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Introduction and trees
• Some motivation
The perturbative approach to QFT has been around since the invention of QFTs, some 75

years ago. The more or less standard approach to doing such calculations has been through
the use of Feynman rules for off-shell fields. While conceptually algorithmic, it is not extremely
efficient for several reasons:

0) they are very general; as such, they cannot take advantage of special features of some
specific theory

1) Symmetries of the theory, in particular local symmetries, are not manifest. They are
recovered after all Feynman diagrams contributing to some process are summed up.

2) one repeats the same calculation many times; e.g. part of each Feynman diagram con-
tributing to a 6-point amplitude also contributes to a 5-point amplitude. However, as one
computes the 6-point amplitude one rarely makes use of simplifications already carried out for
the 5-point one. One just does them al over again.

3) simplifications which appear only if external fields are on-shell – especially those that
appear in the example above if all 5 particles are on-shell – are not always apparent

Evidence gathered over the years that pretty much all questions that are usually answered in
terms of Feynman diagrams, with the exception of the calculation of off-shell Green’s functions
of fundamental fields which are usually not needed by themselves anyway, can be found also
by dealing only with on-shell physical states at all times. The purpose of these lectures is to
describe some of the methods that have been developed for the purpose of taking advantage
of the on-shell simplifications. On-shell methods are in some sense many and relatively varied.
Not all of them apply in all situations; in fact, this restriction is in some sense a source of
strength, as when they apply they tend to be quite efficient. As always, there is quite likely
room for improvement.

The plan would be: 1) notation and tree level; 2) 1-loop 3) higher loops The theory I will
have in mind throughout this discussion is N = 4 SYM. However, these techniques can be and
have been extended to theories with less supersymmetry (not much to do at tree-level), theories
with tree-level masses, YM theories with various kinds of matter.

In the 4th lecture I will describe how the same technology extends to perturbative calcula-
tions in supergravity theories, in particular N = 8 supergravity.

To take it from the top:
As with the calculation of amplitudes through Feynman diagrams, having a good notation

and a good organization of amplitudes is crucial. Here, spinor helicity and color ordering still
rule the playground. The latter provides a way to separate the color part from the momentum
part of amplitudes thus organizing the amplitude in terms of a smaller number of functions
and permutations of their arguments. The former provides a way of capturing the physical
polarizations of particles in a Lorentz invariant way.

The philosophy is always to look for the smallest object that has a meaning: for FD approach
they are vertices, their meaning being related to Lagrangian. Here the smalest objects will be
amplitudes with fixed helicities for external lines and also fixed color order.

Let us begin by reviewing these two very important ingredients.

� Spinor helicity (massless particles); organization of amplitudes; color ordering
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The polarization vector of a gluon should obey the following constraints:

kμε
μ(k) = 0 ε ∼ ε + αk ; (1)

both constraints are consequences of gauge invariance. Thus, only two of the 4 components
of ε describe physical transverse polarizations. The issue is how to extract them in a Lorentz
invariant way.

In 4 dimensions, the masslessness of the fields implies that the momentum is not really the
most basic quantity. Indeed, 0 = p2 may be written also as det pμσ̄ which implies that pμσ̄ has
rank 1 so it must be a direct product of two vectors

(pμσ̄
μ)αα̇ = λαλ̃α̇ . (2)

This decomposition is clearly not unique: λα ∼ Sλα λ̃α̇ ∼ 1/Sλ̃α̇

A meaning of λα and λ̃α̇ may be identified by recalling a well-known identity that which is
typically used when constructing cross-sections from scattering amplitudes:

(p/ + m)us(p) = 0 →
∑
s=±

u(p)sūs(p) = −p/ + m (3)

The massless version projected onto the chiral part reads:

(pμσ̄
μ)αα̇ = u(p)αū(p)α̇ (4)

leads to the identifications

ū(p)α̇ ≡ |p] ≡ λ̃α̇ u(p)α ≡ |p〉 ≡ λα (5)

All Lorents invariants may be expressed in terms of Lorentz invariant product of spinors:

〈pq〉 = εbau(p)a u(q)b [pq] = 〈qp〉∗ = εȧḃū(p)ȧ ū(q)ḃ (6)

Here ε is the 2d Levi-Civita tensor.

2k1 · k2 = [k1k2]〈k2k1〉 . (7)

Polarization vectors may be expressed in terms of spinors and the spinors associated to a
null arbitrary vector

ε+
μ (k, ξ) =

〈ξ|γμ|k]√
2〈ξk〉

ε−μ (k, ξ) = − [ξ|γμ|k〉√
2[ξk]

ε+
αα̇(k, ξ) =

√
2

ξαλ̃α̇

〈ξk〉
ε−αα̇(k, ξ) = −√2

λαξ̃α̇

[ξk]

where ξ is an arbitrary null vector ξμσ
μ
αα̇ = ξαξ̃α̇. This vector may be chosen independently for

each of the external legs. This freedom allows one to find easily that certain amplitudes vanish
at tree level.
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1) all plus: each vertex brings at most one factor of momentum and tehre are at most n− 2
vertices for n external legs. So 2 polarization vectors are necessarily multiplies; choose all ξ-s
for +-helicity proportional

2) one-minus all-plus: same as above except that there are also terms with ε+ · ε− ∝
〈q+k−〉[q−k+]; so choose q+ = k−.

In non-susy theories this argument breaks down at loop level as more momenta become
available. In susy theories however, susy Ward identities imply that these amplitudes continue
to vanish:

Susy argument: act with susy on 〈0|Λ+g±g+ . . . g+|0〉; this matrix element vanishes on Lorentz invariance grounds.

0 = 〈0|[Q(η(q),Λ+
g
+

g
+

. . . g
+
]|0〉

= −Γ−(q, p1)A(g
+

g
+

. . . g
+
) +

∑
i

Γ
−
(q, pi)A(Λ

+
g
+

. . .Λ
+
i g

+
) (8)

(Γ(p, q)+ = θ[q, p], Γ(p, q)− = θ〈q, p〉) Fermions have only helicity-conserving interactions, so all but first amplitudes vanish. The first must too.

0 = 〈0|[Q(η(q),Λ+
g
−

g
+

. . . g
+
]|0〉

= −Γ−(q, p1)A(g
+

g
−

. . . g
+
) +

∑
i

Γ
−
(q, p2)A(Λ

+
Λ
−

g
+

. . . g
+
) +

∑
i

Γ
−
(q, p2)A(Λ

+
g
−

g
+

. . .Λ
+

g
+
) (9)

the terms under the sum vanish; then choose q = p1.

� Color decomposition (Berends, Giele; Mangano, Parke, Xu; Bern, Kosower): Any planar
amplitude can be written as

A =
∑

ρ

Tr[T a
ρ(1) . . . T a

ρ(n)]A(ρ(1) . . . ρ(n))

The factors A(ρ(1) . . . ρ(n)) are called partial amplitudes, color ordered amplitudes, color-
stripped amplitudes. ρ is the set of permutations of (1, . . . , n) which are not cyclic. This
is equivalent to fixing 1 leg and summing over all permutations of the remaining legs.

Argument for color ordering: either color-ordered Feynman rules or string diagrams: draw
picture with Riemann surface with holes and vertex operators inserted on the boundaries;
describe multi-trace terms in the decomposition.
• Properties of amplitudes
∗ cyclicity: this is a consequence of the cyclic symmetry of traces.

A(1, . . . n) = A(2, . . . , n, 1)

∗ reflection: this is a consequence of the fact that 3-point vertices pick up a sign under such
a reflection and that an amplitude with n external legs has n 3-point vertices.

A(1, . . . n) = (−)nA(n . . . 1)

∗ photon decoupling: In a theory with only adjoint fields, the diagonal U(1) does not interact
with anyone. Thus, all amplitudes involving this field identically vanish.
∗ collinear limit: p1 → zp and p2 → (1−z)p with p2 = 0 (or more precisely: z = ξ ·p1/(ξ ·p))

A(1, 2, 3, . . . , n) �→
∑

h

Splith(z)A(k−h
12 , 3, . . . , n)

with Splith(z) being independent of the original amplitude.
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• Examples: MHV, NMHV
Due to the vanishing of the all-+ and one-− amplitudes, the simplest tree-level amplitude

has 2 negative helicities. In susy theories this continues to be so at loop level as well.

Atree
MHV = i

〈ij〉4∏〈i, i + 1〉δ
(4)(

∑
i

λiλ̃i) Atree
MHV

= (−1)ni
[ij]4∏

[i, i + 1]
δ(4)(

∑
i

λiλ̃i)

For N = 4 SYM all fields may be pakaged into a superfield

Φ = g− + faη
a + sabη

aηb + fabcη
aηbηc + g+abcdη

aηbηcηd ;

then, all amplitudes related to the all-gluon amplitude by supersymmetry can be packaged into
a single super-expression from which one extracts the component amplitudes by multiplication
with the appropriate wave functions and integration over all anticommuting directions:

Atree
n;MHV = i

1∏〈i, i + 1〉δ
(4)(

∑
i

λiλ̃i)δ
(8)(

∑
i

λiη
a
i )

For maximal susy YM, at loop level, the MHV ampliudes are proportional to the tree amplitude.

A
L
MHV = A

tree
MHV ML(invariants) .

This is a consequence of susy Ward identities. for 4-points one may argue to it based on the properties of the representations of 4d superconformal

group psu(2, 2|4).

An unexpected symmetry – dual superconformal symmetry – of these amplitudes: First
solve momentum conservation:

λ⊗ λ̃ ≡ ki = xi − xi+1 λiαηa
i = (θi)

a
α − (θi+1)

a
α

Then introduce transformations

(λi)α �→ (λi(xi)
−1)α (λi)

α �→ ((xi)
−1λi)

α (λ̃i)α̇ �→ ((xi+1)
−1λ̃i)α (λ̃i)

α̇ �→ (λ̃i(xi)
−1)α

(θa
i )

α �→ ((xi)
−1θa

i )
α (θa

i )α �→ (θa
i (xi)

−1)α

A = i
1∏〈i, i + 1〉

1

n

n∑
p=1

δ(4)(xp − xp+n)δ(8)(θp − θp+n)

〈ii + 1〉 �→ 〈ix−1
i x−1

i+1i + 1〉 =
1

x2
i x

2
i+1

〈ixixi+1i + 1〉 =
1

x2
i x

2
i+1

〈ii + 1〉

where we used that (xi,i+1)λi = 0. Then, the delta functions have opposite weights; can be seen
by integrating them and requiring that the result is invariant under the change of coordinates
above.
• MHV rules and super-rules
It turns out that one may think of MHV amplitudes and superamplitudes as building blocks

of other amplitudes. The idea is to sew MHV amplitudes together as if they were usual Feynman
rules.
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The rules are:
1) one uses n − 1 vertices for an amplitude with n negative helicity gluons. Internal lines

are not on-shell. One defines the corresponding spinors by introduting some fixed null direction
and projecting on it the off-shell momentum:

〈Pki〉 = [ζ|P |ki〉 = ζ ȧPaȧk
a
i |P 〉[P | = P − P 2

2ζ · P ζ (10)

2) vertices are connected by a standard scalar Feynman propagator

Δ(p) =
i

p2
;

Not surprising since these are physical excitations
3) One sums over all possible diagrams with the prescribed number of vertices and prescribed

order of external legs. The same diagram may in principle have different helicities assigned to
internal legs.

(Examples: (−−−+ ...+), (+−+−+−)
� independence of η; Lorentz invariance is restores when all diagrams are added up:

similar to Feynman diagrams excet that there are fewer diagrams
There is some justification for this: the initial justification of CSW involved the twistor

string, which I won’t get into. Later is was justified based on YM theory in lc gauge. In that
gauge there are 3- and 4-point vertices: + +−, −−+, and + +−− By performing a nonlocal
canonical transformation that kills + + − one generates all the MHV amplitudes as terms in
the Lagrangian.

For superamplitudes the story is essentially the same. The modification is that the prop-
agator picks up a factor which identifies the anticommuting coordinates corresponding to the
internal leg in the 2 vertices – i.e. δ(4)(ηa− ηa′) – and besides multiplication one also integrates
over the internal anticommuting coordinates. All in all:

i

P 2

∫
d4ηPAL(. . . , P �, ηP )AL(−P �, ηP , . . . )

• On-shell recursion relations:
� massless

Key observation: from the standpoint of scattering amplitudes momenta are just parameters.
The fact that they are real is only a consequence of the fact that eventually they are interpreted
as momenta of particles. Thus, from the perspective of constructing a function which has the
properties of amplitudes – which we discussed before – it is of course legal to treat momenta
as complex; this may be interpreted as analytic continuation. The result is then analytically
continued back to real momenta.

pi → pi(z) = pi + zη

pj → pj(z) = pj − zη
such that

pi + pj = pi(z) + pj(z)

pi(z)2 = 0 = pj(z)2
η = λiλ̃j

- Amplitude and propagators:

{
A1...n �→ A1...n(z)

Pi,...,i+k �→ Pi,...,i+k(z)
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– A(0)– original amplitude: extract as a contour integral:

A1...n =

∮
C0

dz

z
A1...n(z) complex plane drawing

Integrate using poles outside the contour; for each pole–∮
dz

z
AL(z)

1

P 2
L − 2z〈i|PL|j]AR(z) =

1

P 2
L

AL(z =
P 2

L

2〈i|PL|j] )AR(z =
P 2

L

2〈i|PL|j] ) (11)

Example: (−−−+ ++)
When do they work: it is necessary that the amplitudes vanish as z → ∞. In general

this needs not be the case. For gauge theories one may argue for this using the CSW rules
and picking appropriate shifts. This, together with the fact that there is another derivation
of the on-shell recursion, based on the expression of the 1-loop amplitudes, provides a good
justification of the CSW rules.

Has been argued through the use of superspace on-shell rec rel that the dual superconformal
symmetry observed for MHV exists for all tree amplitudes.

Drawbacks: not as recursive as they seem; when used to evaluate a higher-point amplitude,
an amplitude is needed at some shifter momentum – not the one that is actually needed. Thus,
it needs to be re-evaluated, unless the recursion is solved analytically. Solutions exist for split
helicity, for split-but-one helicity and, more recently, for a supersymmetric version of these
recursion relations.

� massive
The on-shell recursion relations have been extended to theories with massive particles. The

strategy is identical; the details are however different. In paticular, the momentum shifts are
not as simple. Nonetheless, one still has modified propagators depending on z and one still pick
up their poles:

1

P 2
l...j...l+m + M2

l...m

�→ 1

P 2
l...j...l+m(z) + M2

l...m

A �→ A(z) =
∑
l,m,h

Ah
L(z)

1

P 2
l...j...l+m(z) + M2

l...m

A−h
R (z)

∗ Shifts:
pi → pi(z) = pi + zη

pj → pj(z) = pj − zη
�→ η · pi = η · pj = η2 = 0

∗ simple solution if mi = 0 or mj = 0; otherwise complicated

A =

∮
dz

z
A(z) use instead poles at zl...j...l+m = −P 2

l...j...l+m + M2
l...m

2η · Pl...j...l+m

Some examples have been worked out by Badger, Dixon, Glover, Khoze
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Example: An(−−−+ · · ·+)

1−n+ 2−

i+1+i+

3−
Pi

+

++

+ +−
n−1∑
i=3

[
〈1Pi〉

3

〈Pi, i + 1〉〈i + 1, i + 2〉 . . . 〈n1〉

]
1

P2
i

[
〈23〉3

〈Pi2〉 . . . 〈iPi〉

]

i+

n+

1−

2− 3−

i+1+

Pi
+

++

+

+ − +
n−1∑
i=3

[
〈12〉3

〈2Pi〉〈Pi, i + 1〉 . . . 〈n1〉

]
1

P2
i

[
〈34〉3

〈Pi2〉 . . . 〈iPi〉

]



Another example: A6(+−+−+−) 〈kP 〉 = εabλ
a
kPaḃζ̃ḃ – arbitrary ζ̃

6− 5+

4−

3+2−

1+

6−

5+ 4−

3+

2−

1+

1+

2−

3+ 4−

5+

6−

+−

1+ 6−

5+

4−
3+2−

+−

6− 5+

4−

3+

2−1+

+ −

− +

+−

〈2p123〉4

〈12〉〈23〉〈3p123〉〈p1231〉

1

p2
123

〈46〉4

〈45〉〈56〉〈6p123〉〈p1234〉

〈62〉4

〈61〉〈12〉〈2p612〉〈p6126〉

1

p2
612

〈4p612〉4

〈34〉〈45〉〈5p612〉〈p6123〉

〈6p561〉4

〈56〉〈61〉〈1p561〉〈p5615〉

1

p2
561

〈42〉4

〈23〉〈34〉〈4p561〉〈p5612〉

〈2p12〉3

〈p121〉〈12〉

1

p2
12

〈46〉4

〈34〉〈45〉〈56〉〈6p12〉〈p123〉
+ 2× (i → i + 2)

〈p616〉3

〈61〉〈1p61〉

1

p2
61

〈24〉4

〈23〉〈34〉〈45〉〈5p61〉〈p612〉
+ 2× (i → i + 2)



• Massless fields:

Key observation: momenta may be complex

pi → pi(z) = pi + zη

pj → pj(z) = pj − zη
such that

pi + pj = pi(z) + pj(z)

pi(z)
2 = 0 = pj(z)

2 η = λiλ̃j

Amplitude and propagators:
A1...n �→ A1...n(z)

Pi,...,i+k �→ Pi,...,i+k(z)

– A(0)– original amplitude

−→ A1...n =

∮
C0

dz

z
A1...n(z)

z



Properties:

A(z) is a rational function of z

A(z) has only simple poles in z

– at z = zlm for which

Pl,...j,...,l+m(zlm)2 = 0 l

(z)pj

p
l+m

2Pl...j...l+m(z)
1

p

limz→∞A(z) = 0 (nontrivial fact)

⇒ rotate contour: A(z) =
∑
lm

clm

z − zlm

• clm are products of amplitudes evaluated at z = zlm

A =
∑

l,m;h

Ah
L(zlm)

i

P2
l...j...m

A−h
R (zlm) zlm =

P2
l...j...m

2[j|Pl...j...m|i〉



Example: split-helicity (−−−+ ++) amplitude

• determine z from on-shell condition of internal leg

1− 4+

5+6+

2− 3−

3−
2−

1−

5+
4+6+

3−

1− 2−

6+

5+ 4+

+

−

−
+

?
?

〈23̂〉3

〈3̂p̂23〉〈p̂232〉

1

p2
23

〈1p̂23〉3

〈p̂234̂〉〈4̂5〉〈56〉〈61〉
z =

p2
23

〈4|P23|3]

0

[p̂456]3

[p̂236][61][12][23̂][3̂p̂23]

1

p2
45

[4̂5]3

[5p̂45][p̂454̂]
z =

p2
45

〈4|p45|3]

Just shake...

A1−2−3−4+5+6+ = 1

〈5|p34|2]

(
〈1|p23|4]3

[23][34]〈56〉〈61〉p2
234

+
〈3|p45|6]3

[61][12]〈34〉〈45〉p2
345

)


