

2030-14

Conference on Research Frontiers in Ultra-Cold Atoms

4 - 8 May 2009

Swimming in the Fermi sea

CHEVY Frederic Ecole Normale Superieure Laboratoire Kastler Brossel 24 Rue Lhomond F-75231 Paris Cedex 05 FRANCE

Swimming in the Fermi Sea

F. Chevy, R. Combescot, C. Mora (Paris), C. Lobo and A. Recati (Trento) Laboratoire Kastler Brossel, Ecole normale supérieure, Paris

BCS theory and beyond

BCS theory describes weakly attractive spin ½ fermions. Meanfield theory, pairing at the surface of Fermi Sea (Cooper pairs).

Extension of the BCS model

- Strongly attractive fermions (BEC-BCS crossover)
- Pairing between different species (Atom mixture, eg LiK)
- Spin>1/2 (Color superfluidity)
- Imbalanced spin populations (MIT-Rice)

Ex: Superconductors in magnetic fields Quark matter Ultra cold atoms

Fermionic superfluid with population imbalance

Chandrasekar and Clogston: robustness of the paired state : $\mu_{\uparrow} > \mu_{\downarrow}$

Paired state stable for $\mu_{\uparrow} - \mu_{\downarrow} < \Delta$

And beyond?

Polarized phase : One spin species (Carlson, PRL 95, 060401 (2005))

FFLO Phase (Fulde Ferrell Larkin Ovshinikov) : pairing in $\mathbf{k}_{\uparrow} - \mathbf{k}_{\downarrow} \neq 0$ (C. Mora et R. Combescot, PRB **71**, 214504 (2005))

Sarma phase (internal gap) : pairing in $\mathbf{k}_{\uparrow} - \mathbf{k}_{\downarrow} = 0$ opening of a gap in the Fermi sea of majority species. (Liu, PRL **90**, 047002 (2003))

Experimental results at Feshbach resonance

MIT: 3 phases

Fully paired superfluid core
Intermediate mixture
Fully polarized rim

M.W. Zwierlein, *et al.*, Science, **311** (2006) 492. Rice: 2 phases Fully paired superfluid core Fully polarized rim

A

B Martin Contraction Contraction

G.B. Partridge, W. Li , R.I. Kamar, Y.-A. Liao, R.G. Hulet, Science, **311** (2006)

503.

Unitary thermodynamics (Or why you should'nt be afraid of working at a=@ T.-L. Ho, Phys. Rev. Lett. **92**, 090402(2004))

Balanced Fermi gas

Dimensional analysis: $\mu = E_F f(1/k_F a)$ At unitarity, $a = \infty \Rightarrow \mu = E_F f(0) = \xi E_F$

Measurement of by time of flight

Release energy

$$E_{R} = E_{Kin} + E_{Int} = \sqrt{\xi} E_{R}^{0}$$

ENS experiment, $\boxtimes \sim 0.41(15)$, compatible with other experimental measurements, and theoretical calculations (Monte-Carlo $\boxtimes \sim 0.42$, BCS $\boxtimes \sim 0.59$).

Rice : 2 phase model (F. Chevy, PRL 96, 130401 (2006))

Rice experiment: fully described by a 2 phase model, without any adjustable parameter.

Surface tension

(T. N. De Silva and E. Mueller, PRL., 97 070402 (2006))

Local density approximation: _ _ _ _

 $F_s = \gamma S_{\text{interface}}$ (1st order transition)

$$\gamma = \varepsilon \frac{\hbar^2 n^{4/3}}{2m}$$

 $\varepsilon \approx 10^{-3}$ Fit of data: With surface tension: -

What about other phases.

Grand potential $\Rightarrow = -PV \Theta$ ground state has the highest pressure.

Theoretical evidence for an intermediate phase

General properties of a mixed branch?

Step 1: calculate the energy E of a single impurity atom immersed in a Fermi sea ($E=O_{\psi}(n_{\psi}=0^{+})$).

Step 2: $dP/dO_{\sigma}=n_{\bullet} \odot$

Variational upper bound for ≈ _Q the Fermi swimmer

One impurity: restrict the effect of interactions to the formation of a *single particle-hole pair*.

For a=@, E=-0.606 $E_{F^{\uparrow}} \cup \eta_{\beta} < -0.606 < \eta_{c} \sim -0.1$

Comparison with exact results : \mathfrak{M}_{Q} =-0.58(1) (*C. Lobo et al.* PRL. **97**, 200403 (2006)); \mathfrak{M}_{Q} =-0.62 (Prokof'ev and Svistunov, Phys. Rev. B **77**, 020408 (2008)) Systematic expansion R. Combescot and S. Giraud, Phys. Rev. Lett. **101**, 050404 (2008)

Structure of the intermediate phase (Combescot et al.PRL 98, 180402 (2007))

Ideal gas of fermionic impurities dressed by particle-hole pairs

 $E(p) = \eta_{\beta} E_F + p^2 / 2m^*$

Variational calculation: $\eta_{\beta} = -0.6$ $m^* \sim$

Comparison with experiment: Shell radii and critical polarisation

If polarisation $(N_{\uparrow}-N_{\downarrow})/(N_{\uparrow}+N_{\downarrow})$ is to large : superfluid core vanishes

See also Martin Zwierlein's talk

BEC regime: Breakdown of the variational approach

First signature: divergence and sign change of the effective mass for 1/k_Fa~1.7.The variational ansatz is no longer a good approximation of the ground state**O***NewAnsatz required*

Prokof'ev and Svistunov: change of nature of the swimmer at $1/k_Fa=0.9$: Sharp transition between a fermionic (polaron) and bosonic (molecule) swimmer.

Can we interpret this transition in the variational picture?

BEC variational Ansatz

Work in the two channel model Advantage: introduces explicitely the bosonic molecular state

$$H = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma} \sum_{\mathbf{k}} \left(\frac{\varepsilon_{\mathbf{k}}}{2} + E_{b} \right) b_{\mathbf{k}\sigma}^{\dagger} b_{\mathbf{k}} + \sum_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k},\mathbf{k}'} \left(b_{\mathbf{k}+\mathbf{k}'}^{\dagger} a_{\mathbf{k}\uparrow}^{\dagger} a_{\mathbf{k}\downarrow\downarrow}^{\dagger} + b_{\mathbf{k}+\mathbf{k}'} a_{\mathbf{k}\uparrow}^{\dagger} a_{\mathbf{k}\downarrow\downarrow}^{\dagger} \right)$$

a_{ad}=1.18 a, free atom-dimer scattering length: Mean field correction of a point-like boson of mass 2m

Conclusion et future directions

What was demonstrated?

3 stable phases (at least) in the phase diagram of the polarized Fermi gas.
2 phases+Surface tension effects at Rice (Elongated trap? Fewer atoms? Metastability?)

Related issues

Reason for the Rice/MIT disagreement Real variational calculation of the molecular state

Comparison with experiments (A. Schirotzek et al. arXiv:0902.3021)

Application to the zero temperature tricritical point

 SF_0 : fully paired superfluid SF_P : polarized superfluid N_{PP} : Polarized normal fluid N_{FP} : Fully polarized normal fluid

Tricritical point: Normal-superfluid transition goes from *first to second* order

(Pilati and Giorgini, Phys. Rev. Lett. 100, 030401 (2008))

The Bose swimmer and the Tricritical point

Far in the BEC regime: partially polarized superfluid=Fermi sea+weakly interacting BEC of molecules.

$$E(N_{B}, N_{F}) = \frac{3}{5}N_{F}E_{F} + \frac{g_{bb}N_{B}^{2}}{2V} + \frac{g_{bf}N_{B}N_{F}}{V}$$

Homogeneous system thermodynamically stable for $2^2E/2N_{\odot} N_{\eta} > 0$. For N_B $\rightarrow 0$, system stable for:

$$\frac{1}{k_{F}a} > \frac{m_{F}M_{B}}{2\pi\mu^{2}} \frac{a_{BF}^{2}}{a_{BB}a} \qquad \qquad a_{BF} = 1.2a \\ a_{BB} = 0.6a \\ M = 2m_{F} \end{cases} \Rightarrow \left(\frac{1}{k_{F}a}\right)_{c} = 1.7$$
(O reduced mass)

 a_{BF} and a_{BB} known for any mass ratio (Petrov et al.): can be used for any atomic mixture – Li-K for instance (stable for 1/k_Fa>2.9).