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1. WHAT IS BOSE-EINSTEIN CONDENSATION 
(“BEC”)?

What it is NOT: “ (r) 0”

(never true for any system of conserved particles)

What it is (Penrose and Onsager 1956):

Consider single-particle density matrix
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Since Hermitian, can diagonalize:
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If all ni ~ 0 (1), no BEC

If for one and only one i( 0), ni = No ~ N, “simple” BEC

If for more than one i ni ~ N, “fragmented” BEC

For case of “simple” BEC only, define order parameter
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is “superfluid velocity”

curl v 0. v /S s dl nh m

WHY IS BEC SO UBIQUITOUS 
AND ROBUST?
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WHY IS BEC SO ROBUST?

1. No restrictions: compare “simple BEC” in |0 or |1 with 
“fragmented” (FR) state of |0 and |1 with

o = 1 single-particle energy
KE SBEC = KE FR, but in general (for contact pot Uo (r))

2. Nontrivial restriction to 2 states (e.g. decay of flow in annulus: 
here |0 = const. ( ), |1 = exp i )

Compare:

2 2
int

1 (2 ) | ( ) | | ( ) |
2 ijo i j i j

ij
E U n n r r dr

int intfo 0,r 
GPo FR

U E E

1
0 10 1

1

2

2
1

( ) ( ) | ,

| ,
| |

| |

on n
Fock

N
P

o
G o

n n N

n

n

a a vac

a a vac

Again,

2 2 2

*
1

1

,  but

( ) | | | ( ) | | | | (

( ) ( ) 2Re * ( ) ( )

GP Fock

Fock o

GP Fo k oc

KE KE

r N r

r r d

2

r

r

r

) |

r

if small perturbation V(r) added, can make E GP < E Fock
by appropriate choice of  * (“single-particle” effect)
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WHY IS BEC SO ROBUST? (cont.)

2a. Nontrivial restriction to 2 states, but no “single-particle”
purturbation: (for contact particle Uo (r))

unless A and B both zero (or path cancellation).

can always choose to make Eint GP( )< Eint Fock.

3. Fermi case. (Cooper pairing)

BCS (“simple BEC-like”) state with COM momentum 
Q is

Consider:

This is an equal-weight superposition of

O.P. (r) in real space inhomogeneous

by arguments similar to Bose case, always disfavored 
relative to BCS with same value of | (r)|2.
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2. RIGOROUS THEOREMS ON BEC
(interacting system)

1. Existence at T=0
3D free space, perturbation theory starting from 

noninteracting gas convergent: Gavoret and Nozieres 1965
hard-core lattice gas at half filling: Kennedy et al. 1988.

2. Existence at T 0
infinite-range interaction: Toth, Penrose 1992
short-range interactions: Lieb and Seiringer 2001

3. Nonexistence at T 0
free space, d 2: Hohenberg 1967
many extensions to partially finite geometrics, etc.

4. Upper Bound on f No/N
Hohenberg’s lemma: (general for velocity-independent 

interactions):
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~0.71
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RIGOROUS THEOREMS ON BEC, cont.

( ) 3 1/3/ const ( )o
c ST T nac

5. Perturbation theory (nonrigorous!) suggests repulsive 
interactions increase Tc = specifically, (3D free space)

(e.g. Baym et al. 2000)

QUESTION: Can we derive an upper bound on f which is tighter 
than the Hohenberg-derived one, and in particular tends to 
the free-gas value for interaction 0?

ANSWER: Yes, at least for a simple model of interactions. 
(A.J.L., New Journal of Physics 3, 23 (2001))

Model: N spinless bosons in vol. , N, , 
N/ const. n.

Interaction:

Method:

Consider free energy  ˆ( )( exp / )B NF N k T nTr H kT

1 ( ), ( ) 0,2 i j
ij

V Vr r r r

(i) Derive (f-independent) upper limit on F. (Fmax)

(ii) Derive (f-dependent) lower limit on F. (Fmin (f))

(iii) Then Fmin (f) Fmax upper bound on f.

(Assume, for simplicity only, that condensation is
“simple” and occurs in k = 0 state)
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RIGOROUS THEOREMS ON BEC, cont.

Step 1: Upper bound on F(N)

From “Hartree-Fock” variational ansatz,
1 (0)ˆˆ ˆexpN o Nz H

KE only
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Step 2: Lower bound on F(N)

Principle: F(N, , T) cannot be less than Fo(N(1–f), , 
T), otherwise we could construct a density matrix 
which does better for the noninteracting gas with N(1–f) 
particles than the standard one

Proof: apply to true density matrix
operator   
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RIGOROUS THEOREMS ON BEC, cont.

†ˆ ˆˆ ˆTechnically:  trial NY Y

KE unchanged (since o 0)

Entropy unchanged (1 1 mapping)

PE, originally, 0, is identically zero for noninteracting system

( (1 ), , ) ( , , )trial
oF N f T F N T

But, if                                           , we have found a better
density matrix for N(1–f) particles than the “trivial” one 

( (1 ), , )trial
o oF F N f T

(1 )
1 ˆˆ exp !oN f Z H

Thus,

min( , , ) ( (1 ( )), , )oF N T F N f T F f

*Technical complication: ˆˆ[ , ] 0.  See paper.N oN

To create trial density matrix for noninteracting gas of 
N(1–f) N–No particles, start with exact density matrix of N 
particles and remove all the particles in the condensate, 
leaving rest unchanged.*
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RIGOROUS THEOREMS ON BEC, cont.

We have proved:

(i) F(N, , T) Fo(N, , T) + NnVo

(ii) F(N, , T) Fo(N(1–f), , T)

Thus,

( (1 ), , ) ( , , )o o oF N f T F N T NnV

free energy of noninteracting gas

This is an implicit limit on f. To make it explicit, need to bound 
LHS below by an explicit function of f (messy but straightforward).

Final result: ( )( )o
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MANIFESTATIONS OF “SUPERFLUIDITY” (Spinless Bose 
system)

(relevance: “supersolidity” of solid 4He)

Necessary conditions

Manifestation BEC Repulsion

NCRI X

Persistent super-currents

stable
Vortices:

metastable

X

Josephson effect X

General form of free energy of BEC system in rotating container:

In solid 4He TO experiments, max(t)/ c~ 0·8–30
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