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Lake Victoria Basin

• Lake: 68,000km2

• Basin: 
190,000km2

• WB components
– Rainfall: 1750mm
– Evaporation: 1600mm
– Inflow: 300mm
– Outflow: 450mm



Lake Victoria outflow

• HP potential ≈ 3000MW
• Installed = 380MW
• Produced = 180MW
• Demand ≈ 800MW
• Growth = 8MW/month



Water balance issues

• Transient water levels
• Agreed curve issues
• Estimation of lake rainfall
• Catchment inflows
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Catchment inflow issues

• High spatial and temporal variability in 
catchment inflows around basin due to 
variations in
– Basin climate and rainfall
– Catchment characteristics (soils, topography 

etc)
• Data scarcity and reliability issues

•…. Uncertain estimates of catchment inflows 
which has an adverse effect on water 



Objective and study area
• to develop a framework for estimating the variability in 

the catchment inflow into Lake Victoria taking into 
account issues of unreliable input and calibration data 
that is a common feature in tropical catchments.

• Nzoia Basin



Adopted methodology
• Use of WASMOD (Xu, 2002) model, with 4 parameters for controlling 

different water balance components; namely Pet, Aet, Sf and Ff

• Data: monthly values of rainfall, temperature, evaporation and 
simulated runoff 

• Assessment approach: GLUE approach (Beven and Binley, 1992)
•Monte Carlo simulation with 1,000,000 uniformly sampled 
parameter sets. 
•Selection of behavioural parameter usingNash-sutcliffe (NS) and 
Volume Error (VE) criteria. 

• Model Simulation periods
– 1970-1972: warm-up to stabilise moisture content value
– 1973-1982: calibration period
– 1983-1989: first model conditioning period
– 1990-1995: second conditioning period

• The Bayesian model averaging equation was used to combine model 
performances (likelihoods) from two simulation periods



Parameter sensitivity

(b) VE variation
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Model performance

Table 2. Model  failures  (as  a  percentage  of  months  when  simulated 
flows fail to bound observed flows) for different simulation periods

Model Period  No of Behavioural 
parameter sets 

Calibration (1973‐1982) (2,673)
1st Conditioning period (1983‐1989) (1,535)
2nd Conditioning Period (1990‐1995) (    ‐ )

Period  Model failure (%)
1973 – 1982 (19)
1983 – 1989 (11)
1973 – 1989 (16)
1990 ‐ 1995 (83)
1973 ‐ 1996 (29)

Table  1. Number  of  behavioural  parameter  sets  after  conditioning  for 
different periods
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Key flow features

• Bounding of measured 
flows
– 1972-1989: 9 out of 12 months
– 1972-1995:  6 out of 12 months
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Rainfall

• Annual water balance
– R = 1322mm
– E = 1052mm
– Q = 257mm



Discussion
• NS performed better than VE at constraining the parameters. 
• The model output was most sensitive to parameter Aet and least 

sensitive to Pet. 
• Model conditioning for the 1983-1989 period resulted in dropping of 

1,138 parameter sets (43%). However, model completely failed for
the 1990-1995 period when all parameter sets failed to meet the 
required performance level (Table 1). 

• Overall, the model perfomed well with about 70% of the observed 
flows being bracketted by simulations. 

• While high flows were well simulated, there was a general 
understimation of low flows. This is an expected result when the
Nash-Sutcliffe coefficient for model evaluation because, by 
squaring the model error, emphasis is put on providing a good fit 
for high flows over low flows. 



Cause of model failure for 1990-1995

Uncertainties in measured discharge data were the most likely 
cause in model failure for 1990-1995
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Conclusions

The adopted framework for simulating Lake 
Victoria inflows using WASMOD model followed 
by model performance evaluation using the 
GLUE approach gave acceptable results and 
was shown to be effective for handling 
uncertainties in input and calibration data. 

The approach was also shown to be useful in 
identifying gross errors in the data.




