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Four lectures on holography and the AdS/CFT correspondence applied to condensed matter
systems.

I. INTRODUCTION: QUANTUM PHASE TRANSITIONS

Spurred by the concrete proposal of refs. [1–3] for an AdS/CFT correspondence, there are some
good reasons why holographic ideas have become so important in high energy theoretical physics
over the last ten years. The first and perhaps most fundamental reason is that the AdS/CFT
conjecture provides a definition of quantum gravity in a particular curved background space-time.
Recall that the original conjecture posits an equivalence between type IIB string theory in the
space-time AdS5 × S5 and the maximally supersymmetric (SUSY) SU(N) Yang-Mills theory in
3+1 dimensions. (In our notation, AdS5 is five dimensional anti-de Sitter space and S5 is a five
dimensional sphere.) Yang-Mills theory, at least in principle, can be simulated on a computer as
the continuum limit of a lattice theory. Thus, the correspondence gives a definition of type IIB
string theory in a fixed ten dimensional background. The low energy limit of type IIB string theory
is type IIB supergravity and the correspondence must also yield a quantum theory of gravity. This
line of reasoning has led to an improved understanding black hole physics, including a tentative
resolution of the black hole information paradox and a better understanding of black hole entropy.
But I am not concerned with this line of inquiry in these lecture notes.

Another reason for interest in the AdS/CFT correspondence is that it provides a tool for study-
ing strongly interacting field theories. To see why, recall that the interaction strength of maximally
SUSY Yang-Mills theory is described by the ’t Hooft coupling λ = g2

YMN . Through the AdS/CFT
correspondence λ = (L/�s)4 where L is the radius of curvature of AdS5 (and the S5), and �s is
a length scale that sets the tension of the type IIB strings.1 Strings are also characterized by a
coupling constant, gs, that describes their likelihood to break. The AdS/CFT dictionary relates
the string coupling constant to the gauge theory coupling via 4πg2

YM = gs. In the double scaling
limit where N →∞ while λ is kept large and fixed, string theory is well approximated by classical
gravity. Keeping �s small means string theory is well approximated by gravity, while keeping gs

small eliminates quantum effects. Using the AdS/CFT correspondence, enormous progress has
been made over the last ten years in understanding the large N , large λ limit of maximally SUSY
Yang-Mills theory in 3+1 dimensions and its cousins.

One of the most interesting ideas surrounding this flurry of activity mapping out the properties
of strongly interacting SUSY field theories with gravitational duals is that we might learn something

1 The tension is conventionally defined as 1/(2π�2s).
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about quantum chromodynamics (QCD). At low energy scales, QCD is a quintessential example
of a strongly interacting field theory. Consider temperatures slightly above the deconfinement
transition, of the order of 200 MeV, where the baryons and mesons dissolve into a soup of strongly
coupled quarks and gluons. Such a non-Abelian soup is probably not so qualitatively different from
maximally SUSY Yang-Mills in the double scaling limit. Experiments at the relativistic heavy ion
collider (RHIC) combined with hydrodynamic simulations suggest that the viscosity of the quark-
gluon plasma is very low (see for example [7]). In contrast, perturbative QCD techniques yield a
large viscosity [4], and lattice gauge theory requires a very difficult analytic continuation from the
Euclidean theory to extract such a transport coefficient (see for example [5]). AdS/CFT yields, for
maximally SUSY Yang-Mills (and indeed for all its cousins in this double scaling limit), the low
value η/s = �/4πkB for the viscosity to entropy density ratio [6], a number which is compatible, to
date, with the RHIC experiment. But I will not be interested in applying holographic techniques
to QCD in these lectures.

In these lectures, I will try to describe progress in applying holography and AdS/CFT to
condensed matter systems. QCD is not the only useful strongly interacting field theory. Field
theory has for a long time been a standard tool in a condensed matter theorist’s toolbox. For
example, near phase transitions, coherence lengths become long enough to allow a continuum
description of a crystal lattice or otherwise discretized system of atoms and molecules. While finding
a holographic dual for QCD may at best be like finding a needle in the haystack of generalized
AdS/CFT correspondences and at worst impossible because of some fundamental mismatch in the
requirements necessary for a field theory to have a gravity dual, the odds of a finding a gravity dual
to a condensed matter system appear, at least superficially, to be better. There are hundreds of
thousands of pre-existing materials to consider. Moreover, using nano-lithography, optical lattices,
and other experimental techniques, we may be able to engineer a material with a gravity dual. This
last possibility raises the tantalizing prospect of better understanding quantum gravity through
material science or atomic physics.

An outline for the rest of these lectures is as follows:

• Using the notion of a quantum phase transition, in the rest of the first lecture I will frame
the connection between condensed matter systems and holography in a useful and hopeful
way.

• The second lecture is a discussion of old and doubtless well known results in field theory. I
have devoted a whole lecture to these results for a few reasons. The first is that it is much
easier to understand what extra information AdS/CFT is giving us if we first understand
the limitations of field theory. The second is that while the first, third and fourth lectures
may not stand the test of time, the contents of this second lecture are true and probably
very useful in other contexts.

• In the third lecture, I will holographically compute field theory transport coefficients using
a very simple gravitational action consisting of an Einstein-Hilbert and Maxwell term:

S =
1

2κ2

∫
d4x
√−g(R− 2Λ)− 1

4g2

∫
d4x
√−gFμνFμν . (1)
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I will connect these holographic results, in a qualitative way, to measurements of transport
coefficients in graphene and high temperature superconductors.

• In the last lecture, justifying the title of this lecture series, I will modify the gravitational
action by adding an order parameter that will produce a superconducting or superfluid
phase transition. I will focus on the case where the order parameter is a scalar, but one
could introduce a vector order parameter as well by promoting the Abelian Fμν in the action
above to an SU(2) gauge field.

A. Quantum Phase Transitions

The notion of a quantum phase transition in condensed matter systems provides our motivation
for using AdS/CFT. A quantum phase transition is a phase transition between different phases of
matter at T = 0. Such transitions can only be accessed by varying a physical parameter, such as a
magnetic field or pressure, at T = 0. They are driven by quantum fluctuations associated with the
Heisenberg uncertainty principle rather than by thermal fluctuations. We will be concerned with
second order quantum phase transitions in this lecture. Much of the discussion here is drawn from
ref. [8].

At T = 0 but away from a quantum critical point, a system typically has an energy scale, Δ,
perhaps associated with the energy difference between the ground and first excited state. Another
important quantity is a coherence length, ξ, characterizing the length scale over which correlations
in the system are lost. At the quantum critical point, we expect Δ to vanish and ξ to diverge, but
not necessarily in the same way:

Δ ∼ (g − gc)νz , (2)

ξ ∼ (g − gc)−ν . (3)

The quantity z, relating the behavior Δ ∼ ξ−z, is usually called the dynamical scaling exponent. At
the quantum critical point, the system becomes invariant under the rescaling of time and distance,
t → λzt and x → λx. Different z occur in different condensed matter systems. For example,
z = 1 is common for spin systems, and we will see an example of such a system shortly. The case
z = 1 is special because the quantum critical system typically has a Lorentz symmetry and the
scaling is enhanced to a full conformal symmetry group. These lectures will focus mostly on the
z = 1 case because it is here that the AdS/CFT dictionary is most powerful and well developed.
Another common and familiar value is z = 2. The free Schrödinger equation is invariant under
z = 2 scalings, but there are other examples as well, e.g. Lifshitz theories. Generic, non-integer z
are possible.

Figure 1 shows a prototypical phase diagram for a system that undergoes a quantum phase
transition. Here the physical parameter is a coupling g, and the quantum phase transition occurs
at g = gc and T = 0. At low temperatures, we imagine the system is in one of two phases well
characterized by some order parameter(s). The blue lines in the phase diagram could be classical
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thermal phase transitions or softer cross-overs, depending on the dimensionality and nature of the
system. The region between the solid black lines is the quantum critical region (QCR).

phase 2

T

g gc

QCR

phase 1

FIG. 1: A typical phase diagram involving a second order quantum critical point.

The usefulness of the notion of a quantum phase transition lies in a wished for ability to
understand the system in the QCR. The QCR is characterized by the requirement that T be large
compared to the dimensionally appropriate power of (g−gc). It seems reasonable to expect that the
effective scale invariant field theory valid at the critical point, now generalized to nonzero T , can be
used to predict the behavior of the system in the QCR. (We can generalize this discussion, replacing
T with some other external parameter or set of parameters — chemical potential, magnetic field,
etc.)

B. The Quantum Rotor

My next job is to convince you that the set of condensed matter systems with quantum critical
points is not empty. Consider the quantum rotor with Hamiltonian:

H = gJ
∑
i

L̂2
i − J
∑
〈ij〉

n̂i · n̂j , (4)

where we are summing over a lattice indexed by i and where 〈ij〉 indicates a pair of nearest
neighbor sites. Let n̂i be an N component vector such that n̂2

i = 1. The operator L̂i is an angular
momentum, and L̂2

i is thus the kinetic energy term for this vector n̂i which lives on an N − 1
dimensional sphere. Taking J > 0, the interaction term in Ĥ will prefer to align the n̂j . The
kinetic energy, in contrast, is minimized by randomizing the n̂i. (For more details about this
model, the reader is referred to ref. [8] from which the following discussion is drawn.)

The quantum rotor is somewhat more than a toy model that exhibits a quantum phase transition
as we tune the value of g. In the limit g � 1, the sites on the lattice decouple from one another, and
the system can be solved exactly. In the ground state, the kinetic energy is minimized by taking
〈n̂i〉 = 0 such that 〈L̂2

i 〉 = 0. Correlations between different lattice sites die off exponentially with
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distance,

〈0|n̂i · n̂j |0〉 ∼ e−|xi−xj |/ξ , (5)

where ξ is the correlation length. The lowest energy excitation is a particle where a single lattice
site has a nonzero 〈L̂2

i 〉, and this particle hops from site to site. There is an energy gap Δ+ ∼ gJ

associated with this particle. Because an external field will tend to align the n̂i, the ground state
in this limit is a quantum paramagnet.

In contrast, in the opposite limit g 	 1, the system becomes magnetically ordered. It is
energetically favorable that 〈n̂i〉 
= 0 and for all of the vectors to align:

lim
|xi−xj |→∞

〈0|n̂i · n̂j |0〉 = N2
0 . (6)

There is a gapless continuum of excited states associated with spin waves, i.e. slow rotations in
the direction of 〈n̂i〉. One can define an energy scale Δ− associated with the kinetic term of these
excitations — a spin stiffness.

Numerical experiments bear out that there is a quantum phase transition between these two
different types of order for a critical value g = gc of the coupling. Referring to Figure 1, phase
one for this model would be magnetically ordered while phase two is the quantum paramagnet. As
we approach the critical point, it should be energetically easier for the spin waves to rotate more
quickly in the magnetically ordered phase or for particle excitations to form in the paramagnetic
phase. Thus, as g approaches gc, we expect the energy scale Δ± to vanish as a power of (g − gc).
Also, as we move out of the paramagnetic phase, the correlation length ξ should diverge as the
vectors n̂i align.

To see why the quantum rotor is more than a toy, on the experimental side, for two spatial
dimensions and N = 3, ref. [8] argues that the Hamiltonian models two sheets of La2CuO4, the
parent compound of a high Tc superconductor I will discuss at greater length in a moment. On
the theoretical side, the continuum limit of this model should be very familiar to field theorists. It
is the O(N) nonlinear sigma model. The continuum Lagrangian takes the form

L =
1

2g̃2

(|∂t	n(x)|2 − c2eff |∇	n(x)|2) , (7)

subject to the constraint |	n(x)|2 = 1. It is thus a model with dynamical exponent z = 1, as was
promised for spin systems. Note that for condensed matter applications, the effective speed of
light would typically be much less than the actual speed of light, ceff 	 c. This continuum limit
should become a better and better approximation close to the quantum critical point where the
correlation lengh ξ diverges and we can coarse grain the n̂i degrees of freedom.

More loosely, we could soften the constraint and replace it with a scalar potential

V (	n) = α|	n(x)|2 + β|	n(x)|4 , (8)

to control the size of the fluctuations, yielding the O(N) vector model. At this point, I refer the
reader to a standard field theory textbook such as ref. [12] for a more thorough treatment than I
can provide here. In the renormalization group language, the O(N) vector model is known to flow
to a strongly interacting Wilson-Fisher fixed point, which in our language is nothing other than a
quantum critical point.
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C. Quantum Critical Points in the Real World

Quantum phase transitions are believed to be important in describing superconducting-insulator
transitions in thin metallic films, as is demonstrated pictorially by rotating Figure 2 ninety degrees
counter-clockwise. The rotated diagram is meant to resemble closely Figure 1 where phase one is
an insulator, phase two is a superconductor, and g corresponds to the thickness of the film. The
insulating transition is a cross-over, while the superconducting transition might be of Kosterlitz-
Thouless type. There exists a critical thickness for which the system reaches the quantum critical
point at T = 0.

FIG. 2: Resistivity of thin films of bismuth versus temperature. The different curves correspond to different
thicknesses, varying from a 4.36 Å film that becomes insulating at low temperatures, to a thicker 74.27 Å
film that becomes superconducting. The figure is reproduced from ref. [9].

One of the most exciting (and also controversial) prospects for the experimental relevance of
quantum phase transitions is high temperature superconductivity. Consider the parent compound
La2CuO4 of one of the classic high Tc superconductors, La2−xSrxCuO4. La2CuO4 is actually not
a superconductor at all but an anti-ferromagnetic insulator at low temperatures. The physics of
this layered compound is essentially two dimensional. The copper atoms are arranged in a square
lattice on separated sheets with effectively one electron per unit cell. The spins of the electrons
pair up in an anti-ferromagnetic order.
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To turn La2CuO4 into a superconductor, the compound can be doped with strontium which has
the effect of removing one electron for every lanthanum atom replaced with strontium. Figure 3 is
a phase diagram for La2−xSrxCuO4. Once the doping x becomes sufficiently large, the compound
superconducts at low temperature. Introducing some vocabulary, the doping which yields the
highest Tc is called the optimal doping; for this material, xo ≈ 3/20 yielding a Tc ≈ 40 K. When
x > xo, the compound is referred to as overdoped, while when x < xo, the compound is called
underdoped.

AF

SC

under doped
over doped

xx xoc

T

FIG. 3: A cartoon phase diagram for a superconductor such as La2−xSrxCuO4. AF stands for anti-
ferromagnetic and SC for superconducting.

Overdoped high Tc superconductors are better understood than their underdoped counterparts.
For temperatures T > Tc, the material behaves like a Fermi liquid where quasiparticle, electron-like
degrees of freedom are effectively weakly coupled. Moreover, the phase transition seems to follow
the BCS paradigm where the electrons form Cooper pairs as we lower the temperature below Tc.
In contrast, in the underdoped region, the effective degrees of freedom are believed to be strongly
interacting. The superconducting to normal phase transition is likely to involve disordering the
phase of the condensate rather than breaking Cooper pairs, if it indeed makes sense to talk about
quasiparticles at all in this regime. Because the electrons may remain in bound states in the
normal, under doped region of the phase diagram, this region is sometimes called the pseudogap.
For more details about these issues, the reader might try ref. [10].

Speculations about the relevance of a quantum phase transition are related to the dip in Tc at
a doping of xc = 1/8 and a possible connection between this dip in Tc and experimental evidence
for so-called striped phases where spin and charge density waves break translational invariance
[11]. The conjecture is that we can add a third axis to our phase diagram corresponding to an
extra control parameter g in some model Lagrangian for the system, as pictured in Figure 4. In
this figure, the chemical potential μ plays the role of doping. In the third direction, we may find
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a quantum critical point where the dip in Tc becomes more pronounced and reaches the T = 0
plane. One might hope to gain theoretical control over the pseudogap region using the effective
field theory of the quantum critical point.

FIG. 4: A third conjectural axis has been added to our phase diagram for a high Tc superconductor. This
figure was taken from ref. [11].

The reader may ask why we have invented this extra quantum critical point when, by our
definition, there appear to be three perfectly good quantum critical points already present in
the phase diagram of Figure 3. The answer is ultimately unsatisfactory and is indicative of the
speculative nature of the last few paragraphs. Not all quantum phase transitions are created equal,
and this putative fourth quantum critical point promises to be a little simpler and cleaner. The
transition from the normal phase to the superconducting phase in the under doped region, for
instance, is believed to be disorder driven and thus involves breaking translation invariance.2

D. On the Role of AdS/CFT

Thus far, I have tried to argue that quantum phase transitions are important in understanding
superconducting insulator transitions in thin films and may be important in the physics of high Tc

superconductors. I also exhibited the quantum rotor, a model theoretical system which undergoes
such a phase transition.

2 I would like to thank Markus Mueller for discussion on this point.
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In general, it can be difficult to describe a system at a strongly interacting quantum critical
point. Weakly coupled effective degrees of freedom may be difficult to identify or not exist, as I
sketched for the case of high Tc superconductors. The reader may ask, “Can’t we always discretize
the system and simulate it on a computer?” To avoid problems with oscillatory numerical integrals,
lattice models are almost always formulated for computers in Euclidean time. For questions about
equilibrium physics (with no chemical potential), the answer is often, “Yes, the lattice is good
enough.” However, if we want to ask questions about physics at nonzero density, about real
time physics, about transport coefficients and response to perturbations, numerical lattice models
require tricky and usually untrustworthy analytic continuations.

Returning to the role of holography in this story, AdS/CFT provides a tool to study a class of
strongly interacting field theories with Lorentz symmetry in d space-time dimensions by mapping
them to classical gravity in d+1 space-time dimensions. The correspondence is a very useful way of
working out the equation of state, real time correlation functions and transport properties such as
diffusion constants, conductivities, and viscosities. The ambitious program is to find an example of
an AdS/CFT correspondence that describes a real world material. Less ambitiously, we may learn
universal or semi-universal properties about a class of strongly interacting field theories. These are
often field theories and questions for which AdS/CFT is our only calculational tool.

The reader may object that there could well be structural reasons why this program is doomed to
fail. AdS/CFT correspondences typically involve some underlying supersymmetry while condensed
matter systems do not. In mitigation, I note that introducing chemical potential and temperature
breaks supersymmetry, that if we stay away from the T = 0 and μ = 0 limits, the physics may not
be so different whether the underlying theory is supersymmetric or not.

The reader may also complain that the restriction to z = 1 appears to be limiting given the
many different types of scaling that appear in condensed matter. In response, I note there has
been recent progress in extending AdS/CFT to z 
= 1. For example refs. [13, 14] have conjectured a
gravity dual for a theory with Schrödinger symmetry, i.e. the symmetry group of the free Schödinger
equation. Clearly, this group has z = 2. There are serious experimental reasons to understand
strongly interacting systems with this symmetry group [15]. Consider a dilute gas of lithium-6 or
potassium-40 atoms in an optical trap. The interaction strength between these fermionic atoms
can be tuned with an external magnetic field. At a Feshbach resonance, the scattering length
becomes larger than the system size, and these so-called fermions at unitarity obey an approximate
Schrödinger symmetry. Although I will not address this question here, it is very interesting to ask
whether AdS/CFT can say anything useful about these strongly interacting atomic systems.

Not all condensed matter systems with z = 2 have the Schrödinger symmetry. Another possi-
bility is a Lifshitz scaling symmetry, i.e. the symmetry group of a Lagrangian of the form

L = (∂tφ)2 − κ(∇2φ)2 . (9)

Ref. [16] presents a proposal for a gravity dual for a strongly interacting field theory with such a
symmetry. Despite these recent advances, we shall focus henceforth on the z = 1 case with Lorentz
symmetry. It is this case for which the AdS/CFT dictionary is most detailed and reliable.
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