

2030-27

Conference on Research Frontiers in Ultra-Cold Atoms

4 - 8 May 2009

Ultracold polar molecules

OSPELKAUS SCHWARZER Silke

JILA

National Institute of Standards and Technology NIST and Department of Physics University of Colorado at Boulder, 80309-0440 Boulder CO U.S.A.

Preparing an ultracold gas of polar molecules

Silke Ospelkaus JILA, NIST and University of Colorado, Boulder

Kang Kuen Ni Marcio Miranda Deborah Jin Brian Neyenhuis Dajun Wang Avi Pe'er Joshua Zirbel

Jun Ye

Theory support: Svetlana Kotochigova and Paul Julienne

Outline

- Why make ultracold polar molecules?
- The challenge and our approach
- Properties of polar molecular gas
- Outlook

Ultracold atomic quantum gases

Strongly correlated systems

- Superfluidity in Fermi gases
- Quantum phase transitions with fermions / bosons in optical lattices

Bose-Einstein condensation Fermi gases

http://jilawww.colorado.edu/~jin/publications/ images/3Dview-white-9_001.jpg

http://www.quantum.physik.uni-mainz.de/ bec/gallery/mottadditional1.jpg

....

Interactions are the key!

Atoms:

contact interaction

isotropic short ranged $\delta(R)$

Why polar molecules?

Polar molecules:

Permanent electric dipole moment

Dipole-dipole interaction

- Long-range $\sim 1/R^3$
- Anisotropic
- Tunable

Why polar molecules?

d ~ Bohr magneton

10 000 times stronger!

d ~ Debye

$$\frac{\text{(Debye)}^2}{\text{(Bohr magneton)}^2} \cdot c^2 = 10^4$$

Berkeley, Rb BEC

Stuttgart, Cr BEC

Why polar molecules?

Perpectives with ultracold polar molecules – Quantum physics

Quantum information

(Strong dipolar interactions, long coherence time)

D. DeMille, PRL 88,067901(2001)

Quantum degeneracy

(e.g. BEC/Fermi gases with anisotropic interactions)

Dipolar phase transition

(Condensed matter systems and beyond)

Reviews e.g. M. Baranov, Physics Reports 464, 71-111(2008) G. Pupillo et al., arxiv: 0805.1896 (2008)

Perspectives with ultracold polar molecules – Ultracold chemistry

E. R. Hudson et al., Phys. Rev. A 73, 063404 (2006)

Controlled molecular collisions Ultracold chemical reactions

- Molecules in single quantum states
- precise control of internal and external degrees of freedom

Review: e.g. R.V. Krems, PCCP 10, 4079 (2008)

Ultracold molecules: Precision measurements

- Ultrahigh resolution spectroscopy
- Molecular interferometry

- Search for eEDM
- Time variation of fundamental constants

What are the requirements?

- Single internal quantum state, and long-lived
- Dipolar interaction energy comparable to kinetic energy

$$d^2/R^3 \propto k_B T$$

Need low temperature and high density

a quantum degenerate gas!

Ultracold molecules – a challenge

"A diatomic molecule is a molecule with one atom too many!"

 <u>Arthur Schawlow</u>, co-inventor of laser and pioneer of laser spectroscopy

What has been achieved?

Direct cooling of ground state polar molecules

Stark deceleration

Buffer gas cooling

J. Doyle at Harvard, G. Meijer in Berlin, G. Rempe in Munich, J. Ye at JILA,....

How to make ultracold polar molecules?

Pairing of ultracold atoms

Advantage: Start ultracold (@ few hundred nK).

Challenge: Stay ultracold.

Pairing of ultracold atoms Photoassociation

- Light carries away the binding energy!
- Rovibrational ground state
 polar molecules

- But: Recoil kick (300nK)
- Several vibrational/rotational states
- Low production rate

Estimate: $T=250\mu K$, $n=10^{5}/cm^{3}$, $\rho=10^{-13}$,

DeMille at Yale, Weidemuller in Freiburg/Heidelberg,.....

Pairing of ultracold atoms: Feshbach molecules

Large, weakly bound "Feshbach" molecules created in quantum degenerate gases of atoms.

D.S. Jin, JILA, Boulder BEC of Li₂: R. Grimm, W. Ketterle,

- Least bound vibrational level
- well defined quantum state!
- Weakly bound
- Large and floppy

Dipole moment d=0

Shrink the molecules

Our approach

Non-polar molecules: J. Hecker Denschlag / R. Grimm in Rb₂ and C. Nagerl in Cs₂

KRb dipole moment

Our system

Seeing the trapped Feshbach molecules

Properties of KRb Feshbach molecules

 5×10^4 molecules trapped in an optical potential

J. Zirbel et al., PRA 78, 013416 (2008)

- Expansion energy ~400nK
- $T/T_F = 3$
- Density~10¹²/cm³

Shrink the molecules

Coherent two-photon transfer to the rovibrational ground-state

Control internal degrees of freedom (quantum state)

Challenges:

- Wave function overlap (Franck-Condon Overlap)
- Bridging ~125 THz (~6000K) with a phase coherent laser system

Coherent two-photon transfer to the rovibrational ground-state

Challenges:

- Wave function overlap (Franck-Condon Overlap)
- Bridging ~125 THz (~6000K) with a phase coherent laser system

Coherent two-photon transfer: Wavefunction overlap

Good Franck-Condon for both up and down transitions.

Triplet Singlet Mixing

Coherent two-photon transfer

Challenges:

- Wave function overlap (Franck-Condon Overlap)
- Bridging ~125 THz with a phase coherent laser system

Coherent two-photon transfer

"Frequency ruler"

Frequency comb assisted transfer

Making ground-state polar molecules (STIRAP)

Transfer without heating

Light carries binding energy away 125 THz (6000 K)!

Trapped molecules!

Spectroscopy of the ground state

Stark Spectroscopy

Properties of ground-state polar molecular gas

 4×10^4 rovibrational **ground state polar** molecules trapped in an optical dipole trap

- Temperature ~400nK
- T/T_F=3
- Density ~10¹²/cm³
- ρ=0.01
- Dipole moment ~0.5 Debye
- long lived ($\tau \sim 200$ ms)

Enhancement of phase-space density by 11 orders of magnitude compared to previous results

K. Ni et al, Science 322, 231 (2008), S. Ospelkaus et al., arxiv: 0901.0533(2009)

What next?

 Collisional properties of fermionic ground state polar molecules
 Fermionic Boy

Fermionic Bosonic ⁴⁰K ⁸⁷Rb

$$V(r) = g\delta(\kappa) + \frac{d^2}{r^3}(1 - \cos^2 \theta)$$

Evaporative cooling?

Control of elastic/inelastic collisions?

Conclusions

- Preparation of a near-quantum degenerate gas of polar rovibrational ground state molecules
- Dipole moment 0.566(17) Debye
- Enhancement of phase space density 11 orders of magnitude