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Ultracold atomic quantum gases

T<��� Bose-Einstein condensation
Fermi gases

Strongly correlated systems
� Superfluidity in Fermi 

gases
� Quantum phase 

transitions with fermions / 
bosons in optical lattices

� …
http://www.quantum.physik.uni-mainz.de/

bec/gallery/mottadditional1.jpg

http://jilawww.colorado.edu/~jin/publications/
images/3Dview-white-9_001.jpg



Interactions are the key!

� Atoms:
contact interaction

isotropic 
short ranged �(R)



Why polar molecules?

� Polar molecules:
Permanent electric dipole moment

Dipole-dipole interaction

� Long-range ~1/R3

� Anisotropic
� Tunable
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Why polar molecules?

Atoms Polar molecules

� R
�

R
Magnetic
dipoles

Electric
dipoles

d ~ Debyed ~ Bohr magneton

Berkeley, Rb BEC

Stuttgart, Cr BEC

10 000 times stronger!



Why polar molecules?

Atoms Polar molecules

�
R

Magnetic
dipoles

Electric
dipoles

d ~ Debyed ~ Bohr magneton

Length scale d=1 Debye
add =50000a0

Long-range!

d=1�B:     
add=2.2a0

<< n-1/3

n-1/3=(5000-20 000) a0
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Perpectives with ultracold polar 
molecules – Quantum physics

� Quantum information
(strong dipolar interactions, long coherence time)

D. DeMille, PRL 88,067901(2001)

� Quantum degeneracy
(e.g. BEC/Fermi gases with anisotropic interactions)

� Dipolar phase transition
(Condensed matter systems and beyond)
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Reviews e.g.
M. Baranov, Physics Reports 464, 71-111(2008)
G. Pupillo et al., arxiv: 0805.1896 (2008) 



Perspectives with ultracold polar 
molecules – Ultracold chemistry

Controlled molecular 
collisions 
Ultracold chemical reactions

� Molecules in single quantum  
states

� precise control of internal  
and external degrees of  
freedomE. R. Hudson et al., Phys. Rev. A 73, 063404 (2006) 

Review:  e.g. R.V. Krems, PCCP 10, 4079 (2008)



Ultracold molecules: 
Precision measurements

Electronic 
~  


� Ultrahigh resolution
spectroscopy

� Molecular interferometry

� Search for eEDM
� Time variation of 

fundamental constants

Excited 
electronic state

Ground  
electronic state

Vibration ~ me/mp
(mass on a spring)



What are the requirements?

� Single internal quantum state, and 
long-lived

� Dipolar interaction energy comparable 
to kinetic energy

TkRd B�32 /

Need low temperature and high 
density

a quantum degenerate gas! 



Ultracold molecules – a challenge

“A diatomic molecule is a molecule with one atom too many!”

– Arthur Schawlow, co-inventor of laser 
and pioneer of laser spectroscopy
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What has been achieved?
Direct cooling of ground state polar moleculespolar mole

Buffer gas coolingStark deceleration

+

_

Temperature: 1 mK
Densities ~106/cm3

�=10-13

J. Doyle at Harvard, G. Meijer in Berlin, G. Rempe in Munich, J. Ye at JILA,…..



How to make ultracold polar 
molecules?

Advantage:  Start ultracold 
(@ few hundred nK).  

Challenge:  Stay ultracold.

Pairing of ultracold atoms

6000 K



Pairing of ultracold atoms
Photoassociation

laser

� Light carries away the binding
energy!

� Rovibrational ground state
polar molecules

� But: Recoil kick (300nK)
� Several vibrational/rotational 
states

� Low production rate

Estimate: T=250�K, n=105/cm3, �	�
��� �

DeMille at Yale, Weidemuller in Freiburg/Heidelberg,…..



Pairing of ultracold atoms:
Feshbach molecules

D.S. Jin, JILA, Boulder
BEC of Li2: R. Grimm, W. Ketterle, ….

Large, weakly bound “Feshbach”
molecules created in quantum
degenerate gases of atoms.

6000 K

• Least bound vibrational level
• well defined quantum state!
• Weakly bound
• Large and floppy

BEC of K2 Feshbach molecules

Dipole moment d=0



Shrink the molecules

Small, tightly bound, 
polar molecules

+-

Feshbach molecules

6000 K

+-



Our approach

����

Feshbach molecule
creation +

Coherent state transfer
techniques

Negligible dipole moment Significant dipole moment

Preserve phase-space density 
through coherent transfer

Non-polar molecules: J. Hecker Denschlag / R. Grimm in Rb2 and C. Nagerl in Cs2

6000 K



KRb dipole moment

Feshbach molecules����v=0�



Our system

Mixture of 40K and 87Rb
T=300 nK, n=1013/cm3, �=0.2
trapped in an optical potential

40K 87Rb

Weakly bound KRb Feshbach molecules

Binding energy ~ 14�K
Size ~ 300 a0

(size of ground state KRb 7a0)



Seeing the trapped Feshbach 
molecules
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Properties of KRb Feshbach 
molecules

� Expansion energy ~400nK
� T/TF=3
� Density~1012/cm3

� ��	0.01
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5 x 104 molecules 
trapped in an

optical potential

Electric dipole moment = 5 x 10-11 Debye ≈ 0

J. Zirbel et al., PRA 78, 013416 (2008)



Shrink the molecules

Small, tightly bound, 
polar molecules

+-

Feshbach molecules

6000 K

+-



Coherent two-photon transfer to 
the rovibrational ground-state

� Wave function overlap 
(Franck-Condon 
Overlap)

� Bridging ~125 THz 
(~6000K) with a phase 
coherent laser system

Challenges:

6000 K

Control internal 
degrees of freedom

(quantum state)

BEBh �EE	�� )( 12 ��(



Coherent two-photon transfer to 
the rovibrational ground-state

� Wave function overlap 
(Franck-Condon 
Overlap)

� Bridging ~125 THz 
(~6000K) with a phase 
coherent laser system

Challenges:

6000 K



Coherent two-photon transfer:
Wavefunction overlap

Good Franck-Condon for both
up and down transitions.

Triplet Singlet Mixing
(970nm)(690 nm)

v=23



Coherent two-photon transfer

� Wave function overlap 
(Franck-Condon 
Overlap)

� Bridging ~125 THz 
with a phase coherent 
laser system

Challenges:

6000 K



Coherent two-photon transfer

BEh �	�� )( 12 ��

Laser 1

Laser 2

Laser 2Laser 1

“Frequency  ruler”



Frequency comb assisted transfer

Laser 1
970 nm

Beat note 125 THz

frequency

Laser 2
690 nm

frequency

6000 K

time



Making ground-state polar 
molecules (STIRAP)

90 % one-way
80 % round-trip

STIRAP: K. Bergmann et al., Rev. Mod. Phys. 70, 1003(1998)



Transfer without heating

Tv=0=430(20)nK
TFeshbach=400(15)nK

Light carries binding energy away 125 THz (6000 K)!



Trapped molecules!



Spectroscopy of the ground state

Binding energy of X1�0 (v = 0, N = 0 ) 
h x 125.319703(1) THz



Stark Spectroscopy

B=1.1139(1) GHz
d=0.566(17) Debye
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Properties of ground-state polar 
molecular gas

4 x 104 rovibrational ground state polar molecules
trapped in an optical dipole trap

� Temperature ~400nK
� T/TF=3
� Density ~1012/cm3

� �=0.01
� Dipole moment ~0.5 Debye
� long lived (�~200ms)

Enhancement of phase-space density by 11 
orders of magnitude compared to previous 
results

K. Ni et al, Science 322, 231 (2008),  S. Ospelkaus et al., arxiv: 0901.0533(2009)



What next?

� Collisional properties of fermionic ground state
polar molecules Fermionic 

40K
Bosonic 

87Rb

Evaporative cooling?

Control of elastic/inelastic
collisions?

Figure courtesy: 
J. Bohn

Figure courtesy: 
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Conclusions

� Preparation of a near-quantum degenerate gas
of polar rovibrational ground state molecules 

� Dipole moment  0.566(17) Debye

� Enhancement of phase space density 
11 orders of magnitude 




