

2028-13

Joint ICTP/IAEA Workshop on Atomic and Molecular Data for Fusion

20 - 30 April 2009

Plasma-Wall Interaction in Magentic Fusion Recombination, Implantation, Diffusion and Release

> SCHWARZ-SELINGER Thomas Max-Planck-Institut fuer Plasmaphysik Boltzmannstrasse 2 85748 Garching bei Munchen GERMANY

Max-Planck-Institut für Plasmaphysik

Thomas Schwarz-Selinger

recombination, implantation, diffusion and release

heat load issues

Recombination coefficient

Recombination coefficient for hydrogen in stainless steel

- acceptable data situation
- strong influence on surface conditions

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

Diffusion coefficients

- For many metals very detailed data exist for the diffusion of hydrogen
- However, data are very scarce for the potential first wall materials W and Be
- as well as for non-metallic compounds

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

H in metals

- hydrogen forms interstitial solution in metals
- small size of hydrogen, tunneling: very high mobility
- tungsten: low solubility of hydrogen
 - $\le 10^{-8} 10^{-6}$ at. fraction in perfect lattice
 - max. $\sim 10^{-3}$ at. fraction in defect-rich substrates
- tungsten as first wall material in fusion experiments (or reactors):
 - ion implantation (non-equilibrium)
 - high hydrogen fluence and flux
 - large first wall area
 - potentially large tritium inventory in first wall

thermodynamic treatment

- solubility and mobility of hydrogen in metal substrate
 - Determined by chemical potential $\mu_{metal}(\zeta)$
 - $-\mu_{metal}(\zeta) = kT \cdot \ln \zeta + const. \qquad (\zeta = n_H / n_{sites} << 1)$
- equilibrium loading: e.g. from the gas phase
 - Me + $\frac{1}{2}x$ H₂ \Rightarrow MeH_x
 - $\mu_{gas} = kT \cdot \ln(p/p_0) + const.$
 - Equilibrium condition: $1/2\mu_{Gas} = \mu_{Metall}$
- Sieverts' law for equilibrium concentration
 - $-\zeta = K \cdot p^{1/2}; K \propto \exp(-\Delta H_{sol}/kT)$
 - Valid for single crystal, small concentration, ideal gas
- higher concentration \Rightarrow higher equilibrium pressure

thermodynamic treatment

- μ can be **experimentally measured** (e.g. measurement of e.m.f)
 - Effective diffusion coefficient D_{eff}
 - Equilibrium concentration ζ
- sensity of states *n*(*E*)
 - determined by binding energies and concentration of sites for hydrogen
 - allows self-consistent calculation of μ
 - derivation of $D_{\rm eff}$, ζ
 - modelling of hydrogen retention in tungsten macroscopic approach

- perfect single crystal
 - "atomic" hydrogen in interstitial sites
 - lattice distortion \Rightarrow "self-trapping"

- perfect single crystal
 - energy diagram and density of states
 - diffusion coefficient by Frauenfelder ¹⁾:
 - $D_{eff} = 4.1 \cdot 10^{-7} \cdot \exp(-0.39 \text{ eV} / k_{BT}) \text{ m2/s}$
 - Interstitial binding energy (diffusion barrier) ~0.39¹⁾ eV

• point defects (vacancies)

concentration in thermal equilibrium $\propto \exp(-E_{vac} / kT)$

- point defects
 - strong binding of H atoms ($E_b \sim 1.45 \text{ eV}^{-1}$)
 - model: two-level system

• dislocation lines

long range elastic strain field also binds hydrogen

- Dislocation lines
 - Binding energy ~0,85 eV ¹)
 - Compressive side repulsive, tensile side attractive

- Grain boundaries / phase boundaries
 - Mismatch between individual grains / phases
 - Size distribution of interstitial sites

- Grain boundaries / phase boundaries
 - Important for polycrystalline materials, deposited films, precipitations
 - Model: Gaussian distribution of site binding energies

- three-dimensional defects
 - pores
 - cracks
 - binding energy ~1,45 eV $^{1)}$ (gaseous molecular H₂)
 - chemisorption on inner surfaces \sim 1,84 2,34 eV ¹⁾
- created also by ion implantation

extrinsic defects

- ion induced defects
 - elastic collisions of H with W \Rightarrow point defects
 - only for high ion energies (keV)
 - within the stopping range of implanted ions ($\sim 10 100$ nm)

extrinsic defects

- other types of immediate radiation damage
 - creation and movement of dislocations
 - large strain on lattice in implantation region
 - created vacancies can form clusters
 - complex dynamic behaviour
 - growth, merging, annealing, annihilation
 - transition clusters \rightarrow voids

extrinsic defects

- stress induced defects
 - non-equilibrium implantation
 - supersaturation
 - lattice strain
 - extremely high equivalent equilibrium pressure
 - plastic deformation
 - preferential accumulation of hydrogen at existing defects
 - positive feedback mechanism
 - creation and propagation of cracks
 - creation and growth of voids and bubbles
 - delamination of layers
 - blistering

- tungsten: **bcc** lattice
 - tetraedric interstitial sites larger \Rightarrow preferred sites for hydrogens
- jumps between neighbouring tetraedric sites

- small energy barrier between tetraedric sites
 - high mobility of hydrogen ($D_{eff} \sim 10^{-7} \text{ m}^2/\text{s}$)
 - Corresponds approximately to D_{eff} of ions in aqueous solution
- diffusion mechanisms
 - quantum mechanical treatment necessary (tunnel effect) isotope dependence of tunneling cross section
 - room temperature:
 - self-trapping of H atoms \Rightarrow "hopping" to next neighbours
 - *T_{substrate}* high:
 - thermal excitation over barrier; also long range jumps or intermittently "free" atoms
 - *T_{substrate}* very low:
 - coherent (band-like) tunneling theoretically possible
 - usually suppressed by impurities / lattice imperfections

- thermally activated tunneling
 - reduction of energy barrier between sites by lattice vibrations
 - transitions of H atoms into excited states
 - energetic leveling of neighbouring sites

- influence of extended defects
 - grain boundary diffusion
 - increased diffusion along dislocation lines
- "dislocation drag"
 - movement of dislocations
 - hydrogen bound to dislocation dragged along
- vacancy diffusion
 - diffusion of substituted hydrogen atoms through host lattice

- "stress assisted diffusion"
 - interstitial hydrogen strains host lattice
 - hydrogen avoids external mechanical compressive stress
 - also caused by stress created in implantation region
 - migration of hydrogen into regions of tensile stress respectively less compressive stress
- other diffusion mechanisms
 - e.g. electromigration, thermotransport
- directional transport into bulk driven by gradients of
 - concentration
 - stress
 - temperature
 - electric potential

diffusion of H in W

- high mobility, directed transport
 - deep penetration of hydrogen into substrate possible
- strong binding to defects
 - retention depth profile determined by defect density
- intrinsic defects
 - assumption: constant density averaged over volume >> a³
 - implantation into δ -layer near surface exponential decay of retained hydrogen density into bulk
- extrinsic defects
 - locally increased defect density
 - peaks expected in depth profile of retained hydrogen

mechanism of deuterium behavior in polycrystalline W

schematic energy diagram for H in metals

steady state fluxes
$$j_{-} = Kc_s(0)^2$$
, $j_{-} = Kc_s(d)^2$
K recombination constant $K = \frac{K_0}{\sqrt{T}}e^{-\frac{U_r}{kT}}$

inventory issues

IPP

Low energy D/T ions He ions Fast neutrons Thermal load Impurity ions (C,O) and neutrals

1) Fatigue properties:

-bulk radiation damage by fast neutrons (vacancies, interstitial clusters)

-damage due to low energy ions and neutrals escaping the plasma
-thermal fatigue due to energy deposition
2) Thermal shock due to off-normal operation

3) corrosion

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

What do we want to know and which techniques are used?

Results needed:

diffusion and permeation of implanted atoms

Experimental techniques

reemission and permeation experiments using upstream and downstream residual gas analysis.

depth profiling after implantation.

trapped D/T inventory

trap energy, i.e. temperature needed for desorption

thermal desorption analysis.

linear ramp thermal desorption experiments

diffusion-limited trapping of deuterium in polycrystalline W

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

influence of surface impurities on retention

in tungsten:

hughe influence of surface conditions!

ion driven permeation

lab experiment PERMEX M. Mayer

ion driven permeation

20 min – seems to be the time of impurities on front side sputtering (Note: D (200 eV) does not create displacement defects in W)

ion driven permeation : influence of carbon layers

1 - Thick film. All deuterium stop inside the carbon film. No IDP

2 – Thin film – maximum of permeability

3 - "Clean tungsten". The permeation flux is less than for pure tungsten experiments probably implanted C as barrier

Strong influence of impurity layers on front side on permeation

Y. Gasparyan, M. Mayer

ion driven permeation : influence of carbon layers

Temperature: 823 - 923 K Ion energy: 200-3000 eV/D Incident flux: ~10¹⁸ D/m²sec D₂ pressure: ~ 7×10⁻⁴ Pa Sample thickness: 50-200 μ m

Y. Gasparyan, M. Mayer

Sputter-deposited 120 nm

a-C layer on front surface

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

024680P

 D_3^+

200 eV/D

mechanisms of hydrogen retention in carbon

heat load issues

Selection criteria - wall material as heat sink

- specified for heat loads up to10 MW/m² in steady state
- higher heat loads in transient events
- only achieved for few materials without melting
- best candidates: graphites, W, Mo

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

Heat removal - stationary

PWW issues for Future fusion devices: Loading conditions

	<mark>ITER</mark> First Wall	ITER Divertor target	Reactor (Demo) First Wall	Reactor (Demo) Divertor target	
<u>av. neutron fluence</u> (MW a m ⁻²)	0.3	max. 0.15 *	10	5	
Normal operation	30000	10000 2	< 1000	< 1000	
Peak particle flux (10 ²³ m ⁻² s ⁻¹) Surface heat flux (MW m ⁻²)	0.01 < 0.5	~10 ~10 **	0.02 < 1	~10 10	
ELM energy density (MJ m ⁻²) ELM duration (ms) / {Frequency}	-	< 1 0.2 / {few Hz}		reduced	
Off-normal operationPeak surface heat load (MJ m ⁻²)Duration (ms)* without replacement** slow transients 20 MW m ⁻² last	60 VDEs) 300	30 (Disruptions) 1–10		? 1–10, max. 10 events	
Source: H. Bolt et al., J. Nucl. Mater. 307-311 (2002) 43 ELM mitigation is a current research topic:					
pellet triggering, magnetic perturbation					

Material erosion under extreme power load

FOR METALS: Splashing Formation of droplets Formation of dust

FOR CARBON: Above a certain power load (threshold) emission of debris ⇒ BRITTLE DESTRUCTION

disruption induced erosion:

100 W С Lifetime of PFCs = 1.0 ms epth of W melt pool (µm) 600 = 3.0 ms 80 Evaporated CFC (µm) vapour shielding reduces CFC evapo-60 ration by factor 10 400 300 disruptions divertor lifetime 40 predicted ITER 200 disruptions exceed Range of disruptions 20 the 300 disruptions predicted for ITER **Evaporation reduced** lifetime limit for W by vapour shielding +0□ efficient mitigation 0 2 4 6 8 10 Power Density (GWm⁻²) methods needed Federici, Strohmayer RACLETTE **ITER** assumptions: Riccardo, Federici 30 disruptions in about 2000 discharges Nuclear Fusion 2005 10 % of melt layer lost in the case of W divertor plates

5 kg erosion per disruption

Heat removal - transient

By MHD instabilities (disruptions, edge localised modes - ELMs) a fraction of the plasma stored energy is deposited in short pulses on plasma facing components

Size scaling! \Rightarrow No problem for present fusion experiments BUT:

W _{thermal}	350 MJ
energy drop	2-6 %
per ELM	\approx 15 MJ
deposition time	0.1 - 0.5 ms
deposition area	6 m ²
power density	≈ 10 GW/m ²

Heat removal - transient

IPP

In transient events the energy must be absorbed by the target material. Heat capacity is essential (inertial cooling) T(t) = P * (2 / π λ ρ c)^{0.5} * t^{0.5} temperature power conductivity density heat capacity $t = 0.00025 s \rightarrow T_{max} = 6000 \circ C$ Penetration depth: 0.15 mm **Graphite**_{subl. thresh.} = 2200 °C Tungsten: $T_m = 3410 °C$, $T_b = 5660 °C$ Graphite target will sublimate quickly and undergo brittle destruction Metals will melt \Rightarrow loss of melt layer by forces on induced currents No material solution \Rightarrow Plasma physics must solve this problem!

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste

What suitable materials are left?

HIGH THERMAL CONDUCTIVITY	CFC-Cu alloy + W-Cu alloy
GOOD THERMO - MECHANICAL PROPERTIES (RESPONSE TO THERMAL SHOCKS)	CFC
LOW NEUTRON ACTIVATION (NEUTRON FLUX > $10^{17} \text{ m}^{-2} \text{ s}^{-1}$)	Be + CFC V-Ti + SiC (structure)
RESISTANCE TO RADIATION DAMAGE (TO AVOID SWELLING AND EMBRITTLEMENT)	CFC
LOW CHEMICAL AFFINITY TO HYDROGEN (NO FORMATION OF VOLATILE COMPOUNDS)	Be + W
LOW ACCUMULATION OF HYDROGEN (TRITIUM INVENTORY MUST NOT EXCEED 0.35 kg)	W + Be (?)
REACTIVITY WITH OXYGEN TOWARDS THE FORMATION OF STABLE AND NON-VOLATILE OXIDES (GETTERING OF OXYGEN IMPURITIES)	Be

Exercises

1) Calculate first wall or divertor plate erosion based on chemical sputtering For example, assume the following conditions:

	T _{surf} (K)	E ₀ (eV)	flux Γ (m ⁻² s ⁻¹)
Divertor	700	30	10 ²³
First wall	500	200	10 ²⁰

Comparison can be made with physical sputtering to see which process dominates under which conditions. What might be the implication of having an all-carbon ITER?

- 2) Try to describe schematically the depth distribution of D in a 500 μ m W foil
 - for the case of purely diffusion limited release. What would be the ratio of the re-emitted flux to the permeating flux in steady state assuming an ion range of 50 nm.
 - for the case of strongly recombination limited surface facing the plasma.
 - What would be the optimum position of a diffusion barrier to limit the T inventory inside the first wall

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, April 20 - 30, 2009, Abdus Salam International Centre for Theoretical Physics, Trieste