)|2

)
, (7)

subject to the constraint |	n(x)|2 = 1. It is thus a model with dynamical exponent z = 1, as was
promised for spin systems. Note that for condensed matter applications, the effective speed of
light would typically be much less than the actual speed of light, ceff 	 c. This continuum limit
should become a better and better approximation close to the quantum critical point where the
correlation length ξ diverges and we can coarse grain the n̂i degrees of freedom.

More loosely, we could soften the constraint and replace it with a scalar potential

V (	n) = α|	n(x)|2 + β|	n(x)|4 , (8)

to control the size of the fluctuations, yielding the O(N) vector model. At this point, I refer the
reader to a standard field theory textbook such as ref. [10] for a more thorough treatment than I
can provide here. In the renormalization group language, the O(N) vector model is known to flow
to a strongly interacting Wilson-Fisher fixed point, which in our language is nothing other than a
quantum critical point.

C. Quantum Critical Points in the Real World

Quantum phase transitions are believed to be important in describing superconducting-insulator
transitions in thin metallic films, as is demonstrated pictorially by rotating Figure 2 ninety degrees
counter-clockwise. The rotated diagram is meant to resemble closely Figure 1 where phase one is
an insulator, phase two is a superconductor, and g corresponds to the thickness of the film. The
insulating transition is a cross-over, while the superconducting transition might be of Kosterlitz-
Thouless type. There exists a critical thickness for which the system reaches the quantum critical
point at T = 0.

One of the most exciting (and also controversial) prospects for the experimental relevance of
quantum phase transitions is high temperature superconductivity. Consider the parent compound
La2CuO4 of one of the classic high Tc superconductors, La2−xSrxCuO4. La2CuO4 is actually not
a superconductor at all but an anti-ferromagnetic insulator at low temperatures. The physics of
this layered compound is essentially two dimensional. The copper atoms are arranged in a square
lattice on separated sheets with effectively one electron per unit cell. The spins of the electrons
pair up in an anti-ferromagnetic order.

To turn La2CuO4 into a superconductor, the compound can be doped with strontium which has
the effect of removing one electron for every lanthanum atom replaced with strontium. Figure 3 is
a phase diagram for La2−xSrxCuO4. Once the doping x becomes sufficiently large, the compound
superconducts at low temperature. Introducing some vocabulary, the doping which yields the
highest Tc is called the optimal doping; for this material, xo ≈ 3/20 yielding a Tc ≈ 40 K. When
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FIG. 2: Resistivity of thin films of bismuth versus temperature. The different curves correspond to different
thicknesses, varying from a 4.36 Å film that becomes insulating at low temperatures, to a thicker 74.27 Å
film that becomes superconducting. The figure is reproduced from ref. [11].

x > xo, the compound is referred to as over doped, while when x < xo, the compound is called
under doped.

Over doped high Tc superconductors are better understood than their under doped counterparts.
For temperatures T > Tc, the material behaves like a Fermi liquid where quasiparticle, electron-like
degrees of freedom are effectively weakly coupled. Moreover, the phase transition seems to follow
the BCS paradigm where the electrons form Cooper pairs as we lower the temperature below Tc.
In contrast, in the under doped region, the effective degrees of freedom are believed to be strongly
interacting. In one paradigm, the superconducting to normal phase transition involves disordering
the phase of the condensate rather than breaking Cooper pairs, if it indeed makes sense to talk
about quasiparticles at all in this regime. Because the electrons may remain in bound states in the
normal, under doped region of the phase diagram, this region is sometimes called the pseudogap.
For more details about these issues, the reader might try ref. [12].

Speculations about the relevance of a quantum phase transition are related to the dip in Tc at
a doping of xc = 1/8 and a possible connection between this dip in Tc and experimental evidence
for so-called striped phases where spin and charge density waves break translational invariance at
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AF

SC

under doped
over doped

xx xoc

T

FIG. 3: A cartoon phase diagram for a superconductor such as La2−xSrxCuO4. AF stands for anti-
ferromagnetic and SC for superconducting.

distance scales of order of a few times the lattice spacing [13]. The conjecture is that we can add
a third axis to our phase diagram corresponding to an extra control parameter g in some model
Lagrangian for the system, as pictured in Figure 4. In this figure, the chemical potential μ plays
the role of doping. In the third direction, we may find a quantum critical point where the dip in
Tc becomes more pronounced and reaches the T = 0 plane. One might hope to gain theoretical
control over the pseudogap region using the effective field theory of the quantum critical point.

The reader may ask why we have invented this extra quantum critical point when, by our
definition, there appear to be three perfectly good quantum critical points already present in
the phase diagram of Figure 3. The answer is ultimately unsatisfactory and is indicative of the
speculative nature of the last few paragraphs. Not all quantum phase transitions are created equal,
and this putative fourth quantum critical point promises to be a little simpler and cleaner. Although
there is little data available, the transition from the normal phase to the superconducting phase
in the under doped region is believed to be disorder driven and thus involves breaking translation
invariance at large distance scales.2

D. On the Role of AdS/CFT

Thus far, I have tried to argue that quantum phase transitions are important in understanding
superconducting insulator transitions in thin films and may be important in the physics of high Tc
superconductors. I also exhibited the quantum rotor, a model theoretical system which undergoes
such a phase transition.

2 I would like to thank Markus Mueller for discussion on this point.
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FIG. 4: A third conjectural axis has been added to our phase diagram for a high Tc superconductor. This
figure was taken from ref. [13].

In general, it can be difficult to describe a system at a strongly interacting quantum critical
point. Weakly coupled effective degrees of freedom may be difficult to identify or not exist, as I
sketched for the case of high Tc superconductors. The reader may ask, “Can’t we always discretize
the system and simulate it on a computer?” To avoid problems with oscillatory numerical integrals,
lattice models are almost always formulated for computers in Euclidean time. For questions about
equilibrium physics (with no chemical potential), the answer is often, “Yes, the lattice is good
enough.” However, if we want to ask questions about physics at nonzero density, about real
time physics, about transport coefficients and response to perturbations, numerical lattice models
require tricky and usually untrustworthy analytic continuations.

Returning to the role of holography in this story, AdS/CFT provides a tool to study a class of
strongly interacting field theories with Lorentz symmetry in d space-time dimensions by mapping
them to classical gravity in d+1 space-time dimensions. The correspondence is a very useful way of
working out the equation of state, real time correlation functions and transport properties such as
diffusion constants, conductivities, and viscosities. The ambitious program is to find an example of
an AdS/CFT correspondence that describes a real world material. Less ambitiously, we may learn
universal or semi-universal properties about a class of strongly interacting field theories. These are
often field theories and questions for which AdS/CFT is our only calculational tool.

More specifically, when I talk about an AdS/CFT correspondence that describes a real world
material, I mean given a material that undergoes a quantum phase transition, the gravity dual
should provide a good effective description of the critical point and the critical region in Figure 1.
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We might even be able to model the thermal phase transitions away from the critical region, but
eventually the microscopic degrees of freedom in the material will become important, and a field
theory description will be less valuable.

The reader may object that there could well be structural reasons why this program is doomed to
fail. AdS/CFT correspondences typically involve some underlying supersymmetry while condensed
matter systems do not. In mitigation, I note that introducing chemical potential and temperature
breaks supersymmetry, that if we stay away from the T = 0 and μ = 0 limits, the physics may not
be so different whether the underlying theory is supersymmetric or not.

The reader may also complain that the restriction to z = 1 appears to be limiting given the many
different types of scaling that appear in condensed matter. In response, I note there has been recent
progress in extending AdS/CFT to z 
= 1. For example refs. [14, 15] have conjectured a gravity dual
for a theory with Schrödinger symmetry, i.e. the symmetry group of the free Schödinger equation.
This group has z = 2. There are serious experimental reasons to understand strongly interacting
systems with this symmetry group [16]. Consider a dilute gas of lithium-6 or potassium-40 atoms
in an optical trap. The interaction strength between these fermionic atoms can be tuned with an
external magnetic field. At a Feshbach resonance, the scattering length becomes larger than the
system size, and these so-called fermions at unitarity obey an approximate Schrödinger symmetry.
Although I will not address this question here, it is very interesting to ask whether AdS/CFT can
say anything useful about these strongly interacting atomic systems.

Not all condensed matter systems with z = 2 have the Schrödinger symmetry. Another possi-
bility is a Lifshitz scaling symmetry, i.e. the symmetry group of a Lagrangian of the form

L = (∂tφ)2 − κ(∇2φ)2 . (9)

Ref. [17] presents a proposal for a gravity dual for a strongly interacting field theory with such a
symmetry. Despite these recent advances, we shall focus henceforth on the z = 1 case with Lorentz
symmetry. It is this case for which the AdS/CFT dictionary is most detailed and reliable.
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II. FIELD THEORY FOR STRONGLY INTERACTING SYSTEMS

In this lecture, I will set up a field theory framework to describe the response of a system
at equilibrium to small perturbations. The framework allows us to relate two-point correlation
functions to thermal and charge conductivities. I then will demonstrate how gauge and Lorentz
invariance severely constrain the form of these two-point functions, and hence of the conductivities,
through Ward identities.3

Consider the response of a system to the presence of weak external fields {φi(x)} coupled to a
set of operators {Ôi(x)}. The Hamiltonian Ĥ is modified by a term of the form

δĤ = −
∫
ddxφi(t,x)Ôi(t,x) . (10)

A classic result from time dependent perturbation theory in quantum mechanics, which I leave
as a worthwhile exercise for the reader, is that these external fields will produce a change in the
expectation value of the operators of the form

δ〈Ôi(x)〉 =
∫
dd+1x′GijR(x, x

′)φj(x′) +O(φ2) , (11)

where

GijR(x, x
′) = iθ(t− t′)〈[Ôi(x), Ôj(x′)]〉 (12)

is the retarded Green’s function. In systems with translation invariance, it is sensible to decompose
the external potential into Fourier components. The Fourier transformed linear response result
takes the simple form

δOi(k) = G̃ijR(k)φ̃j(k) +O(φ2) , (13)

where the Fourier transform of the retarded Green’s function is

G̃ijR(k) =
∫
dd+1x e−ikxGijR(x, 0) . (14)

A. The Relation Between Green’s Functions and Transport Coefficients

To make this formalism more intuitive and physical, I will rephrase Ohm’s Law in this language.
Recall the statement of Ohm’s Law for an electric field that is constant in space but oscillating in
time with frequency ω; the spatial part of the charge current response is given by

J i(ω) = σij(ω)Ej(ω) . (15)

In the language of the previous paragraphs, φi(x) is an external vector potential Aμ(x) and the
operator Ôi(x) is a conserved current Jμ(x). Choosing a gauge where At = 0, the electric field

3 This lecture owes a debt to unpublished notes of and private communications with Larry Yaffe.
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becomes Ex = −∂tAx. Making a Fourier decomposition where Ax ∼ e−iωt, we see that Ex = iωAx.
Comparing eqs. (13) and (15), one sees that the conductivity and the current-current correlation
function are proportional:

σij(ω) =
G̃ijR(ω, 0)

iω
. (16)

Another important player in our discussion will be the heat current Qν = T ν0−μJν , where Tμν
is the stress-energy tensor and μ is the chemical potential. We will explain presently why the heat
current is this peculiar linear combination of the charge and momentum densities. For the moment,
the important point is that the heat conductivity can be related to two-point correlation functions
of the stress-energy tensor. The stress tensor couples naturally to fluctuations in the metric gμν .
Thus, if Ôi(x) from above is taken to be Tμν(x), then the corresponding external potential should
be δgμν(x).

Note there is a real and immediate limitation in choosing φi(x) to be an external vector potential
or metric fluctuation. By making Aμ(x) external, we are treating the electromagnetic field as a
control parameter for the system. The system is not allowed to source its own electromagnetic
fields in this limit, and the photon is not dynamical. Similarly, by choosing φi(x) = δgμν(x), we are
forced to work in a fixed background space-time with a non-dynamical graviton. In the limit where
Coulombic and gravitational interactions are weak, this method of approach makes a lot of sense.
Indeed, for condensed matter systems, it seems very reasonable to ignore gravity. A non-dynamical
photon, on the other hand, is questionable; the interactions between the electrons and nuclei are
electromagnetic in nature.

Nevertheless, there are many condensed matter systems in which the photon is treated, to
first approximation, as non-dynamical. For most metals the Coulombic interaction between the
electrons is largely screened, and a free fermion gas is a good approximation. In the BCS theory
of superconductivity, the interaction between the electrons is treated phenomenologically, and
then the conductivity is calculated from looking at the electric field as an external potential. In
strongly interacting systems, this electromagnetic nature of the interaction is often obscured and
renormalized. Our point of view with the holographic models we consider later is a conjecture that
the strong interactions between the constituents of the system can be separated from the relatively
weak interaction between the system and an external field strength.

I would now like to explain why the heat current takes the form Qν = T ν0 − μJν . First,
consider the case where the chemical potential μ = 0. The heat current should be the response of
the system to a temperature gradient. In Euclidean signature, the time component of the metric
has periodicity 1/T where T is the temperature. Let the time-time component of the metric have
the form

g00 =
T 2

0

T (x)2
, (17)

where T (x) is a slowly varying function of position and T (0) = T0. Euclidean time runs from
0 ≤ τ < T0. I assume a possible time dependence of the form ∂iT ∼ e−iωτ . The gradient of g00 is
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thus the temperature gradient:

∂ig00 = −2
T 2

0

T 2

∂iT

T
≈ −2∂iT

T
. (18)

Consider a change of coordinates in which g00 is constant and the temperature gradient is exhib-
ited instead by a fluctuation of an off-diagonal component of the metric. Under an infinitesimal
coordinate transformation xμ → xμ + ξμ, the metric changes by4

δgμν = ∂μξν + ∂νξμ . (19)

We would like to choose ξμ such that ∂i(g00 + δg00) = 0. Setting ξi = 0, we find that

δg0i = ∂iξ0 = −
∂iT

iωT
. (20)

Continuing back to Lorentzian signature, from eq. (13), we have that

〈T 0j〉 = G̃0j,0i
R (ω, 0)δg0i(ω) = −

G̃0j,0i
R (ω, 0)
iω

∂iT

T
. (21)

Given this result, it makes sense in the absence of chemical potential to identify the heat conduc-
tivity as

κ̄ij(ω) =
G̃0i,0j
R (ω, 0)
iωT

. (22)

Note that a positive Re[κ̄xx] corresponds to a flow from a hot region to a colder region. In-
deed it must be that Re[κ̄xx] ≥ 0 because of the positivity properties of the spectral density,
ω Im[GR(ω,k)] ≥ 0.

The chemical potential μ is usually defined as a Lagrange multiplier that introduces an average
nonzero charge density: Ĥ → Ĥ − μQ̂ where Q̂ =

∫
ddx J t is the charge associated with the

conserved current Jμ. From this point of view, there is no difference between adding a chemical
potential μ and introducing a constant background value for the time component of the external
vector potential At = μ.

Given that at nonzero chemical potential, At 
= 0, we have to be more careful with the coor-
dinate transformation used above. Under such a coordinate transformation, the vector potential
transforms as well,

δAμ = Aνξ
ν , μ+Aμ,νξ

ν , (23)

which reduces to δAi = −At∂iξ0 = −μ∂iT/iωT .
The change in the Hamiltonian introduced with the external metric fluctuations and vector

potential is

δĤ = −
∫
ddx (Tμνδgμν + JμAμ) . (24)

4 The difference between eq. (19) and the Lie derivative (44) is higher order in the temperature gradient.
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If we are interested specifically in the response of the system to a temperature gradient and an
electric field, then this change in the Hamiltonian can be written in the form

δĤ = −
∫
ddx

((
T 0j − μJ j

) ∂jT
iωT

+ J j
Ej
iωT

)
. (25)

This last equation makes clear that the heat current has the form Qj = T 0j − μJ j .
The linear response of a system to a temperature gradient and an electric field can be summa-

rized with the following matrix of transport coefficients(
J
Q

)
=

(
σ αT

ᾱT κ̄T

)(
E

−(∇T )/T

)
. (26)

Two new conductivities, the thermoelectric coefficients α and ᾱ have been introduced above. From
our discussion above, the conductivities σ, α, ᾱ, and κ̄ can be directly expressed in terms of the
appropriate two-point correlation functions of Jμ and Qμ. In particular

σ =
1
iω
G̃JJ
R (ω, 0) , α =

1
iωT

G̃JQ
R (ω, 0) , (27)

ᾱ =
1
iωT

G̃QJ
R (ω, 0) , κ̄ =

1
iωT

G̃QQ
R (ω, 0) . (28)

B. The Role of Discrete Symmetries

The transport coefficients α and ᾱ are related under time reversal symmetry Θ. Up to sending
the magnetic field B → −B, the equilibrium state is taken to be invariant under Θ. Assume we
have two real operators φ and ψ such that ΘφΘ = ηφφ and ΘψΘ = ηψψ where ηφ and ηψ are ±1,
depending on the choice of operator. The operators T 0i and J i are both odd under Θ because
they are both currents; changing the direction of time changes the spatial direction of the currents.
Since Θ is an anti-linear operator, we have

〈−B|[φ(t, 	x), ψ(0)]|−B〉 = 〈B|Θ[φ(t, 	x), ψ(0)]Θ|B〉∗

= ηφηψ〈B|[φ(−t, 	x), ψ(0)]|B〉∗

= ηφηψ〈B|[ψ(0), φ(−t, 	x)]|B〉
= ηφηψ〈B|[ψ(t,−	x), φ(0)]|B〉 ,

where in the last step we used translation invariance. Now if we consider the kμ = (ω, 0) component
of the corresponding Fourier transformed, retarded Green’s function of φ and ψ, G̃φ,ψR (ω,B), we
find that

G̃φ,ψR (ω,B) = ηφηψG̃
ψ,φ
R (ω,−B) . (29)

This relation is the Onsager reciprocal relation [18]. The Onsager relation thus implies

σij(B) = σji(−B) , αij(B) = ᾱji(−B) , κ̄ij(B) = κ̄ji(−B) . (30)
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In systems with more symmetry, we can put further constraints on these transport coefficients.
For example, consider a system in two spatial dimensions with rotation and reflection symmetry
in the presence of a constant external magnetic field. We assume that the equilibrium state of
our 2+1 dimensional material is invariant under the 90 degree rotation which sends x → −y and
y → x. This action of SO(2) demonstrates that the matrices σ, α, ᾱ, and κ̄, which we collectively
refer to as M , have the property that Mxx = Myy and Mxy = −Myx. It is important here that
we are looking at the kμ = (ω, 0) component only of the Fourier transformed Green’s functions.
In the Fourier transform, the integral over d2x washes out the dependence on the rotated spatial
coordinates.

Next, we assume our equilibrium state is invariant under a reflection symmetry which sends
y → −y. This reflection sends Fxy = B → −B. It leaves the diagonal elements of our matrices M
invariant while multiplying the off-diagonal elements by −1. Together, the 90 degree rotation and
reflection imply that the matrices σ, α, ᾱ, and κ̄ all have the property that

M(B) =MT (−B) . (31)

In the case of σ and κ̄, this relation is equivalent to the Onsager relation (30). However, for α and
ᾱ, putting this relation together with the Onsager relation, we learn something new, namely that

α(B) = ᾱT (−B) = ᾱ(B) . (32)

C. The Nernst Effect in High-Tc Superconductors

Having dwelt long on formalism, it is time to take a break and motivate why these ideas are
important for the task at hand of understanding condensed matter systems. There are related
physical quantities which can be derived from eq. (26). For example, there is the canonical heat
conductivity κ, as opposed to κ̄ introduced above, which is defined as the heat current response to
a temperature gradient in the absence of a charge current,

κ = κ̄− T ᾱ · σ−1 · α . (33)

There is also the Nernst effect in which a constant voltage is produced in response to a temperature
gradient in the absence of a charge current, J i = 0. A little algebra shows that the Nernst effect
is characterized by the transport matrix

θ = −σ−1 · α . (34)

A large Nernst effect has been associated with the onset of superconductivity in high Tc super-
conductors. For example Wang, Li, and Ong [19] have measured a sharp rise in the Nernst effect
in the under doped region of La2−xSrxCuO4 at temperatures T � Tc. We reproduce a plot from
their paper as Figure 5.

In a typical metal, due to an effect called Sondheimer cancellation, the Nernst effect should be
vanishingly small. Consider a metal at nonzero temperature where the density of states does not
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FIG. 5: A contour plot for the large Nernst effect measured in La2−xSrxCuO4. The Nernst coefficient
ν = θxy/B is plotted in units of nV / K T. Tonset is defined as the temperature at which ν begins to differ
substantially from its high temperature behavior. In the dark blue region, the material is superconducting.
This figure is described in ref. [19] in more detail.

vary very much near the Fermi surface. In the presence of a temperature gradient, there are more
excited electrons above the Fermi surface and holes below the surface in the warmer regions. We
expect an entropic flux of hot electrons above the Fermi surface to colder regions and a similar
entropic flux of cold electrons below the Fermi surface to warmer regions. Now if we apply a
magnetic field, the hot and cold electrons will be deflected in opposite directions. Provided the
density of states is nearly constant near the Fermi surface, no voltage will be generated, and the
Nernst effect should vanish. For gold, at room temperature, the Nernst coefficient is on the order
10 nV / K T [20], compared with values of order 102 nV / K T measured for La2−xSrxCuO4.

Why might under doped, hight Tc superconductors have a large Nernst effect associated with
the superconducting phase transition? Probably because the effective degrees of freedom are not
electrons and holes. For example, if the effective degrees of freedom are vortices, the Nernst effect
can be much larger. Magnetic fields penetrate a superconductor through vortex cores, and thus the
net number of vortices should be proportional to H. Vortex cores have entropy which cause them
to move in response to a thermal gradient. The phase of the condensate winds around the vortex,
and thus a vortex moving past a line causes a phase slip of 2π. This phase slippage then induces
a voltage by gauge invariance. Derivatives of the phase must always appear in combination with
the vector potential, ∂μφ+Aμ, and a time varying φ is gauge equivalent to a voltage.

The techniques outlined at the beginning of the lecture suggest that we might be able to
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calculate the Nernst effect without regard to weakly coupled degrees of freedom, be they vortices,
electrons, or holes. All we need is the two-point functions of the stress tensor and the charge
current. Remarkably, AdS/CFT provides us with a tool to calculate these correlation functions
without reference to a weakly coupled microscopic description. More precisely, the weakly coupled
description provided by AdS/CFT is a dual classical gravitational one in which the field theory
variables are scrambled almost beyond recognition. AdS/CFT provides a framework for calculating
in theories where there may not be effective weakly coupled quasiparticles.

Before turning in the third lecture to a more detailed description of these holographic techniques,
I first want to get more mileage out of the field theory framework. In particular I want to use
Lorentz and gauge invariance to place constraints on the form of the current and stress tensor
two-point functions. These constraints are the Ward identities.

D. Ward Identities

In 2+1 dimensions, ref. [21] noticed the following peculiar set of identities relating σ, α, and κ̄
in the presence of a chemical potential μ and a constant background magnetic field B:

±α±Tω = (B ∓ μω)σ± − 〈n〉 , (35)

±κ̄±Tω = (B ∓ μω)α±T − 〈ε+ p− μn〉 . (36)

In this expression, I have introduced the energy density T 00 = ε, the pressure T ii = p, and the
charge density J0 = n. I have also introduced the linear combinations M± = Mxy ± iMxx of the
coefficients of the transport matrices σ, α, and κ̄. The remarkable fact about these relations (35)
and (36) is that if we know σ±(ω), we know α±(ω) and κ̄±(ω) as well. There is only one independent
set of transport coefficients. These relations are really Ward identities, as I now explain.

Start with a generating functional for Euclidean time ordered correlation functions:

eW [g,A] = Z[g,A] =
∫
Dφe−S[φ,g,A] , (37)

where the metric gμν and the vector potential Aμ are external and non-dynamical. Given this
generating functional, we can define the one-point correlation functions as functional derivatives
of W:

〈Jμ(x)〉 = δW

δAμ(x)
, 〈Tμν(x)〉 = 2

δW

δgμν(x)
. (38)

Note we have defined Tμν(x) without the customary factor of
√
det(gμν). Thus Tμν is a tensor

density rather than a tensor field. There are similar formulae for the time ordered Euclidean
two-point functions:

Gμν,αβE (x, y) ≡ 〈T∗(Tμν(x)Tαβ(y))〉 = 4
δ2W [g]

δgμν(x)δgαβ(y)
, (39)

Gμν,λE (x, y) ≡ 〈T∗(Tμν(x)Jλ(y))〉 = 2
δ2W

δgμν(x)δAλ(y)
, (40)
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and

Gμ,νE (x, y) ≡ 〈T∗(Jμ(x)Jν(y))〉 =
δ2W [g,A]

δAμ(x)δAν(y)
. (41)

In the absence of gravitational and gauge anomalies, W [g,A] should be invariant under diffeo-
morphisms and gauge transformations:

xμ → xμ + ξμ , (42)

Aμ → Aμ + ∂μf . (43)

Under diffeomorphisms, the change in the metric and vector potential can be expressed as a Lie
derivative with respect to the vector field ξμ:

δgμν = (Lξg)μν = gμλξ
λ
,ν + gνλξ

λ
,μ + gμν,λξ

λ , (44)

δAμ = (LξA)μ = Aνξ
ν
,μ +Aμ,νξ

ν . (45)

That W [g,A] is diffeomorphism invariant means that

0 =
∫
dd+1x

(
δW

δgμν(x)
(Lξg)μν +

δW

δAμ(x)
(LξA)μ

)
. (46)

A short exercise involving integration by parts then shows that

gνλDμ〈Tμν(x)〉 − Fλμ〈Jμ(x)〉 = 0 , (47)

where the operator acting on 〈Tμν〉 in this expression is the covariant derivative:

Dμ〈Tμν(x)〉 = ∂μ〈Tμν(x)〉+ Γνμρ〈Tμρ(x)〉 . (48)

In flat space, the Christoffel symbols vanish, and we recover the result

∂μ〈Tμν(x)〉 = F νμ〈Jμ(x)〉 . (49)

This equation is essentially the Lorentz force law. A much simpler calculation invoking the invari-
ance of W [g,A] under gauge transformations implies current conservation:

∂μ〈Jμ(x)〉 = 0 . (50)

The two relations (49) and (50) are the Ward identities for one-point correlation functions. Ad-
mittedly, we could have derived them more simply from other considerations. However, they are
the starting point for determining the Ward identities for two-point functions which will in turn
imply the constraints (35) and (36) on the transport coefficients.

Two interesting Ward identities for the two-point functions are obtained by taking a functional
derivative of eq. (47) with respect to either Aμ or δgμν . I omit the details. The results are

0 =
∂

∂xμ
〈T∗(Jα(y)Tμν(x))〉+ Fμ

ν〈T∗(Jα(y)Jμ(x))〉 −
∂

∂xβ
δ(x− y)δβν〈Jα(y)〉

+
∂

∂xμ
δ(x− y)δαν〈Jμ(y)〉 , (51)

0 = Dμ

(
〈T∗(Tαβ(y)Tμν(x))〉+ δ(x− y)〈gανT βμ(y) + gβνTαμ(y)− gμνTαβ(y)〉

)
+δ(x− y)gβνDμ〈Tμα(x)〉+ δ(x− y)gανDμ〈Tμβ(x)〉+ Fμ

ν〈T∗(Tαβ(y)Jμ(x))〉 . (52)
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The covariant derivative is with respect to the x coordinate. I will assume the external field is
constant in space and time. Assuming translation invariance is not spontaneously broken in the
equilibrium state, in the flat space limit the one point functions 〈Jμ〉 and 〈Tμν〉 should be constant
in space-time. In momentum space, these Ward identities become simpler to write down:

0 = −kμG̃α,μνE (k)− iFμνG̃α,μE (k) + kν〈Jα〉 − kμδαν〈Jμ〉 , (53)

0 = kμ

(
G̃αβ,μνE (k) + δαν〈T βμ〉+ δβν〈Tαμ〉 − δμν〈Tαβ〉

)
−iδβνFμα〈Jμ〉 − iδανFμβ〈Jμ〉+ iFμ

νG̃αβ,μE (k) , (54)

where I used the one-point function identity (49) to simplify the second relation. We continue
back to Minkowski space noting that in the scalar case, the analytic continuation of the Fourier
transformed Euclidean Green’s function is the retarded Green’s function. For these tensor valued
Green’s functions, we also redefine tensor components with zero indices by multiplying by a suitable
power of i. Each upper index zero carries a factor of i while each lower index zero carries a factor
of −i. Thus, we have J0

E → iJ0
M , T

0i
E → iT 0i

M , T
00
E → −T 00

M , kE0 → −ikM0 ≡ iω, and a similar rule
for Fμν . With this prescription, the Ward identities become

0 = −kμG̃α,μνR (k) + iFμ
νG̃α,μR (k) + kν〈Jα〉 − kμηαν〈Jμ〉 , (55)

0 = kμ

(
G̃αβ,μνR (k) + ηαν〈T βμ〉+ ηβν〈Tαμ〉 − ημν〈Tαβ〉

)
+iηβνFμα〈Jμ〉+ iηανFμ

β〈Jμ〉 − iFμνG̃αβ,μR (k) . (56)

From the Fourier transformed Ward identities (55) and (56) and the identifications (27) and
(28), we can derive the relations (35) and (36). In particular, we consider kμ = (ω, 0) in 2+1
space-time dimensions where we apply a constant external magnetic field Fxy = B and a chemical
potential At = μ. We assume that the equilibrium state of the theory involves a nonzero charge
density 〈Jμ〉 = (〈n〉, 0) and a diagonal stress tensor,

〈Tμν〉 =

⎛
⎜⎝
〈ε〉 0 0
0 〈p〉 0
0 0 〈p〉

⎞
⎟⎠ , (57)

with constant expectation values for the energy density 〈ε〉 and pressure 〈p〉. As the arguments are
a little subtle, we present the details in the appendix.
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III. BEYOND FIELD THEORY: TRANSPORT COEFFICIENTS FROM HOLOGRAPHY

In this lecture, I will make use of a holographic gravity dual for a strongly interacting 2+1
dimensional field theory. The field theory in question is maximally SUSY SU(N) Yang-Mills
theory in 2+1 dimensions. In 2+1 dimensions, the coupling g2

YM has dimensions of mass. If we
calculate a scattering amplitude or correlation function at some energy scale E, g2

YM has to appear
in the dimensionless ratio g2

YM/E, and we expect the field theory to be effectively strongly coupled
at low energy scales. Indeed, there is a widely accepted belief that this theory flows under the
renormalization group to a nontrivial strongly interacting fixed point at low energy scales. In the
language of the first lecture, this fixed point is a quantum critical point. Moreover, there is a ten
year old conjecture — an extension of the original AdS/CFT correspondence — that the infrared
fixed point is dual to M-theory in an AdS4 × S7 background [22].

We can describe a sector of this conformal field theory with the following four dimensional
effective action:5

S =
1
2κ2

∫
d4x
√−g(R− 2Λ)− 1

4g2

∫
d4x
√−gFABFAB , (58)

where Λ = −3/L2. Consistent with the negative cosmological constant, I will assume that the space
is asymptotically AdS4. Reminiscent of the set-up presented in the second lecture, the Einstein-
Hilbert term in this action will allow us to compute correlation functions of the stress-energy tensor
in the field theory while the Maxwell term allows us to compute correlation functions involving
a conserved current. Conserved currents in field theories come from symmetries via Noether’s
theorem, and the symmetry I have in mind is a U(1) subgroup of the global SO(8) R-symmetry
present at the infrared fixed point.

A couple of comments are in order:

• This classical gravitational description is valid at large N where 1/κ2 ∼ N3/2. As N becomes
smaller, quantum gravitational effects will become important.

• Although I seem to have implied that g and κ are independently tunable parameters in the
action (58), in fact the R-symmetry current is in the same SUSY multiplet as the stress-
energy tensor, and κ and g are related via SUSY [23]:

κ2 = 2g2L2 . (59)

• This action (58) describes a sector not only of maximally SUSY SU(N) Yang-Mills theory
but of a larger class of strongly interacting 2+1 dimensional SUSY field theories. If I replace
S7 with a seven-dimensional object X7 called a Sasaki-Einstein manifold, then there is a
more general conjecture that M-theory on AdS4 × X7 is dual to a 2+1 dimensional field
theory with at least N = 2 SUSY and at least a U(1) R-symmetry (see for example ref.
[24]).

5 I will use A, B, C, . . . to index directions in gravity and μ, ν, λ, . . . to index directions in field theory.
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This action S is meant to remind you of the W [g,A] of the previous lecture. Recalling that
anti-de Sitter space has a boundary, the AdS/CFT dictionary says that S, evaluated for a classical
solution to the gravitational equations of motion, is a generating functional for correlation functions
in the field theory with the boundary values of gμν and Aμ playing the role of the external metric
and external gauge field of Lecture II. Thus, S provides a way to compute two-point correlation
functions of Jμ and Tμν .

An important classical solution to the action (58) is a dyonic black hole, i.e. a black hole with
both electric and magnetic charge:

ds2

L2
=

1
z2

(
−f(z)dt2 + dx2 + dy2

)
+

1
z2

dz2

f(z)
, (60)

A =
hx

zh
dy − q

(
1− z

zh

)
dt , f(z) = 1 + (h2 + q2)α

z4

z4
h

− (1 + (h2 + q2)α)
z3

z3
h

. (61)

where

α =
κ2z2

h

2g2L2
. (62)

The radial coordinate z runs from the boundary at z = 0 to the black hole horizon at z = zh.
Note that the metric approaches that of anti-de Sitter space with radius of curvature L in the
Poincaré patch in the limit z → 0. In solving for A, a constant of integration was chosen such that
At(zh) = 0 in order that A be well defined at the horizon, AAABgAB <∞.

Black hole, with its denotation of a spherical object, is a misnomer here. The horizon of this
black hole is flat and translationally invariant. Black membrane would be more precise terminology.
Along with this refinement, it would be more precise to speak of magnetic and electric charge
density.

This classical solution is important because it is dual to our strongly interacting field theory at
nonzero temperature T , magnetic field B, and charge density n. By computing two-point corre-
lation functions of the stress-tensor and charge current from this background, we are computing,
by the linear response technology developed in Lecture II, the transport coefficients as a function
of T , B, and n. The temperature of the field theory, via the AdS/CFT dictionary, is the Hawking
temperature of the black hole

T =
3− (h2 + q2)α

4πzh
. (63)

The magnetic field of the field theory is the boundary limit of the bulk magnetic field Fxy:

B = h/zh . (64)

I would like to begin by demonstrating how to use the AdS/CFT formalism to compute 〈Jμ〉
given this black hole solution. Near the boundary, the equation of motion for Aμ has the solution

Aμ = aμ + bμ z + . . . (65)



22

On shell, i.e. evaluated for a solution to the classical equations of motion, the Maxwell part of the
action reduces to a boundary term of the form

SEM =
1
g2

∫
d3x ημνAμ∂zAν

∣∣∣∣
z=0

=
1
g2

∫
d3x ημνaμbν . (66)

(We work in the radial gauge Az = 0.) Thus the one-point function for the current is

〈Jμ〉 = δS

δaμ
=

1
g2
bμ . (67)

For our dyonic black hole, bt = q/zh and at = −q ≡ μ. Thus

〈n〉 = 〈J t〉 = − q

g2zh
=

μ

g2zh
. (68)

The electric field of the black hole is thus reinterpreted as a charge density n in the field theory.
Note that to have a well defined variational problem, the boundary value aμ must be a gauge
invariant quantity; gauge transformations cannot cause the boundary value aμ to fluctuate.

As a somewhat more complicated example, Ohm’s Law takes an interesting dual holographic
form. Recall that

σ± =
±i〈J±〉
E±

(69)

where I am persisting in using these linear combinations of σxx and σxy from Lecture II and I have
defined

J± = Jx ± iJy , E± = Ex ± iEy . (70)

We just saw that

g2〈J±〉 = lim
z→0

∂zA± . (71)

We can think of ±i∂zA± as a bulk magnetic field B± and E± as the boundary limit of a bulk
electric field E±. From a gravity point of view, Ohm’s Law can thus be written in the form

σ± = lim
z→0

B±
g2E±

. (72)

At this point, I remind the reader about (classical) electric-magnetic duality. For an action of
the form

1
4g2

∫
d4x

√−gFABFAB , (73)

either FAB or −1
2εABCDF

CD could be the fundamental field strength.6 The action is (classically)
invariant under switching the electric and magnetic fields. For the dyonic black hole background,
the duality transformation is

B± → −E± , E± → B± , h→ −q , q → h . (74)

6 We define ε0123 =
√−g.
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To compute σ±(n,B) as a function of the charge density and magnetic field requires numerics,
but there is a constraint from electric-magnetic duality,

σ±(q, h) = lim
z→0

B±(q, h)
g2E±(q, h)

= − lim
z→0

E±(h,−q)
g2B±(h,−q)

= − 1
g4σ±(h,−q)

. (75)

A density plot of |σ+| for various values of the magnetic field and charge density is provided as
Figure 6. The curious pattern of zeroes and poles bears the imprint of electric-magnetic duality.
In particular, the duality maps Figure 6a to the negative of Figure 6c and flips Figure 6b about
the imaginary ω axis.7

This constraint (75) leads to a very simple way to calculate the conductivity for the field theory
dual to the uncharged black hole, where h = q = 0. In this case, the background is left invariant
by the duality, and the conductivity should not change,

σ±(0, 0) = −
1

σ±(0, 0)
1
g4

. (76)

Solving for the conductivity yields

σ± = ±
i

g2
(77)

or in components

σxx =
1
g2

, σxy = 0 . (78)

This frequency independent result (77) for the conductivity in the absence of a magnetic field
and charge density, B = ρ = 0, is surprising. In general, the conductivity could be a function
of the dimensionless ratio ω/T . This frequency independence was noted originally in ref. [25]. In
connection with this result, the following quote from ref. [9], which predates ref. [25] by a decade, is
remarkable: “The distinct physical interpretations of [the high frequency] and [low frequency limits
of the conductivity] make it clear that, in general, there is no reason for them to have equal values
(we cannot, of course, rule out the existence of exotic models or symmetries that may cause these
two to be equal).”8 Apparently, the infrared fixed point of maximally SUSY SU(N) Yang-Mills
theory in 2+1 dimensions is such an exotic model.

For the case of nonzero charge density and magnetic field, there is a limit — the hydrodynamic
limit — in which the conductivity takes a simple, analytic form. The hydrodynamic modes are
associated with time and distance scales which are long compared to any microscopic scales but
short compared to the size of the system. Our system is effectively infinite, and so only the first
condition is important; given the conformal nature of the underlying field theory, the microscopic
time and distance scales are set by 1/T . In the limit ω/T 	 1 and B/T 2 	 1, the conductivity
has the form

σ± = ±iσQ
ω + iω2

c/γ ± ωc
ω + iγ ∓ ωc

(79)

7 One may also compute the dependence of the current-current correlation functions on k. See ref. [25] for comments
about the collisionless to hydrodynamic cross-over in these correlators as a function of k in the case 〈n〉 = 0.

8 I would like to thank Pavel Kovtun for bringing my attention to this quote.
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FIG. 6: A density plot of |σ+| as a function of complex ω. White areas are large in magnitude and correspond
to poles while dark areas are zeroes of σ+: a) h = 0 and q = 1, b) h = q = 1/

√
2, c) h = 1 and q = 0. (The

plots were taken from ref. [26].

where

ωc =
Bρ

ε+ p
, γ =

σQB
2

ε+ p
. (80)

Ref. [26] used AdS/CFT to confirm the result (79).9

Current conservation and the gradient expansion predetermine the form of the two-point cor-
relation functions in the hydrodynamic limit. More specifically, the facts that ∂μTμν = 0 and
∂μJ

μ = 0 and the assumption of a well defined gradient expansion for the response of the system
to small perturbations in the charge, energy, and momentum densities predetermine the form of
σ±, ωc, and γ. The authors of ref. [28] used hydrodynamics to show that the conductivity has to
take the form (79).

The gravity dual can then tell us the transport coefficients, for example the normalization of
the conductivity is

σQ =
(sT )2

(ε+ p)2
1
g2

. (81)

Gravity also gives the equation of state, ε = 2p, but one could argue this equation was forced
on us by the conformal scaling which implies the vanishing of the trace of stress-energy tensor,
〈Tμμ 〉 = 0. Away from the hydrodynamic limit, these holographic techniques are arguably more
powerful, allowing us to calculate for example Figure 6.

A. Experimental Applications

Notice the existence of a pole in eq. (79) at the cyclotron frequency. This cyclotron frequency
ωc is the relativistic hydrodynamic analog of the free particle result ωf = eB/mc. The resonance
in eq. (79), however, is due to a collective fluid motion rather than to free particles. There is also

9 For an investigation of this system where the constraint B/T 2 � 1 is relaxed, see ref. [27].
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a damping γ that naively one could think of as arising from interactions between the counter-
circulating currents of positive and negative charged components of the fluid.

Ref. [28] attempted to estimate the value of this cyclotron resonance for La2−xSrxCuO4 in the
under doped, normal region of the phase diagram:

ωc ≈ 6.2 GHz
B

1Tesla

(
35K
T

)3

. (82)

This result is about 0.035 times the free electron result. To observe such a resonance in the
conductivity would be spectacular, even if it says little about the relevance of holographic techniques
for modeling high Tc superconductors. It says little because the location of the cyclotron pole (80)
was forced on us by hydrodynamics. On the other hand, observing such a pole suggests that it
may be reasonable to model the under doped, normal region of La2−xSrxCuO4 using a Lorentz
invariant field theory where the most important scales are T , B, and n.

Unfortunately, because real world materials have impurities, this proposal to search for a hydro-
dynamic cyclotron pole is a difficult enterprise. In addition to providing the estimate (82), ref. [28]
noted that the inverse scattering time due to impurities in typical samples of La2−xSrxCuO4 are of
the same order of magnitude as the cyclotron frequency, ωc ∼ 1/τimp. Thus, impurities will likely
wash out the cyclotron signal. See however ref. [29] for a proposal to search for this resonance in
clean samples of graphene.

I demonstrated in Lecture II that σ alone determines the transport coefficients α, κ̄, and also
the related quantities κ and θ using Ward identities. Consider this last matrix, θ = −σ−1 ·α, which
describes the Nernst effect. In the hydrodynamic limit, the Nernst coefficient is

θxy =
−αxyσxx + αxxσxy

σ2
xx + σ2

xy

= −B
T

iω

(ω + iω2
c/γ)2 − ω2

c

. (83)

Note that in the DC limit (ω → 0) at nonzero magnetic field (B 
= 0), the Nernst effect
vanishes, θxy → 0. This vanishing is an artifact of translation invariance. As I show in the
appendix, translation invariance in fact implies that in this limit

σxx = 0 , σxy =
〈n〉
B

, αxx = 0 , αxy =
〈s〉
B

. (84)

The result for σxy is the classical Hall conductivity.10

Clearly, if we are to describe a large DC Nernst effect, the remedy involves breaking translation
invariance, and in most materials, dirt and impurities are the most important causes of translational
symmetry breaking. A proposal was made in ref. [28] to introduce a phenomenological impurity
scattering time, ω → ω + i/τimp. With this addition

lim
ω→0

θxy = −
B

T

1/τimp

(1/τimp + ω2
c/γ)2 + ω2

c

. (85)

Indeed, this result appears to capture some of the qualitative B and T dependence of the Nernst
effect in high Tc superconductors [28].

10 For the holographic model (58), these results (84) were derived from AdS/CFT in ref. [30].
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Sean Hartnoll and I [31] improved slightly on eq. (85) by providing a more explicit holographic
model of the impurities in which we were able to capture the B, n, and T dependence of τimp. In
particular, consider a weak random external potential V (y) coupled to a neutral scalar operator in
the field theory,

δĤ =
∫
d2y V (y)Ô(t, y) . (86)

This potential V (y) breaks translational invariance, and we treated it statistically, assuming that

〈V (x)〉 = 0 , 〈V (x)V (y)〉 = V̄ 2δ(2)(x− y) . (87)

The impurities should be a relevant perturbation, important at long distance scales. This condition
is sometimes known as the Harris criterion:

[V̄ ] = 2−ΔO > 0 , (88)

where ΔO is the conformal scaling dimension of Ô.
Given that V is assumed to be small, we computed the leading order contribution to the impurity

scattering time using something called the memory function formalism [32]:

1
τimp

=
V̄ 2

2χ0
lim
ω→0

∫
d2k
(2π)2

k2 ImG
OO
R (ω,k)
ω

. (89)

In this formula, the momentum susceptibility χ0 is the long wave-length limit of a momentum-
density momentum-density correlation function:

χ0 ≡ lim
ω→0

G0i,0i
R (ω, 0) = 〈ε+ p〉 . (90)

The result for the impurity scattering time has the scaling form

1
τimp

=
V̄ 2

T 3−2ΔO
F

(〈n〉
T 2

,
B

T 2

)
. (91)

But the important point here is given a dual gravity model, we can compute GOOR (ω,k) exactly. In
the perturbative limit in V̄ , we have reduced the calculation of τimp to a calculation of a two-point
correlation function in a gravity model without impurities. (For an attempt to go beyond the weak
impurity limit using holography and the replica trick, see ref. [33].)
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IV. HOLOGRAPHIC MODELS OF SUPERCONDUCTIVITY AND SUPERFLUIDITY

In this lecture, I would like to try to build into the holographic gravity model considered
in Lecture III the physics of a superconducting or superfluid phase transition. I don’t mean a
quantum phase transition; I mean an ordinary, vanilla, thermal phase transition. We can think of
the transport coefficients computed in the previous lecture as being the transport coefficients of
some system in the quantum critical region of the phase diagram, where the physics is determined
by the effective field theory at the quantum critical point and the most important scales were B,
μ, and T . But it would be nice to have, at least in principle, a way of tuning the parameters to go
through a classical, thermal phase transition — the solid blue lines in Figure 1.

I propose two methods for modifying the action that will introduce a superconducting or super-
fluid phase transition. Both methods involve introducing an extra degree of freedom to the gravity
dual whose boundary value will serve as an order parameter for the phase transition. The first
proposal is to add a charged scalar field ψ that couples to Fμν :

δS = −
∫
d4x

√−g
(
|Dψ|2 + V (|ψ|)

)
, (92)

where D = ∂ − ieA [34]. The second proposal is to promote Fμν to an SU(2) gauge field F aμν [35].
The order parameter will be a component of the boundary value of Aaμ.

I would like to make a few general comments about these two proposals before proceeding.

• It is not, as of the writing of these lectures, totally clear how to embed either of these pro-
posals in string theory. Hence, we should treat both resulting actions as phenomenological.
(See however refs. [36, 37] for progress in this direction.)

• Without a string theory embedding that would fix the potential, V (|ψ|) is arbitrary and the
physics may depend sensitively on our choice. We will choose the potential to be a mass
term, V (|ψ|) = −2|ψ|2/L2. Note that while the mass m2 = −2/L2 is tachyonic, mildly
tachyonic scalars are allowed in anti-de Sitter space provided they have masses larger than
the Breitenlohner-Freedman bound, m2

BF = −9/4L2 in AdS4.

• The SU(2) action is fixed by gauge invariance, but the physics is messy. The order parameter
Aaμ is a vector, and the phase transition breaks rotational symmetry. On the other hand,
one nice thing about the SU(2) case for AdS5 is that the behavior near the phase transition
is analytic [38, 39]. The symmetries and order parameter of this SU(2) model bear some
resemblance to those of p-wave superconductors and superfluid helium-3.

• Normally superfluid phase transitions are associated with spontaneous symmetry breaking
while superconducting phase transitions with the Higgs mechanism. Thus, we would ap-
pear to have superfluidity in the boundary field theory and superconductivity in the bulk
gravity. However, I would like to argue that for some questions, for example in computing
the conductivity, the difference between a superfluid and superconducting phase transition
in field theory is not important, and we can pretend the global symmetry group is weakly



28

gauged. Understanding the corrections introduced by treating the photon dynamically is an
interesting direction for future work.

• The reader should object that there are no classical thermal phase transition in 2+1 di-
mensional field theories. Infrared fluctuations should destroy any long range order and only
Kosterlitz-Thouless type transitions are allowed. These models get around the objection
by having a large number N of degrees of freedom. Given the models’ close relationship
to the maximally supersymmetric SU(N) Yang-Mills field theory discussed in Lecture III,
there must be a parameter N that corresponds loosely to the number of colors. I say loosely
because given the phenomenological nature of the scalar or non-abelian gauge field additions,
it is no longer entirely clear exactly what N is.

For simplicity, in the rest of this lecture, I will focus on the scalar case. (More details about
the SU(2) case can be found in refs. [40, 41].) The dyonic black hole background (60) constitutes
the normal, high temperature phase. I will return to magnetic fields and the Meissner effect at
the end of the lecture, but for the moment, I set h = 0. The central observation is that the charge
density acts as an effective negative contribution to the mass of the scalar [34]:

m2
eff = m2 + gttA2

t = m2 − z2

f

q2

L2
(1− z/zh)2 . (93)

Note the correction to the mass vanishes at both the horizon and the boundary. However, when q
is large enough, there will be a region in the interval 0 < z < zh where m2

eff becomes too negative.
There will be a corresponding instability, and the scalar will develop a nontrivial profile. One
amusing aspect of this model is that there is no need for a ψ4 term to stabilize the run away
direction for ψ. The curvature of the geometry allows m2

eff → m2 at z = 0 and z = zh and thus
stabilizes the run away direction.

To proceed, I will make a simplifying assumption that κ2 	 g2. In this weak gravity limit, the
gauge and scalar sector of the theory do not have enough energy to curve space-time, and I can
work in a fixed background. In this weak gravity or probe limit, the fixed background geometry
(60) reduces to a black hole metric with f(z) = 1− z3/z3

h. To further simplify the equations, I will
work in units where L = e = 1. The equations of motion for the scalar and gauge field become11

z2

(
f

z2
ψ′

)′
=

(
m2

z2
− A2

t

f

)
ψ , (94)

A′′t =
2g2

z2f
ψ2At . (95)

To have a well defined set of differential equations, I need to specify boundary conditions. The
physical boundary conditions are as follows. At the boundary (z = 0), ψ and At have the expansion

At = μ− g2nz + . . . , (96)

ψ = az + bz2 . (97)

11 I have made the gauge choice that ψ is real.
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To be consistent with ref. [42] I choose to work in the canonical ensemble where the charge density n
is fixed. The chemical potential μ is then determined dynamically through the differential equations
and the other boundary conditions.

For the scalar, normally the leading behavior would correspond to an external control parameter
for the field theory, i.e. a source, and the subleading behavior would be an expectation value, just
as occurred for Aμ and the grand canonical ensemble. However, here we have a choice of interpre-
tations and a corresponding choice of boundary condition [43]. In the AdS/CFT correspondence, a
bulk scalar with mass m corresponds to a scalar operator in the field theory with conformal dimen-
sion Δ through the relation m2L2 = Δ(Δ − 3) (for AdS4). Thus a value of the mass m2L2 = −2
corresponds to Δ = 1 or 2. For a scalar with Δ = 2, a is interpreted as a source for the operator in
the field theory while b ∼ 〈O2〉 is an expectation value. To study phase transitions, we should look
for solutions with no source for the scalar, a = 0, but where b becomes nonzero at some critical
temperature. On the other hand, for a scalar with Δ = 1, things are switched, a ∼ 〈O1〉, and one
should set b = 0. With a single choice of mass parameter, I get two models for the price of one.

The other boundary conditions for this field theory I set at the horizon of the black hole, z = zh.
For the scalar, the condition ψ < ∞ at the horizon eliminates one of the integration constants in
the differential equation. On the other hand, for the gauge field, I need to choose At = 0 at the
horizon in order to ensure the gttA2

t <∞.
Given the boundary conditions and the set of differential equations for At and ψ, I have a well

posed problem which unfortunately does not appear to have an analytic solution. However, the
differential equations are relatively straightforward to solve numerically, and one can look for a
phase transition as a function of the dimensionless ratio n/T 2. In practice we fix the temperature
by setting the horizon radius to zh = 1, and tune n. For 0 < n < nc, the black hole solution with
ψ = 0 appears to be stable. However, for n > nc, there is a phase transition to a black hole with
scalar hair. We can equally well think of this phase transition from an ordinary black hole to a
hairy black hole as occurring as we lower the temperature at fixed n. Plots of the behavior of 〈Oi〉
as a function of temperature are given in Figure 7. The phase transition is second order (see for
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FIG. 7: The condensate as a function of temperature for the two operators O1 and O2. The condensate
goes to zero at T = Tc ∝ n1/2.
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example the free energy plot in ref. [44]). For T � Tc, the order parameters scale as

〈O1〉 ∼ 〈O2〉 ∼ (Tc − T )1/2 (98)

which has the classic 1/2 mean field exponent of Landau-Ginzburg theory.
We will see after studying the conductivity of the system that there is a sense in which we can

interpret 〈O1〉 and
√
〈O2〉 as twice the superconducting gap. Recall that in BCS theory, there is a

classic prediction for this number at T = 0, namely 2× gap = 3.54Tc [45]. In comparison, in these
holographic systems, we find that 2 × gap is either infinite in the Δ = 1 case or about 8Tc in the
Δ = 2 case. The relatively large size of the gap compared to BCS theory suggests our holographic
field theory is strongly interacting. Note that for the high Tc superconductors, 2× gap is typically
in the range 4 to 7 times Tc [45].12

A. Conductivity

As we did before in the dyonic black hole case, we can study the conductivity of the field theory
dual to this hairy black hole. To calculate the conductivity, we need to solve the equation of motion
for a fluctuation of the gauge field in this background:

(
fA′x

)′ − ω2

f
Ax =

2g2

z2
ψ2Ax . (99)

The near boundary solution for Ax can be written

Ax =
Ex
iω

+
g2

α
Jxz + . . . (100)

where we have assumed that Ex ∼ e−iωt. The longitudinal piece of the conductivity matrix is then

σxx =
Jx

Ex
. (101)

In general, we again need numerics to solve this equation, but there are two nice limits in which we
can study the behavior analytically. For T > Tc, the scalar vanishes ψ = 0, and σxx = 1/g2, as we
calculated in Lecture III. For T ≈ 0 and the scalar with conformal dimension Δ = 1, numerically
we find that ψ is a nearly linear function of z:

ψ ≈ 〈O1〉√
2
z

g2
. (102)

Given this numerical observation, eq. (99) reduces to the Klein-Gordon equation:

A′′x − ω2Ax = 〈O1〉2Ax . (103)

12 The interpretation of 〈Oi〉 in terms of an energy gap is to some extent cheating. The strong interactions imply
we don’t necessarily have a good particle interpretation. Even if we did have a good microscopic picture of a
condensate of some kind of bound state, we could have n-particle bound states in place of Cooper pairs.
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Note that at T = 0, the warp factor f = 1 and the geometry extends from z = 0 to z = ∞. This
Klein-Gordon equation has two solutions, depending on the magnitude of ω:

Ax =

⎧⎨
⎩axe

−
√
〈O1〉2−ω2 z , ω < 〈O1〉 ,

axe
i
√
ω2−〈O1〉2 z , ω > 〈O1〉 .

(104)

In the first case, we chose the z →∞ boundary condition by demanding the solution be finite. In
the second case, we chose the large z boundary condition by demanding the solution be a wave
traveling to larger z. Thus, the conductivity takes the form

σxx =
i

g2

√
〈O1〉2 − ω2

ω
sgn

(
〈O1〉2 − ω2

)
. (105)

In principle, we should have been more careful about an iε prescription for the ω → 0 limit
of eq. (105), but we can recover the full behavior from considerations of causality and analyticity.
There must be a delta function peak at ω = 0 by the Kramers-Kronig relations:

Imσ(ω) = − 1
π
P

∫ ∞

−∞
Reσ(ω′)dω′

ω′ − ω . (106)

Thus,

Reσ(ω) ∼ π〈O1〉δ(ω)/g2 (107)

near ω = 0. This formula for σxx produces a graph that looks very much like classic textbook plots
of the conductivity calculated for BCS superconductors. Note the size of the superconducting gap
would be 〈O1〉/2. The factor of one half comes from the fact that in BCS theory the dissipative
conductive response involves producing a pair of excitations. A plot of this T → 0 limit of the
conductivity is given in Figure 8. Ref. [42] examined the behavior of the conductivity at interme-
diate temperatures, 0 < T < Tc. As expected as one increases T , the gap in the real part of the
conductivity begins to fill in.13

Ref. [48] studied this gravitational Abelian-Higgs model away from the weak gravity limit. I do
not have the time to describe those results here in detail. There are many qualitative similarities.
There are also two interesting differences. The first concerns translation invariance. Away from
the weak gravity limit, the normal component of the fluid is charged, and thus the conductivity σ
is a nontrivial function of ω in the normal phase. The second is that there is an additional source
of instability associated to the fact that the effective Breitenlohner-Freedman bound changes as
the charge on the black hole increases. Given eq. (93), one might expect that neutral scalars
will not produce an instability. In fact, as the charge on the black hole approaches extremality,
the geometry near the horizon approaches AdS2. The BF bound associated with this AdS2 is
m2 > −3/2, implying that neutral scalars with a mass −9/4 < m2 < −3/2 will condense to
form hairy black holes at low temperature. From the field theory point of view, this instability is
associated with a renormalization of the effective potential for the order parameter at large density.

13 A Mathematica notebook [46] that reproduces the numerical work described in ref. [42] is available at the website
[47].
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FIG. 8: A plot of the conductivity in the limit T → 0 for the scalar O1. The solid black line is the Reσxx.
The dashed blue line is the Imσxx rescaled by a factor of five. The dotted red line is the conductivity σxx

(in the probe limit) when T > Tc.

B. The London Equation

Given the importance of magnetic fields in the phenomenology of superconductors, I would like
to explain how the London equation arises in this model in the weak gravity limit. The London
equation,

J(ω,k) = −nsA(ω,k) , (108)

was proposed (in a gauge where the order parameter is real) to explain both the infinite DC
conductivity and the Meissner effect of superconductors. This equation is valid in the limit where
both ω and k are small compared to the scale at which the system loses its superconductivity. In
our model, that scale is set by 〈Oi〉. One important and subtle issue in understanding this equation
is that the two limits ω → 0 and k→ 0 do not always commute. In the limit k = 0 and ω → 0, we
can take a time derivative of both sides to find

J(ω, 0) =
ins
ω

E(ω, 0) (109)

explaining the infinite DC conductivity observed in superconductors. On the other hand, in the
limit ω = 0 and k→ 0, we can instead consider the curl of the London equation, yielding

∇× J(x) = −nsB(x) . (110)

Together with Maxwell’s equation ∇×B = 4πJ, this other limit of the London equation implies
that magnetic field lines are excluded from superconductors:

−∇2B = ∇× (∇×B) = 4π∇× J = −4πnsB , (111)

which has exponentially damped solutions. The magnetic penetration depth λ = 1/4πns is pro-
portional to the inverse of the superfluid density ns.
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An important point is that because the gauge field is external, there is no Maxwell equation
in the holographic model: Currents in the material to not source electromagnetic fields. Thus we
only get half of the Meissner effect; we only have the London equation.

In the discussion of σ, I considered only the first limit, having set k = 0. However, the London
equation holds more generally, including in the limit where ω is sent to zero first. Including the
k dependence in eq. (99), the solution (104) can be generalized by replacing ω2 with the Lorentz
invariant combination ω2 − k2. Thus, in the present case the limits ω → 0 and k → 0 commute
and one finds

J(ω,k) ≈ −〈O1〉
g2

A(ω,k) (112)

for small ω and k, allowing us to identify 〈O1〉/g2 with the superfluid density ns. A similar equation
holds for the model with Δ = 2, but the confirmation requires numerics [48].

Many groups have studied this holographic model of a superconductor during the past few
months. Given my restriction above to a 2+1 dimensional field theory and an order parameter
with Δ = 1 or 2, I would like to single out ref. [49] for special notice. The authors considered a
small selection of related models in both 2+1 and 3+1 space-time dimensions with various values
for Δ. Their results are qualitatively similar to what we have presented above. Ref. [50] lists more
related work.

C. Second Sound

Despite its more rigorous interpretation as a superfluid, thus far I have discussed this holographic
model as a superconductor. In this last part of Lecture IV, I would like to address the more standard
interpretation of the model and discuss a classic phenomenon associated with a superfluid, second
sound. Second sound is a collective motion available to fluids with two components where the
components move out of phase with respect to each other.

As discussed in ref. [44], a superfluid has a pressure that depends on three thermodynamic
variables,

P (T, μ, ∂iϕ) , (113)

where ϕ is the phase of of the condensate, ψ = |ψ|eiϕ. The quantity ∂iϕ is sometimes called a
superfluid velocity. Turning on ∂iϕ sources a charge current in the system. Coupling the order
parameter to an external gauge field, the pressure can be written

P (T,−D0ϕ,Diϕ) , (114)

where Dμϕ = ∂μϕ−Aμ. As we did before, we are free to make a gauge choice where the phase of
the condensate vanishes, leaving P a function of Aμ,

P (T,A0,−Ai) . (115)
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FIG. 9: The speed of second sound as a function of T/|μ|, computed by evaluating thermodynamic derivatives
in Eq. (116): a) O1 scalar, b) O2 scalar. The speed of second sound vanishes as T → Tc and appears to
approach a constant value as T → 0.

The second sound mode can be derived from a hydrodynamic analysis of the current conservation
conditions. We have ∂μTμν = 0 and ∂μJμ = 0. Working with Aμ instead of ϕ, because of the
equality of mixed partials, we need to impose that ∂0Ai = ∂iA0.

For simplicity, we will continue to work in the weak gravity limit. In this limit, the conservation
condition for Tμν is irrelevant for the second sound mode. Ref. [44] demonstrated in this case and
in the absence of a charge current, the second sound speed has the form

v2
2 = −

∂2P/∂2Ai
∂2P/∂2A0

∣∣∣∣
Ai=0

. (116)

As the normal component of the fluid is stationary in this probe limit, ref. [51] argued that there
is a close analogy between this quantity and what is called fourth sound in the superfluid helium
literature. In fourth sound, superfluid helium is forced to travel through a capillary that has been
packed with a powder that only lets the superfluid component move freely. The fourth sound is a
collective motion of the fluid in such a capillary.

A plot of the second sound speed versus temperature for our two models with Δ = 1 and 2 is
shown in Figure 9. Note that v2

2 ∼ (Tc − T ) near the phase transition.
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V. A COMMENT

I have emphasized high temperature superconductivity in these lectures because it is one of
the most interesting and important among the unanswered questions in condensed matter physics.
However, it may prove that high Tc superconductivity is not a good target for these holographic
techniques. One should keep an open mind. Heavy fermions, fermions at unitarity, transitions
between fractional quantum Hall states, or yet some other condensed matter system may be more
suited to an AdS/CFT approach. A dream is to one day find a material whose essential physics is
well described by a gravity dual and, more than that, where the dual predicts some new physical
effect. In the meantime, it is instructive to learn about the properties of a class of strongly
interacting field theories and fascinating to see how transport coefficients and phase transitions in
field theory can be mapped to black hole physics.
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APPENDIX A: DERIVING THE WARD IDENTITY CONSTRAINTS ON THE
CONDUCTIVITIES

We begin by specializing the Ward identities (55) and (56) to the 2+1 dimensional case of
interest. For spatially homogeneous fluctuations where kμ = (ω, 0), eq. (55) becomes

0 = ωG̃i,0jR (ω)− iBεkjG̃i,kR (ω) + δijω〈n〉 , (A1)

where we let the indices i, j, and k run over the values x and y. In components we thus have

0 = ωG̃0x,x
R (ω) + iBG̃x,yR (ω) + ω〈n〉 ,

0 = ωG̃0x,y
R (ω)− iBG̃x,xR (ω) . (A2)

From the Ward identity (56) relating the stress-tensor stress-tensor correlation function to the
stress-tensor current two point function, we find that

0 = ωG̃0i,0j
R (ω) + δij〈ε〉ω − iBεkjG̃0i,k

R (ω) (A3)
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or in components that

0 = ωG̃0x,0x
R (ω) + ω〈ε〉+ iBG̃0x,y

R (ω) ,

0 = ωG̃0x,0y
R (ω)− iBG̃0x,x

R (ω) . (A4)

At this point, in analogy with the notation used for the transport coefficients in eqs. (35) and
(36), we find it convenient to introduce a complexified notation where

〈JJ〉± ≡ ±G̃x,xR (ω)− iG̃x,yR (ω) , (A5)

〈JT 〉± ≡ ±G̃x,0xR (ω)− iG̃x,0yR (ω) , (A6)

〈TT 〉± ≡ ±G̃0x,0x
R (ω)− iG̃0x,0y

R (ω) . (A7)

With this notation, we can replace our 2×2 antisymmetric matrices of transport coefficients with
complex numbers. The discussion after eq. (30) implies that 〈JT 〉± = 〈TJ〉±. In terms of the
complexified combinations, we find that eq. (A2) becomes

±ω〈TJ〉± −B〈JJ〉± + ω〈n〉 = 0 , (A8)

while eq. (A4) reduces to

0 = ±ω〈TT 〉± −B〈TJ〉± + 〈ε〉ω . (A9)

From eqs. (27) and (28) it follows that 〈JJ〉± is related in a simple way to σ±:

〈JJ〉± ≡ ±G̃x,xR (ω)− iG̃x,yR (ω) = (σxy ± iσxx)ω = ωσ± . (A10)

Similarly, one finds that

〈QJ〉± = ωα±T ; 〈QQ〉± = ωκ̄±T . (A11)

We can calculate the ω → 0 limit of 〈JJ〉± and 〈JT 〉± from a Lorentz boost argument. Consider
a plane with charge density 〈n〉 carpeted by a perpendicular magnetic field B. If we boost the
plane by a velocity v in the x direction, then to linear order in v, we find an electric field Ey = vB

in the y direction. Moreover, there is a current Jx = 〈n〉v. Thus we find that

lim
ω→0

σxy(ω) = lim
ω→0

1
ω
〈JJ〉± = 〈n〉/B . (A12)

To calculate 〈TJ〉, we start with a diagonal stress tensor 〈T 00〉 = 〈ε〉 and 〈T xx〉 = 〈p〉 in the rest
frame of the plane. After the boost, we find 〈T 0i〉 = 〈ε+ p〉v. Thus

lim
ω→0

1
ω
〈TJ〉± = 〈ε+ p〉/B . (A13)

There is a potentially subtle problem with the ω → 0 limit of Eqs. (A8) and (A9). A retarded
Green’s function involving a momentum density and a translationally invariant equilibrium state,
such as 〈TT 〉± or 〈JT 〉±, should vanish in this limit by translation invariance. However, the Green’s
functions as defined through the Ward identities may have contact term corrections which prevent
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this vanishing. Plugging eqs. (A12) and (A13) into eq. (A8), we see that 〈JJ〉± and 〈TJ〉± vanish
in a way that is consistent with the Ward identity. However, there is a problem with eq. (A9):

lim
ω→0

〈TT 〉± = ∓〈p〉 . (A14)

Thus, we should correct eq. (A9) by adding a contact term 〈p〉ω,

0 = ±ω〈TT 〉± −B〈TJ〉± + ω〈ε+ p〉 . (A15)

We can re-express eqs. (A8) and (A15) in terms of Qi instead of T 0i, yielding

0 = ±ω〈JQ〉± + (±μω −B)〈JJ〉± + ω〈n〉 , (A16)

0 = ±ω〈QQ〉± + (±μω −B)〈JQ〉± + ω〈ε+ p− μn〉 . (A17)

Using the eqs. (A10) and (A11), these eqs. (A16) and (A17) reduce to the relations (35) and (36)
as promised. In employing these relations, it is helpful to keep in mind that the limits ω → 0 and
B → 0 often do not commute.

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor.
Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string
theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109].

[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-
th/9802150].

[4] M. Luzum and P. Romatschke, “Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC
results at

√
sNN = 200 GeV,” Phys. Rev. C 78, 034915 (2008) [arXiv:0804.4015 [nucl-th]].

[5] G. Baym, H. Monien, C. J. Pethick, and D. G. Ravenhall, “Transverse interactions and transport in
relativistic quark-gluon and electromagnetic plasmas,” Phys. Rev. Lett. 64, 1867 (1990).

[6] P. Arnold, G. D. Moore and L. G. Yaffe, “Transport coefficients in high temperature gauge theories:
(I) Leading-log results,” JHEP 0011, 001 (2000) [arXiv:hep-ph/0010177].

[7] H. B. Meyer, “A calculation of the bulk viscosity in SU(3) gluodynamics,” Phys. Rev. Lett. 100, 162001
(2008) [arXiv:0710.3717 [hep-lat]].

[8] P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly interacting quantum field theories
from black hole physics,” Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/0405231].

[9] S. Sachdev, “Quantum Phase Transitions,” Cambridge University Press, Cambridge (1999).
[10] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Addison-Wesley (1995).
[11] D. B. Haviland, Y. Liu, and A. M. Goldman, “Onset of superconductivity in the two-dimensional limit,”

Phys. Rev. Lett. 62, 2180 (1989).
[12] E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad, “Concepts in High Temperature Supercon-

ductivity,” arXiv:cond-mat/0206217.
[13] S. Sachdev, “Quantum magnetism and criticality,” Nature Physics 4, 173 (2008), [arXiv:0711.3015

[cond-mat]].
[14] D. T. Son, “Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger

symmetry,” Phys. Rev. D 78, 046003 (2008) [arXiv:0804.3972 [hep-th]].



38

[15] K. Balasubramanian and J. McGreevy, “Gravity duals for non-relativistic CFTs,” Phys. Rev. Lett.
101, 061601 (2008) [arXiv:0804.4053 [hep-th]].

[16] W. Ketterle and M. W. Zwierlein, “Making, probing and understanding ultracold Fermi gases,”
arXiv:0801.2500 [cond-mat.other].

[17] S. Kachru, X. Liu and M. Mulligan, “Gravity Duals of Lifshitz-like Fixed Points,” Phys. Rev. D 78,
106005 (2008) [arXiv:0808.1725 [hep-th]].

[18] L. Onsager, “Reciprocal Relations in Irreversible Processes, I,” Phys. Rev. 37, 405 (1931).
[19] Y. Wang, L. Li, and N. P. Ong, “Nernst effect in high-Tc superconductors,” Phys. Rev. B 73, 024510

(2006).
[20] R. Fletcher, “The Nernst-Ettinghausen Coefficient and the Kondo Effect in Copper and Gold,” Phil.

Mag. 25, 87 (1972).
[21] S. A. Hartnoll and C. P. Herzog, “Ohm’s Law at strong coupling: S duality and the cyclotron resonance,”

Phys. Rev. D (2007) [arXiv:0706.3228 [hep-th]].
[22] N. Itzhaki, J. M. Maldacena, J. Sonnenschein and S. Yankielowicz, “Supergravity and the large N limit

of theories with sixteen supercharges,” Phys. Rev. D 58, 046004 (1998) [arXiv:hep-th/9802042].
[23] M. J. Duff, C. N. Pope and N. P. Warner, “Cosmological And Coupling Constants In Kaluza-Klein

Supergravity,” Phys. Lett. B 130, 254 (1983).
[24] D. R. Morrison and M. R. Plesser, “Non-spherical horizons. I,” Adv. Theor. Math. Phys. 3, 1 (1999)

[arXiv:hep-th/9810201].
[25] C. P. Herzog, P. Kovtun, S. Sachdev and D. T. Son, “Quantum critical transport, duality, and M-

theory,” Phys. Rev. D 75, 085020 (2007) [arXiv:hep-th/0701036].
[26] S. A. Hartnoll and C. P. Herzog, “Ohm’s Law at strong coupling: S duality and the cyclotron resonance,”

Phys. Rev. D 76, 106012 (2007) [arXiv:0706.3228 [hep-th]].
[27] E. I. Buchbinder and A. Buchel, “Relativistic Conformal Magneto-Hydrodynamics from Holography,”

arXiv:0902.3170 [hep-th].
E. I. Buchbinder and A. Buchel, “The Fate of the Sound and Diffusion in Holographic Magnetic Field,”
arXiv:0811.4325 [hep-th].
E. I. Buchbinder, A. Buchel and S. E. Vazquez, “Sound Waves in (2+1) Dimensional Holographic
Magnetic Fluids,” JHEP 0812, 090 (2008) [arXiv:0810.4094 [hep-th]].

[28] S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev, “Theory of the Nernst effect near quantum
phase transitions in condensed matter, and in dyonic black holes,” Phys. Rev. B 76, 144502 (2007)
[arXiv:0706.3215 [cond-mat.str-el]].

[29] M. Mueller, L. Fritz, and S. Sachdev, “Quantum-critical relativistic magnetotransport in graphene,”
Phys. Ref. B 78, 115406 (2008), [arXiv:0805.1413 [cond-mat.str-el]].

[30] S. A. Hartnoll and P. Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76, 066001
(2007) [arXiv:0704.1160 [hep-th]].

[31] S. A. Hartnoll and C. P. Herzog, “Impure AdS/CFT,” Phys. Rev. D 77, 106009 (2008) [arXiv:0801.1693
[hep-th]].

[32] D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions, W. A. Benjamin,
Inc., Reading, MA (1975).

[33] M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, “Disordered Systems and the Replica Method in
AdS/CFT,” JHEP 0812, 065 (2008) [arXiv:0810.5394 [hep-th]].

[34] S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78,
065034 (2008) [arXiv:0801.2977 [hep-th]].

[35] S. S. Gubser, “Colorful horizons with charge in anti-de Sitter space,” Phys. Rev. Lett. 101, 191601
(2008) [arXiv:0803.3483 [hep-th]].



39

[36] M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, “Flavor Superconductivity from Gauge/Gravity
Duality,” arXiv:0903.1864 [hep-th].

[37] F. Denef and S. A. Hartnoll, “Landscape of superconducting membranes,” arXiv:0901.1160 [hep-th].
[38] P. Basu, J. He, A. Mukherjee and H. H. Shieh, “Superconductivity from D3/D7: Holographic Pion

Superfluid,” arXiv:0810.3970 [hep-th].
[39] C. P. Herzog and S. S. Pufu, “The Second Sound of SU(2),” arXiv:0902.0409 [hep-th].
[40] S. S. Gubser and S. S. Pufu, “The gravity dual of a p-wave superconductor,” JHEP 0811, 033 (2008)

[arXiv:0805.2960 [hep-th]].
[41] M. M. Roberts and S. A. Hartnoll, “Pseudogap and time reversal breaking in a holographic supercon-

ductor,” JHEP 0808, 035 (2008) [arXiv:0805.3898 [hep-th]].
[42] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Building a Holographic Superconductor,” Phys.

Rev. Lett. 101, 031601 (2008) [arXiv:0803.3295 [hep-th]].
[43] I. R. Klebanov and E. Witten, “AdS/CFT correspondence and symmetry breaking,” Nucl. Phys. B

556, 89 (1999) [arXiv:hep-th/9905104].
[44] C. P. Herzog, P. K. Kovtun and D. T. Son, “Holographic model of superfluidity,” Phys. Rev. D (2009),

[arXiv:0809.4870 [hep-th]].
[45] M. Tinkham, Introduction to Superconductivity, 2nd edition, Dover: New York (1996).
[46] Wolfram Research, Inc., Mathematica, Version 6.0, Champaign, IL (2007).
[47] http://www.phy.princeton.edu/∼cpherzog/superconductor/index.html
[48] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Holographic Superconductors,” JHEP 0812, 015

(2008) [arXiv:0810.1563 [hep-th]].
[49] G. T. Horowitz and M. M. Roberts, “Holographic Superconductors with Various Condensates,” Phys.

Rev. D 78, 126008 (2008) [arXiv:0810.1077 [hep-th]].
[50] P. Basu, A. Mukherjee and H. H. Shieh, “Supercurrent: Vector Hair for an AdS Black Hole,”

arXiv:0809.4494 [hep-th].
S. S. Gubser and A. Nellore, “Low-temperature behavior of the Abelian Higgs model in anti-de Sitter
space,” arXiv:0810.4554 [hep-th].
S. S. Gubser and F. D. Rocha, “The gravity dual to a quantum critical point with spontaneous sym-
metry breaking,” Phys. Rev. Lett. 102, 061601 (2009) [arXiv:0807.1737 [hep-th]].
I. Amado, M. Kaminski and K. Landsteiner, “Hydrodynamics of Holographic Superconductors,”
arXiv:0903.2209 [hep-th].
K. Maeda and T. Okamura, “Characteristic length of an AdS/CFT superconductor,” Phys. Rev. D 78,
106006 (2008) [arXiv:0809.3079 [hep-th]].
T. Albash and C. V. Johnson, “A Holographic Superconductor in an External Magnetic Field,” JHEP
0809, 121 (2008) [arXiv:0804.3466 [hep-th]].
E. Nakano and W. Y. Wen, “Critical Magnetic Field In A Holographic Superconductor,” Phys. Rev.
D 78, 046004 (2008) [arXiv:0804.3180 [hep-th]].

[51] A. Yarom, “Fourth sound of holographic superfluids,” arXiv:0903.1353 [hep-th].


