Conference on Research Frontiers in Ultra-Cold Atoms

4-8 May 2009

Generation of a synthetic vector potential in ultracold neutral Rubidium

SPIELMAN Ian

National Institute of Standards and Technology Laser Cooling and Trapping Group

100 Bureau Drive
Gaithersburg MD 20899-8424
U.S.A

Generation of a synthetic vector potential and an \boldsymbol{E} field

I. B. Spielman

Team
Y.-J. Lin, R. L. Compton, A. R. Perry, and K. Jimenez-Garcia

Senior coworkers
J. V. Porto, and W. D. Phillips

NLST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Funded by the DARPA OLE program, ONR, and the NSF through the PFC at JQI.

Outline for today

Raman dressed states

Brief description of theory and implementation

A synthetic vector potential
Experimentally verify a vector potential appears

$$
\hat{H}=\frac{1}{2 m}\left[\left(\hat{p}_{y}+q \hat{A}_{y}\right)^{2}+\left(\hat{p}_{x}+q \hat{A}_{x}\right)^{2}\right]+V(\hat{x})
$$

An electric field appears
Temporal variation of A gives rise to an electric field.

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}
$$

Motivation

Fundamental physics

Under what general conditions can physical systems support excitations with quantum numbers and statistical angles which are not simple multiples of the constitute particles?
E.g., quantum Hall systems, quantum magnets, p-wave superconductivity, ... (all can potentially be studied in cold atom systems)

FOHE Systems

Spin $1 / 2$ system: Kitaev lattice

Refs.
[1] R. B. Laughlin. PRL 50 p1395 (1983).
[2] A. Y. Kitaev, Ann. Phys. 321, 2 (2006).

Motivation

Fundamental physics

Under what general conditions can physical systems support excitations with quantum numbers and statistical angles which are not simple multiples of the constitute particles?
E.g., quantum Hall systems, quantum magnets, p-wave superconductivity, ... (all can potentially be studied in cold atom systems)

Refs.

[1] R. B. Laughlin. PRL 50 p1395 (1983).
[2] A. Y. Kitaev, Ann. Phys. 321, 2 (2006).

Motivation: magnetic fields

Motivation: magnetic fields

Bosons at high field

At filling factor $1 / 2$ the Laughlin state is the exact ground state.
Binary contact interactions are sufficient to generate some non-

Single atom probability distribution in Laughlin 1/2 state, fixing coordinates of other atoms.

How to "charge" neutral particles

How to "charge" neutral particles

FOHE Systems

How to simulate magnetic fields

(1) Rotation: the Hamiltonian in the rotating frame has an effective field. To reach high fields fine tuning is required to compensate the centripetal term: small numbers.
(2) Stroboscopic proposal: precise modulation of lattices and background potentials.

References: V. Schweikhard et al PRL 92 p040404 (2004),
A. Sørensen, et al PRL 94 p086803 (2005),

Our approach

(3) Raman techniques.

Cold atoms: a platform for many-body physics

We can control the hamiltonian for cold atoms in a number of ways.

$$
\hat{H}=\sum_{j}\left[\frac{\hat{p}_{j}^{2}}{2 m}+V\left(x_{j}\right)\right]+\sum_{i<j} U\left(x_{i}-x_{j}\right)
$$

Potential: optical and magnetic forces. Lattice physics, 2D SF to MI transition

Cold atoms: a platform for many-body physics

We can control the hamiltonian for cold atoms in a number of ways.

$$
\hat{H}=\sum_{j}\left[\frac{\hat{p}_{j}^{2}}{2 m}+V\left(x_{j}\right)\right]+\sum_{i<j} U\left(x_{i}-x_{j}\right)
$$

Cold atoms: a platform for many-body physics

We can control the hamiltonian for cold atoms in a number of ways.

$$
\left.\hat{H}=\sum_{j}\left[\frac{\hat{p}_{j}^{2}}{2 m}\right]+V\left(x_{j}\right)\right]+\sum_{i<j} U\left(x_{i}-x_{j}\right)
$$

Experimental control of cold atoms systems

We can control the hamiltonian for cold atoms in a number of ways.

$$
\hat{H}=\sum_{j}\left[\frac{\hat{p}_{j}^{2}}{2 m}+V\left(x_{j}\right)\right]+\sum_{i<j} U\left(x_{i}-x_{j}\right)
$$

Here I will be interested in a synthetic field in the 2D plane.
Some common gauge choices are:

$$
A=\left\{-\frac{B y}{2}, \frac{B x}{2}, 0\right\}
$$

$$
A=\{0, B x, 0\}
$$

Landau gauge: relevant here
Symmetric gauge: natural for rotating systems
Expect the usual relations for fields

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \quad B=\nabla \times A
$$

Atom light interaction

Atom light interaction

Given the following geometry and levels

Coupled Hamiltonian

We will want to label states, so I will start with the expected:

$$
|k, \sigma\rangle
$$

Absent the lasers the 1D Hamiltonian for motion along x is

$$
H_{0}=\sum_{k}\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{\delta}{2}\right)|k, 1\rangle\langle k, 1|+\left(\frac{\hbar^{2} k^{2}}{2 m}+\frac{\delta}{2}\right)|k, 2\rangle\langle k, 2|
$$

The Raman beams couple states via

$$
H_{\mathrm{int}}=\sum_{k}\left(\frac{\Omega}{2}\left|k-2 k_{r}, 2\right\rangle\langle k, 1|+\frac{\Omega}{2}|k, 1\rangle\left\langle k-2 k_{r}, 2\right|\right)
$$

(this is in the frame rotating at the frequency difference of the Raman beams, in with the

RWA)

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

$|-1\rangle \quad|0\rangle \quad|+1\rangle$

Coupled States

States will be labeled by: (1) the "band index" and by
(2) a quasi-momentum k

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

$|-1\rangle \quad|0\rangle \quad|+1\rangle$

Coupled States

States will be labeled by: (1) the "band index" and by
(2) a quasi-momentum k

Atom light interaction: pictures

Time evolution
In the sudden limit (Raman-Nath)
Population oscillations yield coupling

Coupled States

States will be labeled by: (1) a "band index" and by
(2) a momentum k

Atom light interaction: vector potential

Coupled Hamiltonian

We will want to label states, so I will start with the expected:

$$
|k, \sigma\rangle
$$

Absent the lasers the 1D Hamiltonian for motion along x is

$$
H_{0}=\sum_{k}\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{\delta}{2}\right)|k, 1\rangle\langle k, 1|+\left(\frac{\hbar^{2} k^{2}}{2 m}+\frac{\delta}{2}\right)|k, 2\rangle\langle k, 2|
$$

The Raman beams couple states via

$$
H_{\mathrm{int}}=\sum_{k}\left(\frac{\Omega}{2}\left|k-2 k_{r}, 2\right\rangle\langle k, 1|+\frac{\Omega}{2}|k, 1\rangle\left\langle k-2 k_{r}, 2\right|\right)
$$

(this is in the frame rotating at the frequency difference of the Raman beams, in with the

RWA)

Atom light interaction: vector potential

Coupled Hamiltonian

We will want to label states, so I will start with the expected:

$$
|k, \sigma\rangle
$$

Absent the lasers the 1D Hamiltonian for motion along x is

$$
H_{0}=\sum_{k}\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{\delta}{2}\right)|k, 1\rangle\langle k, 1|+\left(\frac{\hbar^{2} k^{2}}{2 m}+\frac{\delta}{2}\right)|k, 2\rangle\langle k, 2|
$$

The Raman beams couple states via

Atom light interaction: vector potential

Effective vector potential

$$
\begin{aligned}
\frac{m^{*}}{m} & \approx \frac{\Omega}{\Omega \pm 4} \\
\frac{q A}{\hbar k_{r}} & \approx \frac{\delta}{4 \pm \Omega} \\
\frac{\delta^{\prime}}{E_{r}} & \approx \frac{2 \pm \Omega}{2}+\frac{\delta^{2}(4 \pm \Omega)}{4(4+\Omega)^{2}}
\end{aligned}
$$

Reality check

Monday, May 11, 2009

Reality check

Adiabatic manipulation of atoms
Initial state $\left|F=1, m_{F}=-1\right\rangle$

Monday, May 11, 2009

Reality check

Adiabatic manipulation of atoms

Initial state $\left|F=1, m_{F}=-1\right\rangle$

RF dressed state (RF on, ramp B to resonance)

Reality check

Adiabatic manipulation of atoms

RF Dressed
Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)

Loading: momentum

Adiabatic manipulation of atoms
Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)

Monday, May 11, 2009

Loading: momentum

Adiabatic manipulation of atoms

Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)
Raman + RF dressed state (Ramp Raman on)

Monday, May 11, 2009

Loading: momentum

Adiabatic manipulation of atoms

Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)
Raman + RF dressed state (Ramp Raman on)
Raman only dressed state (Ramp RF off)

Monday, May 11, 2009

Displaced momentum distribution

Adiabatic manipulation of atoms
Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)
Raman + RF dressed state (Ramp Raman on)
Raman only dressed state (Ramp RF off)

Monday, May 11, 2009

Displaced momentum distribution

Adiabatic manipulation of atoms

Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)
Raman + RF dressed state (Ramp Raman on)
Raman only dressed state (Ramp RF off)

Monday, May 11, 2009

Reminder: dressed state vector potential

Raman Coupling

Raman coupling between ground state manifold: "dressed" Energy-momentum curves.

$E(k)$ minimum (large coupling)
Good agreement with theory

References
[1] Experiment: Y.-J. Lin et al, PRL 102130401 (2009)
[2] Theory: IBS (Submitted to PRA)

Neat digression: experiment

Raman Coupling

Raman coupling between ground state manifold: "dressed" Energy-momentum curves.

$E(k)$ minima (smaller coupling)
Still good agreement with theory

References
[1] Experiment: Y.-J. Lin et al, PRL 102130401 (2009)
[2] Theory: IBS (Submitted to PRA)

Neat digression: theory

Geometry

Two component BEC's Hey! This what we see.

x Momentum
[1] T. Stanescu and V. Galitski, Phys. Rev. A 78, 023616 (2008)

Atom light interaction: Summary

Symmetric case

Conserved

Abrupt turnoff conserves mechanical momentum

Mechanical momentum is averaged over all orders and is zero in equilibrium (of course).

Monday, May 11, 2009

Displaced momentum distribution

Conserved

Abrupt turnoff conserves mechanical momentum

Mechanical momentum is averaged over all orders and is zero in equilibrium (of course).

Raman Dressed

Group velocity
Since the 1 st derivative is zero, a wavepackets group velocity is zero: no COM motion.

Main point

Idea

We can control the synthetic vector potential in time and space.

Bias and quadrupole \boldsymbol{B} fields = offset and gradient in detuning.

Transfer function

A given local detuning specifics the local synthetic vector potential

References
[1] Y.-J. Lin et al, Submitted to PRA

Electric fields

Complete disclosure

Our beams now intersect at 90°

Transfer function

A given local detuning specifics the local synthetic vector potential

Synthetic Electric Field

A uniform vector potential: forces

Time dependence gives electric fields and forces
Make usual "quasi-static assumptions"

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}
$$

$$
\Delta \mathbf{k}=\frac{e}{\hbar} \int \mathbf{E} d t=-\frac{e}{\hbar} \Delta \mathbf{A}
$$

Mechanical not canonical momentum

Simple geometric example from grade-school

Synthetic Electric Field

A uniform vector potential: forces

Time dependence gives electric fields and forces
Make usual "quasi-static assumptions"

$$
\begin{array}{r}
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
\boldsymbol{\pi}^{\Delta \mathbf{k}=\frac{e}{\hbar} \int \mathbf{E} d t=-\frac{e}{\hbar} \Delta \mathbf{A}}
\end{array}
$$

Simple geometric example from grade-school

Synthetic Electric Field

A uniform vector potential: forces

Time dependence gives electric fields and forces

Make usual "quasi-static assumptions"

$$
\begin{array}{r}
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
\boldsymbol{\pi}^{\Delta \mathbf{k}=\frac{e}{\hbar} \int \mathbf{E} d t=-\frac{e}{\hbar} \Delta \mathbf{A}}
\end{array}
$$

Simple geometric example from grade-school

Synthetic Electric Field

A uniform vector potential: forces

Time dependence gives electric fields and forces
Make usual "quasi-static assumptions"

$$
\begin{aligned}
\mathbf{E} & =-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
\Delta \mathbf{k} & =\frac{e}{\hbar} \int \mathbf{E} d t=-\frac{e}{\hbar} \Delta \mathbf{A}
\end{aligned}
$$

Mechanical not canonical momentum

Simple geometric example from grade-school

Realization with dressed states

Experimental procedure

1. Prepare initial state
2. Jump vector potential, always to $k=2 k_{\mathrm{R}}$
3. Measure mechanical momentum

Synthetic Electric Field

A uniform vector potential: forces

Realization with dressed states

Time dependence gives electric fields and forces
Make usual "quasi-static assumptions"

Mechanical not canonical momentum

Simple geometric example from grade-school

Synthetic Electric Field

A uniform vector potential: forces

Realization with dressed states

Time dependence gives electric fields and forces

Make usual "quasi-static assumptions"

Simple geometric examples from grade-school

Yes! Atoms acquire expected $-2 k_{\mathrm{R}}$ mechanical momentum kick.

Our synthetic vector potential behaves just like the real thing

Synthetic Electric Field

A uniform vector potential: forces

Realization with dressed states

Time dependence gives electric fields and forces

Make usual "quasi-static assumptions"

Mechanical not canonical momentum

Simple geometric examples from grade-school

Yes! Atoms acquire expected $-2 k_{\mathrm{R}}$ mechanical momentum kick.

Our synthetic vector potential behaves just like the real thing

Field in the dressed state

Motion in dressed state
Even remaining in the dressed state the atoms
feel the expected electric field "kick"

Field in the dressed state: non-zero final \boldsymbol{A}

Motion about non-zero k
We really do measure effective canonical momentum in a specific gauge.

Remember canonical momentum is always an "observable" just not unique.
"Mechanical" momentum remains about zero.

Other applications: spin-Hall physics

Theory: "spin" dependant forces

Geometry

References
[1] Shi-Liang Zhu et al., PRL 97240401 (2006)

New approaches for controlling cold atoms

We have been working on controlling terms in the kinetic energy.

Not discussed today
Control of m^{*} :
From 1 to ∞, and negative

Synthetic vector potential

$$
\hat{H}=\sum_{j}\left[\frac{\hat{p}_{j}^{2}}{2 m}+V\left(x_{j}\right)\right]+\sum_{i<j} U\left(x_{i}-x_{j}\right)
$$

Synthetic electric field
Momentum double well

Our References
[1] Experiment: Y.-J. Lin et al, PRL 102130401 (2009)
[2] Electric field: in preparation
[3] Theory: IBS (Submitted to PRA)

Next experimental step: spatial gradients (in progress)

Adiabatic manipulation of atoms

(1) Stabilize external magnetic fields and gradients (reduce unwanted heating and stabilize dressed state)
(2) Phase and intensity lock Raman coupling lasers (stabilize dressed state)
(3) Make dressed state actually dark (our system has both D1 and D2 excited states, but there exists a "real" dark state configuration detuned between D1 and D2)

System

Start with a 2D BEC

Add Raman fields and a spatial gradient to create an effective magnetic field

Next experimental step: spatial gradients (in progress)

Adiabatic manipulation of atoms

(1) Stabilize external magnetic fields and gradients (reduce unwanted heating and stabilize dressed state)

(2) Phase and intensity lock Raman coupling lasers (stabilize dressed state)
(3) Make dressed state actually dark (our system has both D1 and D2 excited states, but there exists a "real" dark state configuration detuned between D1 and D2)

System

Start with a 2 D BEC

Add Raman fields and a spatial gradient to create an effective magnetic field

Monday, May 11, 2009

