Phenomenon of (irradiation assisted) stress corrosion cracking for internals of PWR & BWR systems

Radek Novotny & Luigi Debarberis
Institute for Energy (IE)
Petten, The Netherlands

http://www.jrc.ec.europa.eu

Trieste, April 2009
CONTENT

- Ageing
- Corrosion
- SCC – PW SCC
- Radiation effects
- IASCC
- CONCLUSIONS
- Effort to plan life management of ageing NPPs
- Reliability of in-core in-vessel structural materials
- Control of the degradation of the structural materials
- Guiding replacement campaigns

- Rising issues for alloys in LWR conditions:
 - Corrosion and
 - Stress Corrosion Cracking (SCC PW SCC)
 - IASCC
Industry’s Top Ten R&D Priorities (from MRP-205)

1. Inspection & Evaluation (I&E) Guidelines: Reactor Internals
2. NDE Technology: Dissimilar Metal (DM) Butt Welds
3. PWSCC Mitigation: Environmental Controls
4. I&E Guidelines: Bottom Mounted Nozzles
5. Vibration Fatigue: Small Bore Piping
7. NDE Qualification Program: Ni-Alloy Penetrations
8. NDE Accessibility: Reactor Internals
9. PWSCCC Mitigation: Stress Improvement (SI) of Butt Welds
10. Thermal & Irradiation Embrittlement: Synergistic Effects on CASS & SS Welds - Internals
Essential service water system pipe degradation
Stress Corrosion Cracking

- **Attachment welds**: SCC significant at welded pad/bracket locations in the vessel shell
- **Nozzles**: SCC of nozzles is a significant issue
- **Closure studs**
- **Penetrations**: SCC of CRD stub tubes (high residual stresses in sensitized weld material)
- **Safe ends**: Observed at several plants. SCC is a potentially significant degradation mechanism for safe ends
Main Degradation Mechanisms

<table>
<thead>
<tr>
<th>Component</th>
<th>Irr. Emb.</th>
<th>Fatigue</th>
<th>Thermal Ageing</th>
<th>Wear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor pressure vessel</td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Control rod drive mechanisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internals structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor coolant pump easing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping and safe ends</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge and Spray lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam generator tubing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam generator shell and nozzles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lovisa
PWSCC Experience in Vessel and Other Components

Plants with leaks:

Plants with cracks/indications:
- Ringhals 3, 4 – axial, reactor vessel nozzle (2000)
Corrosion & radiation

- Effects of irradiation on materials are well investigated
 - Defects due to irradiation
 - Mechanical properties evolution with dose

- For LWRs, passive materials used
- Corrosion enhanced by water radiolysis
 - oxidant species (OH\(^-\), H\(_2\)O\(_2\), etc.)
 - together with reducing species (H, etc)
 - influence free corrosion potential
- Radiation affects also semi-conductive properties of the oxides, particularly the behaviour of the passive layer
Irradiation hardening increases with \((\text{dose})^{1/2}\)
Radiolysis of Water by n- and γ Radiation

\[H_2O + (\gamma, n) \rightarrow H_2, H_2O_2, HO_2^*, OH^*, H^*, e_{aq}^-, H^+ \]

- **Excitation**
 - H_2O^*

- **Primary products formation**
 - $H_2, H_2O_2, HO_2^*, OH^*, H^*, e_{aq}^-$

- **Molecules formation**
 - H_2, H_2O_2, O_2

Radiolysis
- mainly in the reactor core region
- mainly by n-irradiation
- γ is important for recombination

Redox-potential and ECP corrosion behaviour

- **PWR**: H_2-addition (in VCT) → recombination with $O_2 + H_2O_2$ to H_2O → $H_2 \gg O_2 + H_2O_2 < 5$ ppb
 → low redox-potential → ECP = -800 to -500 mV$_{SHE}$

- **BWR/NWC**: H_2O_2 is non-volatile → $O_2 + \frac{1}{2} H_2O_2 > H_2$ → oxidizing → ECP = -50 to +200 mV$_{SHE}$

- **BWR/HWC or NMCA**: H_2-addition to feedwater → recombination with $O_2 + H_2O_2$ to H_2O → $H_2 \gg O_2 + H_2O_2 < 5$ ppb → low redox-potential → ECP = -500 to -200 mV$_{SHE}$
- The integrity of fuel elements (zircaloy) may also be affected
- Localised corrosion phenomena are also affected by the free corrosion potential changes, particularly SCC phenomena
+ Radiation

Corrosion

IASCC

Stress

Radiolysis

Radiation corrosion

Material

Water

Stress Corrosion Cracking

Fracture Mechanics

Radiation creep

Radiation induced segregation
Present generation

LWR \rightarrow BWR, PWR, VVER
HW \rightarrow CANDU
GCR \rightarrow MAGNOX, AGR
LM \rightarrow FR
BWR - PWR

- Interactions corrosion behaviour and radiolysis
- Slightly diversified for the two main LWRs
 - Boiling water reactors (BWR) and
 - Pressurised water reactor (PWR)
Water Chemistry Conditions in BWR and PWR

<table>
<thead>
<tr>
<th>BWR/NWC</th>
<th>BWR/HWC</th>
<th>PWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 274 – 288 °C</td>
<td>T = 274 – 288 °C</td>
<td>T = 286 – 323 °C</td>
</tr>
<tr>
<td>pH_T = 5.65</td>
<td>pH_T = 5.65</td>
<td>pH_T = 6.8 to 7.4</td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral</td>
<td>Slightly alkaline</td>
</tr>
<tr>
<td>High-purity water</td>
<td>High-purity water</td>
<td>Pure water</td>
</tr>
<tr>
<td>Impurities < 1ppb</td>
<td>Impurities < 1ppb</td>
<td>H₃BO₃/LiOH</td>
</tr>
<tr>
<td>O₂ ~ 200 ppb</td>
<td>O₂ < 5 ppb</td>
<td>O₂ < 5 ppb</td>
</tr>
<tr>
<td>H₂ ~ 15 ppb</td>
<td>H₂ ~ 50 to 300 ppb</td>
<td>H₂ ~ 2000 to 5000 ppb</td>
</tr>
<tr>
<td>ECP = -50 to +200 mV<sub>SHE</sub></td>
<td>ECP = -500 to -200 mV<sub>SHE</sub></td>
<td>ECP = -800 to -600 mV<sub>SHE</sub></td>
</tr>
</tbody>
</table>
BWR - PWR

BWRs: stainless steels (304 type) mainly used for core components
- exposed to water often up to 288 °C
- SCC is controlled by hydrogen conditioning (HWC: H water chemistry)
 - free corrosion potential (ECP) at low values

PWRs
- primary water chemistry based on B (added as boric acid)
- for neutronic purposes with Li addition (added as LiOH)
- increase pH to limit the general corrosion and activation of components
- large hydrogen concentration used to limit radiolysis effects
 - 25 to 35 ml of hydrogen per Kg water!
Boric Acid Corrosion

- Boric acid leakage is a consequence of Alloy 600 cracking
- This leakage can lead to boric acid corrosion of low-alloy steel
- Davis-Besse, March 2002

- Order EA-03-009. Inspection requirements according to the parameter EDY

Davis-Besse
Davis-Besse
Plants with Replaced RPV Upper Head - USA

- 25 plants replaced RPV upper heads
 - 24 with Alloy 690 penetrations
 - 1 with Alloy 600 (Davis-Besse)
- 13 of the 21 remaining high and moderate susceptibility plants

PWSCC. Vessel Head

- The Alloy 600/82/182 has been changed by the Alloy 690/52/152 in the penetrations of the new vessel heads
- The inspection practices vary from country to country, reducing the inspection intervals for the vessel heads with Alloy 600
Stress Corrosion Cracking

- BWR internals susceptible to two forms of SCC:
 - Intergranular stress corrosion cracking (IGSCC)
 - Irradiation assisted stress corrosion cracking (IASCC)

- Degradation via IGSCC is potentially significant. Programmes to effectively manage this degradation mechanisms are required

- IASCC is a concern in BWR core internal components such as a portion of the core shroud and the top guide.
Degradation Incidents of RPVIs Safety Relevant

<table>
<thead>
<tr>
<th>Component</th>
<th>Degradation Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Core Plate</td>
<td>IGSCC</td>
</tr>
<tr>
<td>2. Core Spray Internal Piping</td>
<td>IGSCC</td>
</tr>
<tr>
<td>3. Core Spray Sparger</td>
<td>IGSCC</td>
</tr>
<tr>
<td>4. CRD Guide Tube</td>
<td>No incidents of cracking reported</td>
</tr>
<tr>
<td>5. CRD Housing</td>
<td>No incidents of cracking reported</td>
</tr>
<tr>
<td>6. In-Core Housing</td>
<td>IGSCC</td>
</tr>
<tr>
<td>7. Jet Pump</td>
<td></td>
</tr>
<tr>
<td>- Diffuser</td>
<td>IGSCC</td>
</tr>
<tr>
<td>- Hold down beam</td>
<td>IGSCC</td>
</tr>
<tr>
<td>- Inlet mixer</td>
<td>Fatigue due to improper installation</td>
</tr>
<tr>
<td>- Riser</td>
<td>IGSCC</td>
</tr>
<tr>
<td>8. LPCI Coupling</td>
<td>No incidents of cracking reported</td>
</tr>
<tr>
<td>9. Orificed Fuel Support</td>
<td>No incidents of cracking reported</td>
</tr>
<tr>
<td>10. Core shroud</td>
<td>IGSCC/IASCC</td>
</tr>
<tr>
<td>11. Shroud Support</td>
<td>IGSCC</td>
</tr>
<tr>
<td>12. Top Guide</td>
<td>IGSCC/IASCC</td>
</tr>
</tbody>
</table>
Mitigation Technologies for SCC

Water chemistry control or surface treatment

- Hydrogen water chemistry
- Noble Metal Chemical Application (NMCA)
- Deposition of noble metals by plasma spray
- Surface melting/Solution annealing
+ Radiation

Corrosion

IASCC

Stress

Radiolysis

Radiation corrosion

Water

Stress Corrosion Cracking

Fracture Mechanics

Radiation creep

Radiation induced segregation

Material
Some Effects of Irradiation

- Radiolysis of reactor coolant by \(n \)- and \(\gamma \)-irradiation
 - change of oxidizing capacity of environment → corrosion, EAC

- Change of microstructure of reactor internals and RPV by \(n \)-irradiation
 - displacement damage
 - irradi.-induced hardening, embrittlement, segregation, creep, void swelling,…
 - IASCC of reactor internals, \(n \)-embrittlement of RPVs

- Transmutation and activation
 - activation of corrosion products, activity transport and built-up in piping system
 - dry well dose rates (Co-60, which is strong \(\gamma \)-emitter, is created by thermal neutron activation of natural Cobalt 59 (from wear-resistant Co-alloys))

- \(\gamma \)-heating
IASCC Service Experience

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Reactor Type</th>
<th>Possible Sources of Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cladding</td>
<td>304 SS</td>
<td>BWR</td>
<td>Fuel Swelling</td>
</tr>
<tr>
<td>Fuel Cladding</td>
<td>304 SS</td>
<td>PWR</td>
<td>Fuel Swelling</td>
</tr>
<tr>
<td>Fuel Cladding *</td>
<td>20%Cr/25%Ni/Nb</td>
<td>AGR</td>
<td>Fuel Swelling</td>
</tr>
<tr>
<td>Fuel Cladding Ferrules</td>
<td>20%Cr/25%Ni/Nb</td>
<td>SGHWR</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Neutron Source Holders</td>
<td>304 SS</td>
<td>BWR</td>
<td>Welding & Be Swelling</td>
</tr>
<tr>
<td>Instrument Dry Tubes</td>
<td>304 SS</td>
<td>BWR</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Control Rod Absorber Tubes</td>
<td>304/304L/316L SS</td>
<td>BWR</td>
<td>B4C swelling</td>
</tr>
<tr>
<td>Fuel Bundle Cap Screws</td>
<td>304 SS</td>
<td>BWR</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Control Rod Follower Rivets</td>
<td>304 SS</td>
<td>BWR</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Control Blade Handle</td>
<td>304 SS</td>
<td>BWR</td>
<td>Low stress</td>
</tr>
<tr>
<td>Control Blade Sheath</td>
<td>304 SS</td>
<td>BWR</td>
<td>Low stress</td>
</tr>
<tr>
<td>Control Blades</td>
<td>304 SS</td>
<td>PWR</td>
<td>Low stress</td>
</tr>
<tr>
<td>Plate Type Control Blade</td>
<td>304 SS</td>
<td>BWR</td>
<td>Low stress</td>
</tr>
<tr>
<td>Various Bolts **</td>
<td>A-286</td>
<td>PWR & BWR</td>
<td>Service</td>
</tr>
<tr>
<td>Steam Separator Dryer Bolts **</td>
<td>A-286</td>
<td>BWR</td>
<td>Service</td>
</tr>
<tr>
<td>Shroud Head Bolts **</td>
<td>600</td>
<td>BWR</td>
<td>Service</td>
</tr>
<tr>
<td>Various Bolts</td>
<td>X-750</td>
<td>BWR & PWR</td>
<td>Service</td>
</tr>
<tr>
<td>Guide Tube Support Pins</td>
<td>X-750</td>
<td>PWR</td>
<td>Service</td>
</tr>
<tr>
<td>Jet Pump Beams</td>
<td>X-750</td>
<td>BWR</td>
<td>Service</td>
</tr>
<tr>
<td>Various Springs</td>
<td>X-750</td>
<td>BWR & PWR</td>
<td>Service</td>
</tr>
<tr>
<td>Various Springs</td>
<td>718</td>
<td>PWR</td>
<td>Service</td>
</tr>
<tr>
<td>Baffle Former Bolts</td>
<td>316 SS Cold Work</td>
<td>PWR</td>
<td>Torque, differential swelling</td>
</tr>
<tr>
<td>Corc Shroud</td>
<td>304/316/347/L SS</td>
<td>BWR</td>
<td>Wcld residual stress</td>
</tr>
<tr>
<td>Top Guide</td>
<td>304 SS</td>
<td>BWR</td>
<td>Low stress (bending)</td>
</tr>
</tbody>
</table>

Note: BWR = Boiling Water Reactor, PWR = Pressurized Water Reactor, AGR = Advanced Gas Reactor, SGHWR = Sodium Graphite High Temperature Reactor.
Examples of IASCC: Cracked Baffle Former Bolts in a PWR
Lovisa core basket

- Visual and ultrasonic inspection of all 312 locking bolts (Tecnatom)
- Removal of defective locking bolts (Westinghouse)
- Assembly of the new fixing system (Westinghouse)
- Internals TV-inspection of the core basket (Tecnatom)
Strong influence of radiation
Microstructure Changes can be Correlated to Irradiation Dose/Fluence

Note: \(\sim 15 \text{ dpa} = 10^{22} \text{ n/cm}^2 \ E \geq 1 \text{ MeV} \) (for PWR and BWR neutron spectra)

\(\sim 7 \text{ dpa} = 10^{22} \text{ n/cm}^2 \ E \geq 0.1 \text{ MeV} \) (for PWR and BWR neutron spectra)
Radiation Induced Segregation - RIS - occurs by preferential association between solute atoms and point defects.
Concentration Profiles for CP 304 SS after after neutron irradiation at 288°C to a fluence of 10^{22} n/cm2 ($E > 1$ MeV)

- Cr, Mo deplete
- Ni, Si, P enrich
- Fe depends on alloy composition

\[\text{Composition (wt\%)} \]

\[\text{Position (nm)} \]

Grain boundary chromium depletion in irradiated austenitic iron base alloys
Grain boundary nickel enrichment in irradiated austenitic iron base alloys
Segregation of Minor Elements and Impurities

• Mo and Mn - strongly deplete with dose
• Si- very strong grain boundary segregation- as much as 10x. Segregation can lead to the formation of γ' (Ni_3Si) in matrix or at grain boundary.
• P- thermally segregates and irradiation provides a small additional amount of segregation
• C, N, B- should also segregate, but there is little evidence due to difficulty in measurement
IASCC – Irradiation Assisted Stress Corrosion Cracking

- Terminology used to describe cracking of materials
- Exposed to nuclear reactor coolant and ionizing radiation
- Like all Stress Corrosion Cracking phenomena it requires critical combinations of applied stress or strain, environmental chemistry & metallurgical structure to occur

Major factors influencing Environmentally Assisted Cracking (EAC)

Mechanical loading
- Loading/strain rate \(dK/dt, d\varepsilon/dt, \nu \)
- Load/strain level \(K_i, \Delta K, \sigma, \varepsilon, R \)
- Residual stress

Material
- Composition
- Microstructure
- Heat treatment
- Surface condition
- Yield stress, hardness

Environment
- Composition
- pH, conductivity
- Temperature
- Redox, ECP
- Flow rate

Critical conditions for SCC
synergistic and interrelated parameters
IASCC added feature to EAC:
- atomic displacements
- neutron irradiation significantly alters metallurgical microstructure
- ionizing (α, β and γ) radiation modify the

Effects of irradiation on SCC:
- primary defects
- defects segregation
- dislocation interaction
- grain boundaries
- localized stress and strain
- environment
- stress relaxation by irradiation
- creep (beneficial factor for IASCC)
IASCC

- Radiation
- Stress
- Time
- Temperature
- Environment
Strong influence of radiation

$\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}^+ + \mathrm{OH}^-$

$\rightarrow \mathrm{F}^+ + 2\mathrm{e}^- [\mathrm{y}, -K_{IC}]$

$\rightarrow \mathrm{H}_2\mathrm{O}_2$

$\mathrm{F}^+ + 2\mathrm{e}^- \rightarrow \mathrm{H}_2\mathrm{O}_2$

$\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}^{2+}$
SCC - RPV internals

Displacement (mm)

- Sample: 10 x 10 x 55 mm³

Displacement (mm)

- Sample: 3 x 4 x 27 mm³

Testing Environmentally Assisted Cracking (EAC) of Reactor Materials using Pneumatic Servo Controlled Fracture Mechanics (PSCFM),

R. Novotny, F. Sevini, L. Debarberis, S. Petr, M. Kytka,
- Ageing
- Corrosion
- SCC
- Radiation effects
- IASCC
- CONCLUSIONS
Phenomenon of (irradiation assisted) stress corrosion cracking for internals of PWR & BWR systems

Radek Novotny & Luigi Debarberis
Institute for Energy (IE)
Petten, The Netherlands

http://www.jrc.ec.europa.eu

Trieste, April 2009