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The concept of critical current plays a fundamental role in 
several superfluid phenomena. 

Examples:

- Landau critical velocity for  breaking of superfluidity
and onset of viscous effects. 
Fixed by excitation spectrum: 

• phonons, rotons, vortices in BEC superfluids
• single particle gap in BCS superfluids

- Critical current in Josephson junctions. 
Fixed by quantum tunneling



New experimental possibilities available in ultracold atomic
gases (new trapping conditions, tuning of scattering length):

- Motion of macroscopic impurities (laser beam) 
has revealed the onset of heating effect (MIT 2000)

- Double well potentials are well suited to explore 
Josephson oscillations (Heidelberg 2004)

- Moving periodic potentials allow for the investigation
of Landau critical velocity as well as for dynamic
instability effects (Florence 2004, MIT 2007)

GENERAL QUESTION:

How is the superfluid flow affected by the presence of an
external perturbation (barrier or periodic potential ?)



(MIT 2000)

Critical velocity
several factors
smaller than
central 
sound velocity



JOSEPHSON (PLASMA)
OSCILLATION

Double well
(Heidelberg 2004)

Only condensate
coherently tunnels 
through the barrier

Periodic potential
(Firenze 2001)



Energetic ad dynamic instability in the presence
of moving periodic potential
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Energetic instability of a Fermi gas in a moving periodic potential

• With respect to Florence experiment, lattice
produced in central region
(local measurement of critical velocity )

• Onset of dissipation more evident
than in previous MIT exps with BEC

• Observed Landau velocity closer
to sound velocity



Plan of the talk

Landau’s criterion of superfluidity: summary and application to 2007 MIT exp

Hydrodynamics and LDA: we use a hydrodynamic scheme in the local density 
approximation (LDA) to obtain an analytic expression for the critical current as 
a function of the barrier height or the lattice intensity, which applies to both Bose 
and Fermi superfluids.

Many-body theories: we compare the results of LDA with  those of Gross-
Pitaevskii and Bogoliubov-de Gennes equations.

We compare the LDA with the opposite quantum regimes and discuss the 
conditions required to observe Josephson phenomena.

Comparison with experiments with moving optical lattices



Landau’s critical velocity
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- Landau’s criterion for superfluidity (metastability):
fluid moving with velocity smaller than critical velocity cannot decay
(persistent current). Assumption: driving potential does not affect 
dispersion of elementary excitations.  

- In ideal Bose gas and ideal Fermi gas one has 

- In interacting gases one predicts two asymptotic behaviors:

Dispersion law of 
elementary excitations

BEC (Bogoliubov dispersion)
(small and positive a)

acvcr ∝=

BCS (role of the gap)
(small and negative a)

)2/exp(/ akpv FFcr π∝Δ=(sound velocity)

0=crv



BEC

(R. Combescot, M. Kagan and S. Stringari 2006)

Dispersion law along BCS-BEC crossover
of an interacting Fermi gas
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unitarity

Fano-Feshbach resonance



Landau’s critical velocity is
highest near unitarity !!
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Do we really understand 2007 MIT experiment? 

The experiment  reveals fast decrease of critical velocity
as a function of the height of the barrier (laser intensity)



Our goal:

establishing an appropriate framework in which critical current can be 
calculated in different situations (bosons vs. fermions and single barrier vs. 
optical lattice)

L

Vmax

d

Vmax



Assumption: the system behaves locally as a uniform gas of density n, with 
energy density e(n) and local chemical potential,  μ(n). 

The density profile of the gas at rest in the presence of  an external potential is 
given by the  Thomas-Fermi relation 

If the gas is flowing with a constant current density j=n(x)v(x), the 
Bernoulli equation for the stationary velocity field v(x) is

The simplest approach:  
Hydrodynamics in Local Density Approximation (LDA)

This equation fixes the density profile, n(x), for any given current j.



The simplest approach:  
Hydrodynamics in Local Density Approximation (LDA)

The system becomes energetically unstable when the local velocity, v(x), at 
some point x becomes equal to the local sound velocity, cs[n(x)]. 

For a given current j, this condition is first reached at the point of minimum 
density, where  v(x) is maximum and cs(x) is minimum.

here the density has a minimum and the local
velocity has a maximum !



The simplest approach:  
Hydrodynamics in Local Density Approximation (LDA)

The same happens in a periodic potential

here the density has a minimum and the local
velocity has a maximum !



To calculate the critical velocity, one needs the equation of state μ(n) of the 
uniform gas! We use a polytropic equation of state:

Bosons (BEC) Unitary Fermions

The simplest approach:  
Hydrodynamics in Local Density Approximation (LDA)

Local sound velocity:

α= (1+β)(3π2)2/3ħ2/2mα=  g = 4πħ2as/m



The simplest approach:  
Hydrodynamics in Local Density Approximation (LDA)

Inserting the critical condition

into the Bernoulli equation

one gets an implicit relation for the critical current: Universal !!
Bosons and 
Fermions in any
1D potential

Note: for bosons through a single barrier this has been discussed by V.Hakim, PRE 55, 285 (1997)



LDA

Bosons in a lattice

Bosons through a barrier

Fermions in a lattice

Fermions through a barrier

Results for the critical
velocity depend on the 
actual equation of state

bosons fermions



LDA

The limit Vmax << μ corresponds to the 
usual Landau criterion for a uniform 
superfluid flow in the presence of a small 
external perturbation, i.e., a critical velocity 
equal to the sound velocity of the gas.

the critical velocity decreases because 
the density has a local depletion and 
the velocity has a corresponding local 
maximum

When Vmax = μ the
density vanishes and the 
critical velocity too.



LDA

Question: when is LDA reliable?

Answer: the external potential must vary on a spatial scale
much larger than the healing length of the superfluid.

For a single square barrier, L
is just its width.

For an optical lattice,  L is of 
the order of the lattice spacing 
(we choose L=d/2). 

For bosons with density n0,  the 
healing length is ξ=ħ/(2mgn0)1/2.

For fermions at unitarity, one has 
ξ ≈ 1/kF, where kF = (3π2n0)1/3

L >> ξ



LDA

Quantum effects beyond LDA become important when 

- ξ is of the same order or larger than L; they cause a smoothing of both 
density and velocity distributions, as well as the emergence of solitonic
excitations (and vortices in 3D).
- Vmax > µ ; in this case LDA predicts  a vanishing current, while quantum 
tunneling effects yield Josephson current.

Quantitative estimates of deviations  from LDA can be obtained by using 
quantum many-body theories, like Gross-Pitaevskii theory for dilute 
bosons and Bogoliubov-de Gennes equations for interacting fermions.



LDA (              ) vs. quantum many-body

Bosons in a lattice

Bosons through a barrier

Fermions in a lattice

Fermions through a barrier
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Bosons (left) and Fermions (right) through single barrier

LkF=4

bosons fermions

L/ξ=1
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L >> ξ : Hydrodynamic flow in LDA



LkF=4

L >> ξ : Hydrodynamic flow in LDA

Fermions through single barrier

Current-phase relation. 
Comparison LDA (lines)  vs.  BdG (points) 
[BdG results from Spuntarelli et al. ,PRL 99, 040401 (2007)]



Bosons (left) and Fermions (right) in a periodic potential 

The periodic potential gives results similar to the case of single barrier
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LDA (              ) vs. quantum many-body



Bosons (left) and Fermions (right) in a periodic potential 
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L >> ξ : Hydrodynamic flow in LDA

L < ξ : Macroscopic flow with
quantum  effects beyond LDA

Role of effective mass 
in Josephson regime (Vmax>> μ)



Periodic potential (bosons)

Bloch band structure.
p = quasi-momentum
pB= Bragg quasi-momentum
ER= p2

B/2m = recoil energy
Vmax=sER = lattice strength

Energy density vs. quasi-momentum

Lowest Bloch band 
for same gn0=0.4ER
and different s

Curvature at p=0 gives 
effective mass: 
e = n0 p2/2m*



Periodic potential (bosons)

Bloch band structure.

Energy density vs. quasi-momentum

In tight-binding limit (Vmax >> µ):

Critical p:  pc=0.5pB

critical velocity is fixed by effective mass: 
vc = (m/m*) ER/qB

m/m* proportional to tunneling rate e-2√s   

Curvature at p=0 gives 
effective mass: 
e = n0 p2/2m*



What about 
experiments? 

BOSONS: Experiments at LENS-Florence
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Weak lattice
(energetic vs. dynamic instability)

L. De Sarlo, L. Fallani, J. E. Lye, M. Modugno, R. 
Saers, C. Fort, M. Inguscio, Unstable regimes for 
a Bose-Einstein condensate in an optical lattice
Phys. Rev. A 72, 013603 (2005)

Strong lattice
(Josephson current regime):

F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. 
Minardi, A. Trombettoni, A. Smerzi, M. Inguscio
Josephson Junction arrays with Bose-Einstein 
Condensates
Science 293, 843 (2001)

L/ξ ≈ 0.7 and Vmax/µ ≈ 10 - 25



What about 
experiments? 

FERMIONS: Experiments at MIT

D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. 
Setiawan, C. Sanner, W. Ketterle
Critical velocity for superfluid flow across the 
BEC-BCS crossover
PRL 99, 070402 (2007)]LkF=0.5
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Problem:  Which density n0?  Which Vmax?

n0

Vext



What about 
experiments? 

FERMIONS: Experiments at MIT

D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. 
Setiawan, C. Sanner, W. Ketterle
Critical velocity for superfluid flow across the 
BEC-BCS crossover
PRL 99, 070402 (2007)]

If  EF is determined by the total 
number of fermions in the trap:
EF/ER ≈ 1   (LkF ≈ 1.6)BdG theory

Expt

LDA



What about 
experiments? 

FERMIONS: Experiments at MIT

D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. 
Setiawan, C. Sanner, W. Ketterle
Critical velocity for superfluid flow across the 
BEC-BCS crossover
PRL 99, 070402 (2007)]

If  EF is by the density at e-2 beam waist: 
EF/ER ≈ 0.5   (LkF ≈ 1.1)BdG theory

Expt

LDA
With both choices of Fermi energy 
significant discrepancies between 
theory and  MIT data. 



Conclusions and perspectives

Remaining discrepancy with MIT 07 experiment remains to be
explained: 

- non-uniform nature  of the gas
- 3D nature of geometry
- inadequacy of mean field Bogoliubov de Gennes theory

Repeat MIT 07 experiment (localized laser lattice) with BEC’s (more 
conclusive comparison with GP theory)

Look for more suitable geometrical configurations.  For example
toroidal geometry with rotating barrier would provide new insight on 
criticality of superfluid phenomena (including role of quantum vorticity)



(arXiv:0903.2534)




