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1. WHAT IS BOSE-EINSTEIN CONDENSATION
(“BEC”)?

What it is NOT: “(y (r)) # 07
(never true for any system of conserved particles)

What it is (Penrose and Onsager 1956):

Consider single-particle density matrix
pr,r':t)= Idrz...drN\P *(r,..ry HY(@r,..r, :t) (r,=r,r/ =1

= (v (O ()
Since p Hermitian, can diagonalize:
pr.r'it)=2 n(Oy (r:0)x,(x':1)
Ifalln.~ 0 (1), no BEC
If for one and only one i(=0), n, = N_ ~ N, “simple” BEC

If for more than one i n, ~ N, “fragmented” BEC

For case of “simple” BEC only, define order parameter

W(r ) =N, (0) 1, (1) <= 1, (r0) | exp igp(r1)
then

ve(re) = %Vgp(n‘) [ Contrast:
i velogit v, (1) =i(r)/ p(r)
1S Supcriiuld veloCIty » Zn-v(ﬂ-(l‘)

—> curl vy =0. fvs -dl =nh/m
= curl v, (r) # 0]

WHY IS BEC SO UBIQUITOUS
AND ROBUST?
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Wiy 1s BEC so RoBUST?

1. No restrictions: compare “simple BEC” in |0) or |1) with
“fragmented” (FR) state of |0) and [1) with

8 = 81 smgle particle energy
(KE)SBEC = (KE), but in general (for contact pot’ U_d(r))

1
(Ew)=5U2 mn,2=6)] | 2()F| 2, (") dr

— for U, >0, <Eint>Gp < <Eint>FR

2. Nontrivial restriction to 2 states (e.g. decay of flow in annulus:
here |0)= const. (¢), |1) = exp ip)

Compare:

Y, . =) (a’ )" |vac), ny+n =N

laf=n,
Y., E(aa +,Ba1) |vac), :
Bl =mn
Again,

(KE) ., =(KE),, ., but
PN o =N{ @ Pl 2, () +| BP0}

(P gp = (P o+ 2Re{ @ * B 15 (r) 1, ()l |

= if small perturbation V(r) added, can make (E)p < (E)g,q
by appropriate choice of a*p (“single-particle” effect)
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WHY 1S BEC sO ROBUST? (cont.)

2a. Nontrivial restriction to 2 states, but no “single-particle”

purturbation: (for contact particle U_d(r))

< 1nt>GP(A§D) < 1nt>F0ck - NUO Re{AeiA(o + Bezm(/)},

arg (1*[3

A=2lal B1I(1a Pl 2, () P+ BP0 P) 2, () (rdr,
B=4|a | B 2(r) p (r)dr

—unless A and B both zero (or path® cancellation).

can always choose Ag to make (E._ ) p(A®)<(E. ) rock-

3. Fermi case. (Cooper pairing)

BCS (“simple BEC-like™) state with COM momentum
Q 1S N/2

Voes =(3 0z p) v
Consider:

V=[S dapay) (£ d0aa,,ivae)

This is an equal-weight superposition of

N/2
LIJGP (Ap)= (% {CIgO)a;Ta KT elA(ka(makTG_H i}j | vac)

=0.P. ¥(r) in real space inhomogeneous

—by arguments similar to Bose case, always disfavored
relative to Wy with same value of |'P(r)|2.
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2. RIGOROUS THEOREMS ON BEC
(interacting system)

. Existence at T=0

3D free space, perturbation theory starting from
noninteracting gas convergent: Gavoret and Nozieres 1965
hard-core lattice gas at half filling: Kennedy et al. 1988.

. Existence at T #0

infinite-range interaction: Toth, Penrose 1992
short-range interactions: Lieb and Seiringer 2001

. Nonexistence at T # 0

free space, d <2: Hohenberg 1967
many extensions to partially finite geometrics, etc.

. Upper Bound on f = NQ/N

Hohenberg’s lemma: (general for velocity-independent
interactions):

()2

3D free space = e Y

msz
h2k?

-1

2

[(l_—]})mJSV(Tc(O)/T)

(0)
(Roepstorff (1978): v = 2) = T
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RIGOROUS THEOREMS ON BEC, cont.

5. Perturbation theory (nonrigorous!) suggests repulsive
interactions increase T _ = specifically, (3D free space)

AT, /T =const (nag,)l/ 3
(e.g. Baym et al. 2000)

QUESTION: Can we derive an upper bound on f which is tighter

than the Hohenberg-derived one, and in particular tends to
the free-gas value for interaction = 0?

ANSWER: Yes, at least for a simple model of interactions.
(A.J.L., New Journal of Physics 3, 23 (2001))

Model: N spinless bosons in vol. Q, N, Q—o0,
N/Q — const. = n.

1
Interaction: ZZ Vir,-r), V(r)z0, Vr
ij

Method:
Consider free energy F(N)(=—k,T (nTr, exp—H /kT)
r (1) Derive (f~independent) upper limit on F. (F

max)

A

(1) Derive (f~-dependent) lower limit on F. (F . (f))
(i) Then F_; (f) <F . = upper bound on /.

(Assume, for simplicity only, that condensation 1s
“simple” and occurs in k = 0 state)
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RIGOROUS THEOREMS ON BEC, cont.

Step 1: Upper bound on F(N)

From “Hartree-Fock™ variational ansatz,

Py =z"exp—pH, =p

T
KE only
= F(N)<F,(N) il NaV,+Q7'Y Vo <nk><nk.>)
2 kzk'
T T
“Hartree” “Fock”

since V' (r)=>0,V, <V ,Vk V.=[ V(r)dr
— F(N,QT)<F(N,QT)+NnV =F.

Step 2: Lower bound on F(N)

Principle: F(N, €, T) cannot be less than F_(N(1-/), €2,
T), otherwise we could construct a density matrix ,Oj(v"(lt“;‘;)

which does better for the nomnteractmg gas with N(1-)

particles than the standard one pj(vo()l Y

Proof: apply to true density matrix Py
operator ¥ =(a, )" (N )72, ie, ...
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RIGOROUS THEOREMS ON BEC, cont.

To create trial density matrix for noninteracting gas of
N(1-/)=N-N, particles, start with exact density matrix of N

particles and remove all the particles in the condensate,

leaving rest unchanged.*
(Technically: P, =Yp Y T)

’

KE unchanged (since ¢, = 0)

A

Entropy unchanged (I — 1 mapping)

PE, originally, > 0, 1s identically zero for noninteracting system
\

— F"d(N(1- £),Q,T)< F(N,Q,T)

But, if F"™ <F (N(1- f),Q,T), we have found a better
density matrix for N(1—f) particles than the “trivial” one

IbN(l—f) =Z "exp— :Bﬁo !

Thus,

F(N,Q,T)ZF;(N(l—f),Q,T)EFmin(f)

*Technical complication: [p,, N,]#0. See paper.
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RIGOROUS THEOREMS ON BEC, cont.

We have proved:

(i) FN,Q, T)<F (N, Q, T)+NnV,

(1) F(N, Q, T) > F (N(1-/),

Thus,

Q,T)

F;(N(l—f),Q,T)—F;(N,Q,T)SNI/IVO

\

/

free energy of noninteracting gas

This is an implicit limit on . To make it explicit, need to bound
LHS below by an explicit function of /' (messy but straightforward).

Final result: (T >

Limiting cases:

T(O))

0

T=T": f <const. [ &
(const. =2-2)

nV
— % 1 _
kT

C

T /T <1:

i

(const. =3-3)

f < const.

kT

1/3
V j
j3/2]2

(0)
T£

T




MANIFESTATIONS OF “SUPERFLUIDITY” (Spinless Bose

Repulsion

system)
(relevance: “supersolidity” of solid “He)
Necessary conditions
Manifestation BEC

NCRI v X
Persistent super-currents v v

stable v X
Vortices:

metastable v v
Josephson effect v X
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General form of free energy of BEC system in rotating container:

el

ﬁ/mR2EcoC
7
o(t)

In solid “He TO experiments, o . (t)/o_~ 0-8-30

max
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