

2030-1

IAEA

Conference on Research Frontiers in Ultra-Cold Atoms

4 - 8 May 2009

Theory of radio-frequency spectroscopy of ultracold Fermi atoms

G.C. STRINATI Dipartimento di Fisica, Universita' degli Studi di Camerino

Italy

Theory of radio-frequency spectroscopy of ultracold Fermi atoms

G.C. Strinati Dipartimento di Fisica, Università di Camerino (Italy)

"Research Frontiers in Ultra-Cold Atoms" ICTP, Trieste, May 4-9, 2009

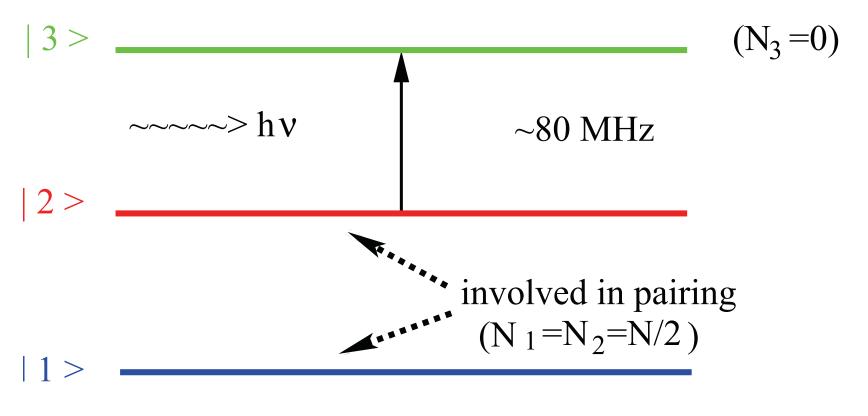
References:

 [1] A. Perali, P. Pieri, and G.C. Strinati, Phys. Rev. Lett. **100**, 010402 (2008): "Competition between final state and pairing gap effects in the radio-frequency spectra of ultracold Fermi atoms" [below T_c]

 [2] P. Pieri, A. Perali, and G.C. Strinati, preprint at http://arxiv.org/abs/0811.0770:
 "Enhanced paraconductivity-like fluctuations in the radio frequency spectra of ultracold Fermi atoms" [above T_c]

Original motivation (from experiments):

Jin (2003), Grimm (2004), Ketterle (2003-2008) Atomic (⁶Li,⁴⁰Na) energy levels in a magnetic field:



Questions:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_c , pseudo-gap above T_c , ...)?

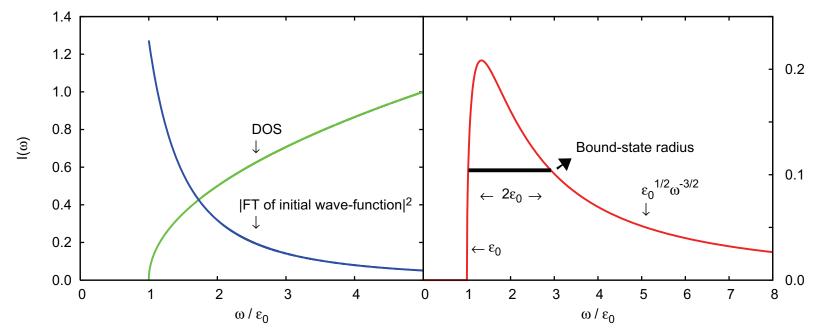
No interaction: $h\nu = \varepsilon_3 - \varepsilon_2$

|1 > and |2 > interact: $h\nu \neq \varepsilon_3 - \varepsilon_2$ (pairing) |1 > and |3 > interact: (final-state effects)

2) To what extent final-state effects affect the RF spectra ?

Learning from the molecular calculation (Chin & Julienne - 2005):

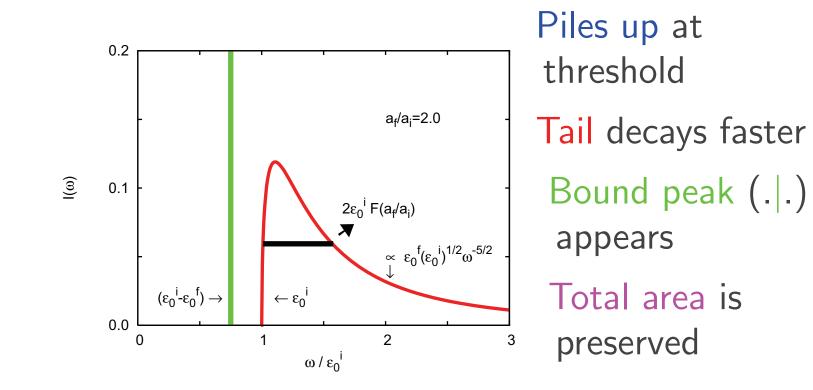
When $a_f = 0 \implies$ RF spectrum \propto density of final states \times |FT of initial wave function|²



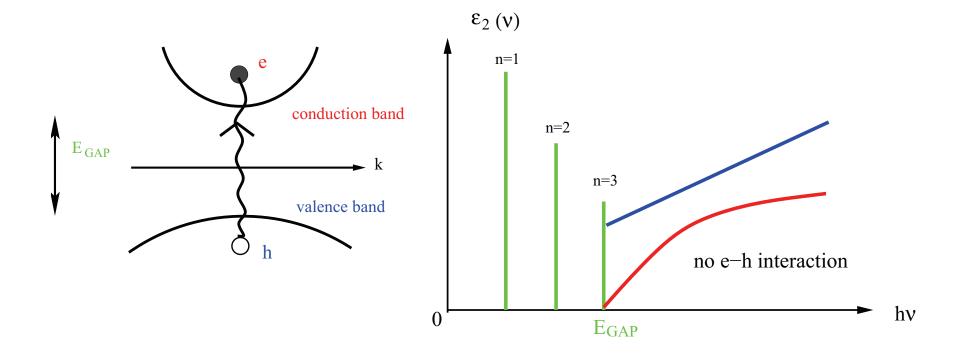
⇒ extract binding energy from threshold & bound-state radius from width of half-maximum

590

When $a_f \neq 0 \implies$ RF spectrum:

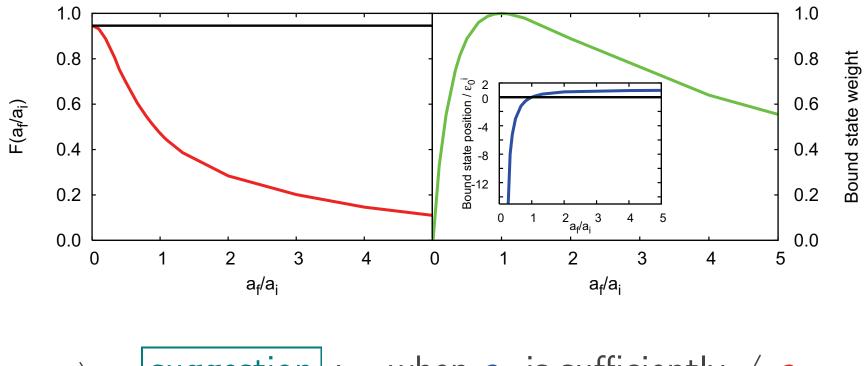


Analogy with Excitonic Effect in Semiconductors:



 $\implies \text{competition between finite-gap} (\longrightarrow) \text{ and}$ $\text{excitonic} (\longleftarrow) \text{ effects } !$

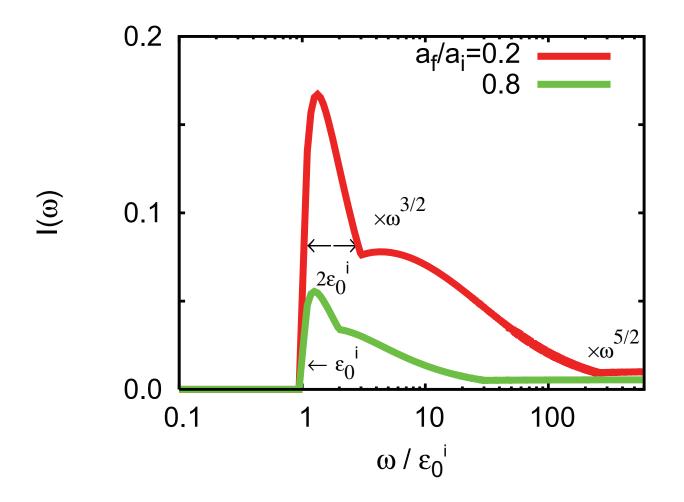
Characteristics of molecular spectra:



suggestion : when a_f is sufficiently $\neq a_i$

• The position of the bound peak recedes away from threshold

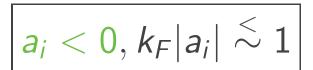
• A frequency window opens up in the continuum, where the spectrum "resembles" the one with $a_f = 0$!



Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T?

In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:



BCS limit of Cooper pairs

$$0 < a_i, k_F a_i \stackrel{<}{\sim} 1$$

BEC limit of composite bosons

 $(k_F = \text{Fermi wave vector related to } n)$

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

 $I_N(\omega) = N_{mol} I_0(\omega)$ (N_{mol} = number of molecules) For the many-body system, N_{mol} is obtained as:

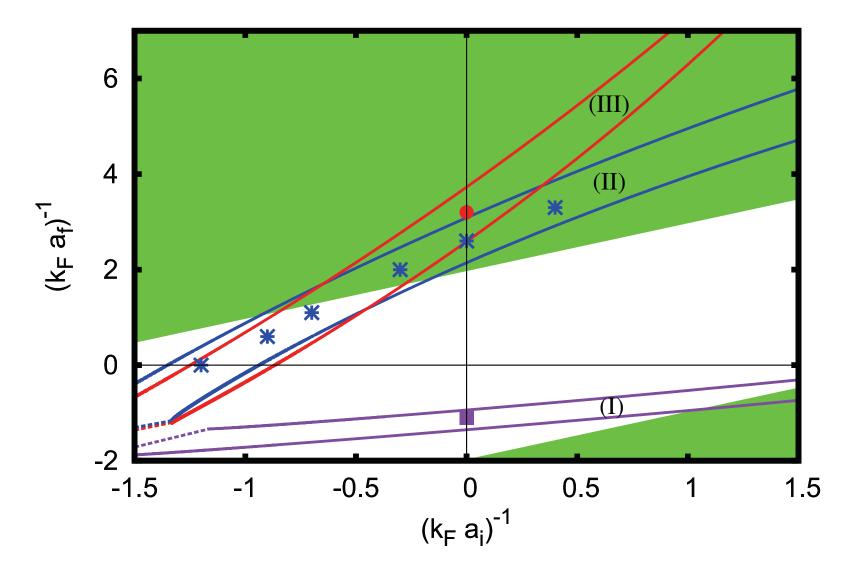
 $N_{
m mol} \approx N_0 \ ({
m condensate}) \ for \ T \ll T_c$ $N_{
m mol} \approx N' \ ({
m non-condensate}) \ for \ T \approx T_c$

⇒ different "many-body diagrams" are expected to be important in the two temperature regimes ! Use this as a criterion to "classify" the theory work on many-body RF spectra:

Group (year)	a _i	a _f	N ₀	N′
Törma (2004)	yes	no	yes	no
Griffin (2005)	yes	no	yes	no
Levin (2005)	yes	no	yes	no
Bruun & Stoof (2008)	yes	no	yes	no
Yu & Baym (2006)	yes	yes	yes	no
Strinati (2008)	yes	yes	yes	no
Mueller (2008)	yes	yes	yes	no
Levin (2009)	yes	yes	yes	no
Strinati (2009)	yes	yes	no	yes

< ロ > < 回 > < 国 > < 国 > < 国 > < 国 > < < 回 <

Experimental coupling plane for ⁶Li:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ④ ∧ ⊙

The system Hamiltonian (⁶Li):

Deal with "broad" Fano-Feshbach resonances.

- Bare contact interaction v_{12} between spins "1" and "2" \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_i$ (initial-state effects)
- Bare contact interaction v_{13} between spins "1" and "3" \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_f$ (final-state effects)
- Bohr frequency $\omega_{32} = \varepsilon_3 \varepsilon_2$ between "bare" atomic levels 3 and 2
- Two chemical potentials: $\mu \leftrightarrow \text{ common to spins "1" and "2" } (N_1 = N_2)$ $\mu_3 \leftrightarrow \text{spin "3" } (N_3 = 0)$

What does an RF experiment measure?

 $\frac{dN_3(t)}{dt}$ as induced by the perturbing Hamiltonian:

$$H'(t) = \gamma \int d\mathbf{r} \, e^{i(\mathbf{q}_{RF} \cdot \mathbf{r} - \boldsymbol{\omega}_{RF} t)} \, \psi_3^{\dagger}(\mathbf{r}) \psi_2(\mathbf{r}) + h.c.$$

 $\mathbf{q}_{RF} \approx 0$ and $\omega_{RF} =$ frequency of RF radiation.

$$\frac{dN_3(t)}{dt}$$
 is related to the current operator:

$$I(t) = i[H'(t), N_3]$$

= $-i\gamma \int d\mathbf{r} e^{i(\mathbf{q}_{RF}\cdot\mathbf{r}-\omega_{RF}t)} \psi_3^{\dagger}(\mathbf{r})\psi_2(\mathbf{r}) + h.c.$

Within linear-response theory . . .

... one ends up with the (retarded $\leftrightarrow R$) spin-flip correlation function:

$$\Pi^{R}(\mathbf{r},\mathbf{r}';t-t') = -i\theta(t-t')\langle [B(\mathbf{r},t),B^{\dagger}(\mathbf{r}',t')]\rangle$$

where $B(\mathbf{r},t) = e^{iKt}\psi_{2}^{\dagger}(\mathbf{r})\psi_{3}(\mathbf{r})e^{-iKt} \implies$

the RF spectrum is given by

$$I(\omega_{th}) = -2\gamma^2 \int d\mathbf{r} \, d\mathbf{r}' \, \mathrm{Im}\{\Pi^R(\mathbf{r},\mathbf{r}';\omega_{th})\}$$

where $\omega_{th} = \omega_{RF} + \mu - \mu_3$ is a "theoretical" detuning frequency.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● ● ● ●

Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

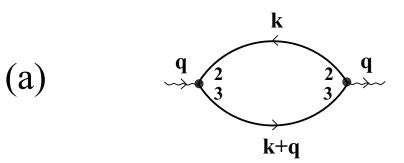
$$\Pi(\mathbf{r},\mathbf{r}';\omega_{\nu}) = \int_{0}^{\beta} d\tau \, e^{i\omega_{\nu}\tau} \\ \times \langle T_{\tau} \left[\psi_{2}(\mathbf{r}',0)\psi_{2}^{\dagger}(\mathbf{r}',\tau^{+})\psi_{3}(\mathbf{r},\tau)\psi_{3}^{\dagger}(\mathbf{r}',0^{+}) \right] \rangle$$

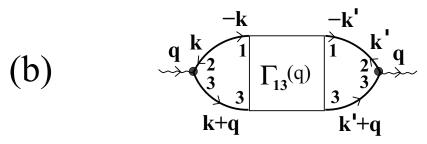
where $\omega_{\nu} = 2\pi\nu/\beta$ [ν integer and $\beta = (k_BT)^{-1}$] and $T_{\tau} =$ imaginary time-ordering operator \implies analytic continuation in the complex ω_{th} -plane. A quite difficult part of the whole story ! (\leftrightarrow sometimes recourse to Padé approximants)

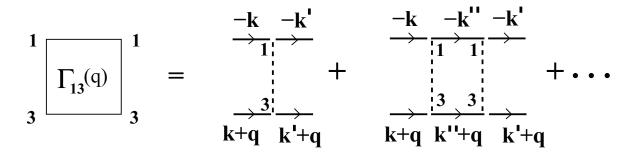
Hierarchy of approximations below T_c :

- $a_i = 0, a_f = 0 \implies$ non-interacting atoms RF spectrum is a delta spike at $\omega_{RF} = \omega_{32}$ take this as the "reference frequency" \implies $\omega_{exp} = \omega_{RF} - \omega_{32}$
- $a_i \neq 0, a_f = 0 \implies$ atom in initial state "2" correlates with its mate in "1" within the BCS approximation \implies RF spectrum is obtained from the BCS bubble

BCS & BCS-RPA diagrams below T_c :

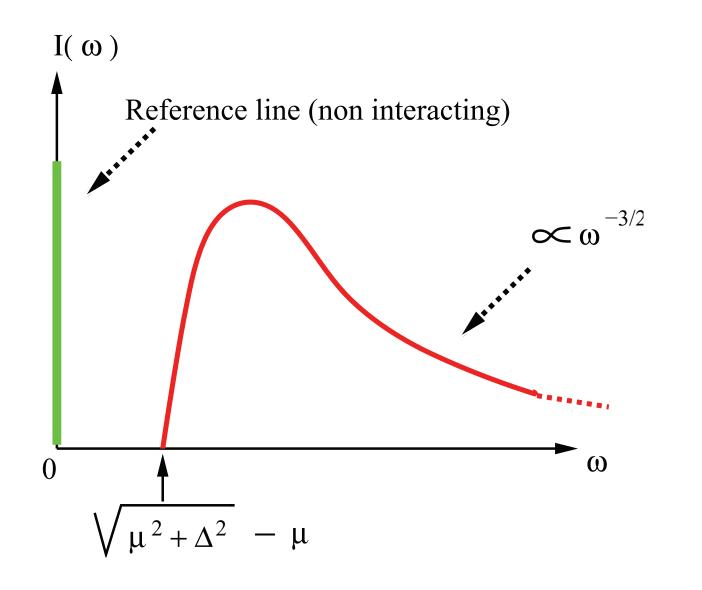






▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

RF spectrum from BCS bubble at T = 0:



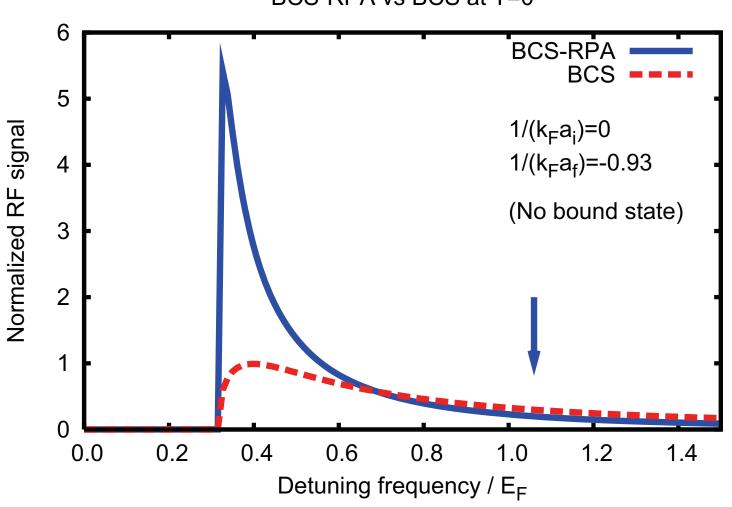
< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > < 回 > < < の < ()

Hierarchy of approximations below T_c : (II)

- $a_i \neq 0, a_f \neq 0 \implies$ in addition, atom in final state "3" interacts with atom left behind in state "1" \implies the RF spectrum is obtained from the BCS-RPA series
- In both cases (BCS & BCS-RPA), in the BEC limit we get:

$$N_{\rm mol} \leftrightarrow N_0 = \text{Volume} \times \left(\frac{m^2 a_i}{8\pi}\right) \Delta_{BCS}^2$$

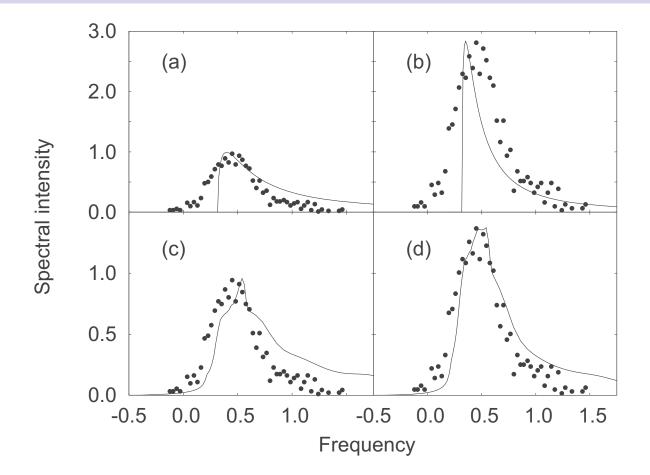
RF spectrum from BCS-RPA at T = 0:



BCS-RPA vs BCS at T=0

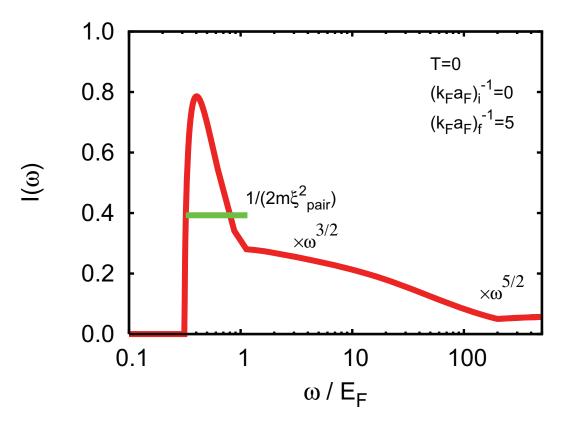
◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Comparison with experiments below T_c :



 $(k_F a_i)^{-1} = 0$ $(k_F a_f)^{-1} = -1.32$ $T \approx 0.5 T_c$ [Exp. data: Fig.2(d) of PRL **99**, 090403 (2007)]

When a_f is quite different from a_i :



- "Pair size" from width of half-maximum [Ketterle & al., Nature **454**, 739 (2008)]
- Energy scale Δ_{BCS} (or Δ_{∞} see below) from "intermediate-frequency plateau"

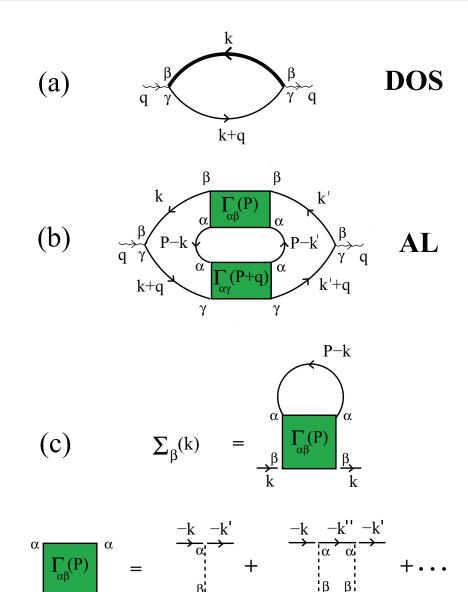
The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \implies for atoms "2" interacting with atoms "1"

$$\sum_{2}(k) = -\int dq \, \Gamma_{21}(q) \, \mathcal{G}_{1}(q-k)$$

• $a_i \neq 0, a_f = 0 \implies \text{RF spectrum is obtained}$ from the DOS (density-of-states) diagram

DOS & AL diagrams above T_c :

β



<u>→ · → →</u> k+P k''+P k'+P ∢ロ▶ ∢⊡▶ ∢≣▶ ∢≣▶ ≣ ∽੧<♡ Hierarchy of approximations above T_c : (II)

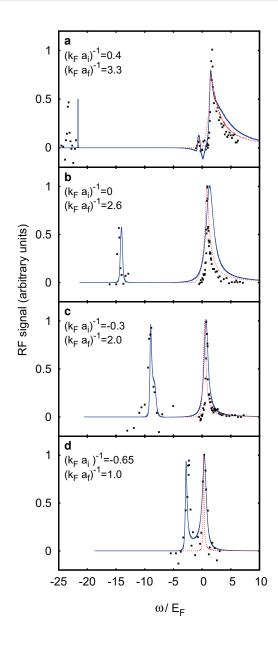
- $a_i \neq 0, a_f \neq 0$ \implies RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators: $\Gamma_{21} (\leftrightarrow a_i)$ and $\Gamma_{31} (\leftrightarrow a_f)$
- AL diagram requires use of Padé approximants !
- In both cases (DOS & AL), in the BEC limit:

$$N_{\rm mol} \leftrightarrow N' = \text{Volume} \times \left(\frac{m^2 a_i}{8\pi}\right) \Delta_{\infty}^2$$

with
$$\Delta_{\infty}^2 = \int dq \, e^{i\omega_{
u}\eta} \, \Gamma_{21}(q)$$

• Definition of Δ_{∞} holds for arbitrary couplings.

Comparison with experiments for $T \approx T_c$:



$$\frac{1}{k_F a_i} = 0.4 \quad \frac{1}{k_F a_f} = 3.3 \quad (*)$$

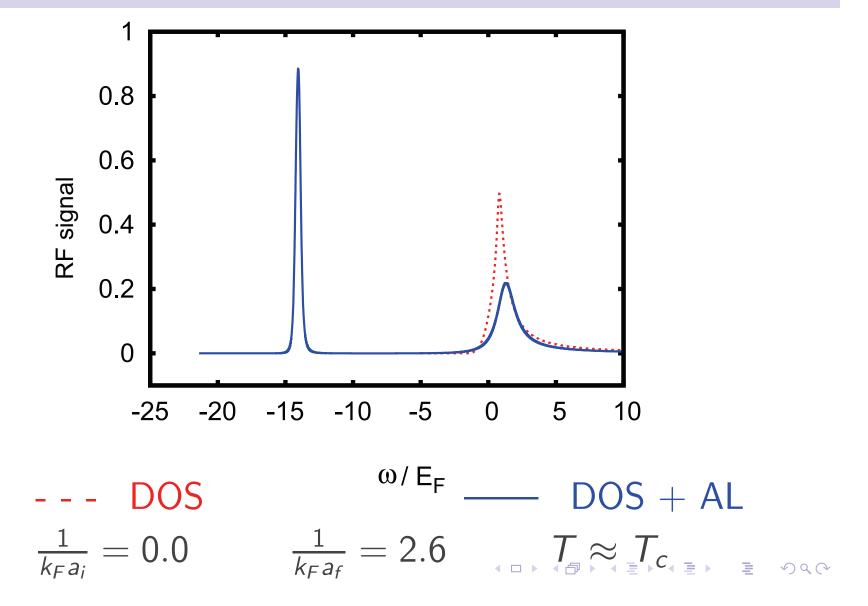
$$\frac{1}{k_F a_i} = 0.0 \quad \frac{1}{k_F a_f} = 2.6 \quad (*)$$

$$\frac{1}{k_F a_i} = -0.3 \quad \frac{1}{k_F a_f} = 2.0 \quad (*)$$

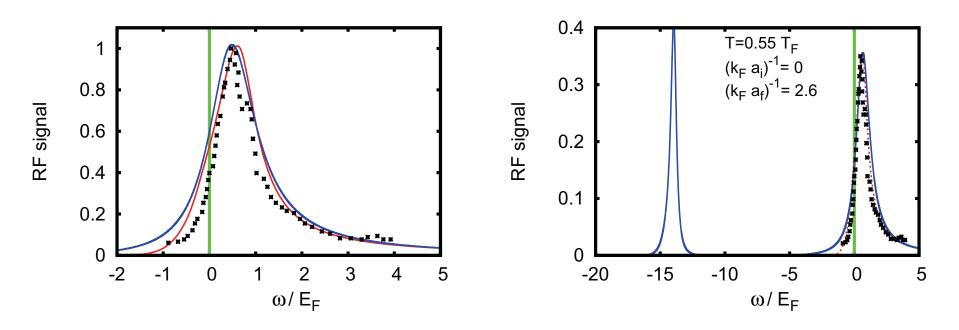
$$\frac{1}{k_F a_i} = -0.65 \quad \frac{1}{k_F a_f} = 1.0 \quad (*)$$
[Exp. data from Fig.4 of Nature **454**, 739 (2008)]

うくで

Comparison between DOS and DOS+AL on an absolute scale:



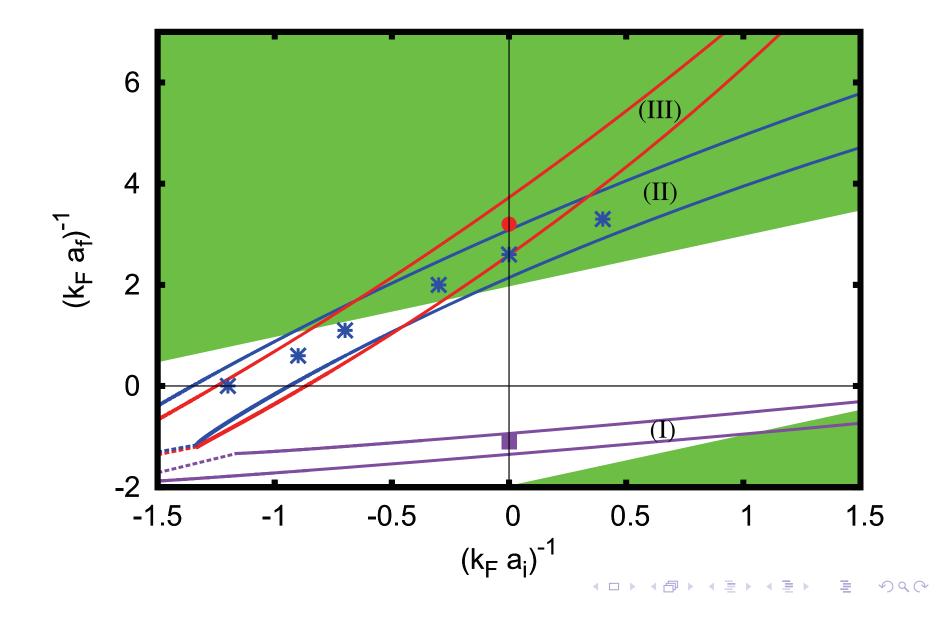
Further comparison with data ($T \approx T^*$):



[Exp. data from Fig.8(d) of arXiv:0808.0026v2 - Ketterle]

 \implies do not forget about the presence of the bound state with DOS+AL !

We are here $(*) \swarrow$:



What do we learn from the RF spectra?

Information about the pair-correlation function: $g_{\uparrow\downarrow}(\mathbf{r}) = \langle \psi_{\uparrow}^{\dagger}(\mathbf{r})\psi_{\downarrow}^{\dagger}(0)\psi_{\downarrow}(0)\psi_{\uparrow}(\mathbf{r})\rangle - \left(\frac{n}{2}\right)^2$

• Small-r behavior:

$$\lim_{\mathbf{r}\to 0}\mathbf{r}^2 g_{\uparrow\downarrow}(\mathbf{r}) = \left(\frac{m\Delta}{4\pi}\right)^2$$

where $\Delta \longleftrightarrow BCS$ gap Δ_{BCS} , or Δ_∞ , or a combination of both.

• Average spatial behavior in terms of

$$\xi_{\text{pair}}^{2} = \frac{\int d\mathbf{r} \, \mathbf{r}^{2} \, g_{\uparrow\downarrow}(\mathbf{r})}{\int d\mathbf{r} \, g_{\uparrow\downarrow}(\mathbf{r})}$$

Conclusions:

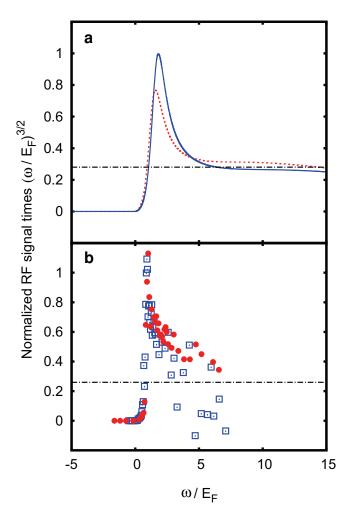
- Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
- There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.
- BCS bubble BCS-RPA diagrams at low T.
- DOS with pairing self-energy AL diagrams above T_c (possibly needed also below T_c).
- Extract from RF spectra information about the pair-correlation function.

Additional material: Extracting Δ_∞ from ''tail'' of RF spectra

In the green region of the coupling plane , it is possible to extract the quantity Δ_∞ from the RF spectra via the following "prescription" :

- Normalize the continuum peak to its own area
- Multiply the resulting spectrum by $\left(\frac{\omega}{E_F}\right)^{3/2}$
- From the intermediate plateau read off the value $\frac{3}{2^{5/2}} \left(\frac{\Delta_{\infty}}{E_F}\right)^2$

An example: $(k_F a_i)^{-1} = 0$ and $T \approx T^*$



--- for
$$(k_F a_f)^{-1} = 2.6$$

- - - for $(k_F a_f)^{-1} = 3.2$
plateau $\frac{\Delta_{\infty}}{E_F} = 0.69^{+0.12}_{-0.16}$
theoret. value $\frac{\Delta_{\infty}}{E_F} = 0.73$

< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 < の < @

On the physical meaning of Δ_{∞} :

In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$n(\mathbf{k}) \approx \frac{(m \Delta_{\infty})^2}{\mathbf{k}^4},$$

to be compared with Shina Tan' result

$$n(\mathbf{k}) \approx rac{C}{\mathbf{k}^4},$$

where *C* is the "contact intensity" that enters several quantities of a Fermi gas in a universal way.

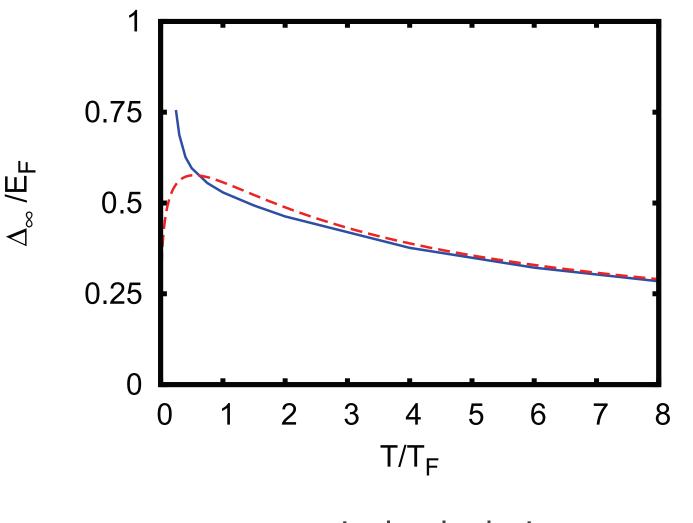
From our theory we identify $C = (m \Delta_{\infty})^2$.

Δ_∞ throughout the BCS-BEC crossover:

- BCS regime : $\Delta_{\infty} = \frac{2\pi}{m} |a_i| n$ for $T \sim (ma_i^2)^{-1}$
- BEC regime : $\Delta_{\infty}^2 = \frac{4\pi n}{m^2 a_i}$ for $T \sim (ma_i^2)^{-1}$
- Unitarity regime for $T \to T_c^+$: $\frac{\Delta_{\infty}}{E_F} \simeq 0.75$

to be compared with the value $0.8E_F$ of the "pseudo gap" extracted from single-particle spectral function.

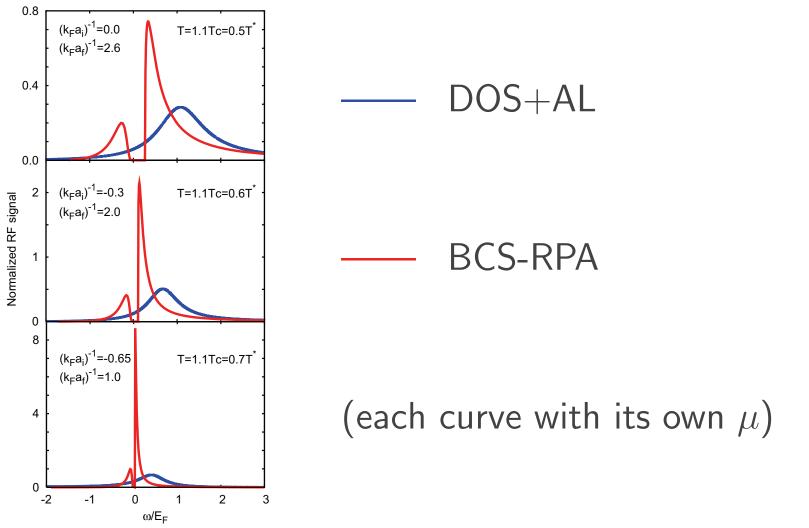
 Δ_{∞} vs *T* at unitarity:



— numerical calculation

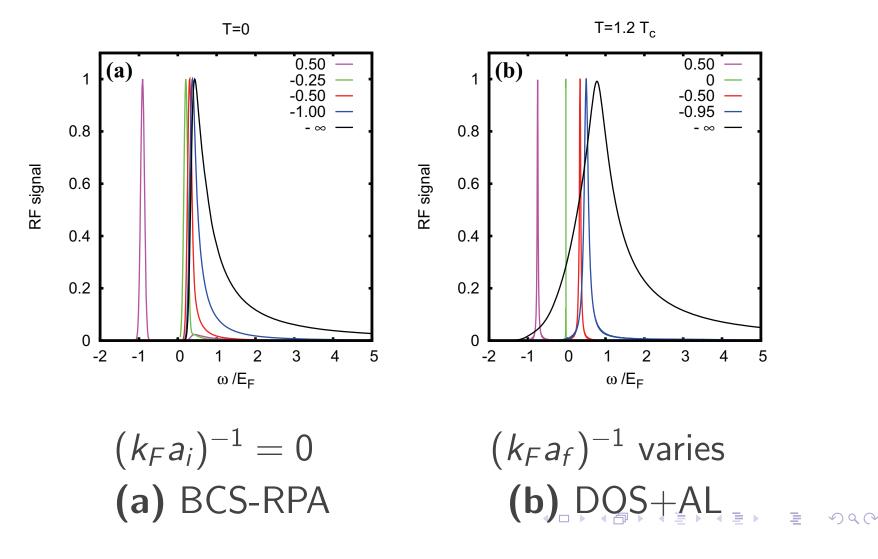
high-temperature expansion

Comparison of DOS+AL with BCS-RPA when $T_c \leq T \leq T^*$:

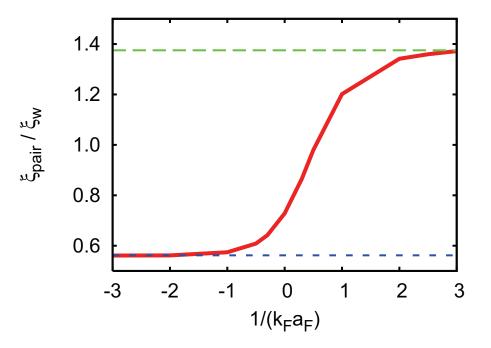


"Gedanken" experiment:

Once theory has been tested to work properly \implies do calculations where experiments cannot be done !



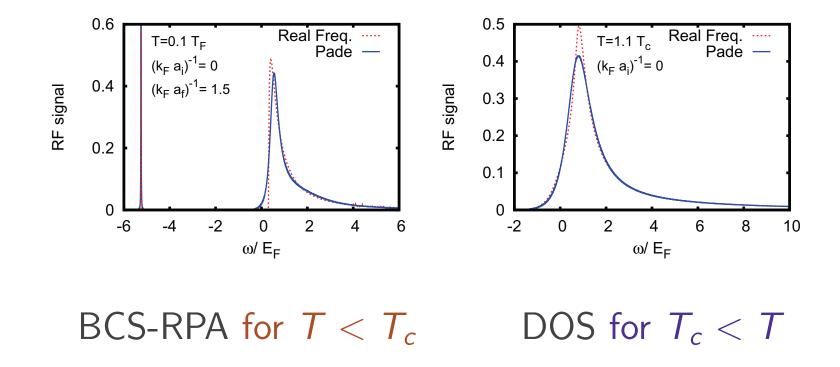
ξ_{pair} vs ξ_w within BCS bubble at T = 0 throughout the BCS-BEC crossover:



• Full width of half-maximum of RF continuum peak = $\frac{1}{2 m \xi_w^2}$

•
$$\xi_{\text{pair}}^2 = \frac{\int d\mathbf{r} \, \mathbf{r}^2 \, g_{\uparrow\downarrow}(\mathbf{r})}{\int d\mathbf{r} \, g_{\uparrow\downarrow}(\mathbf{r})}$$

Checking Padé approximants for RF spectra both below and above T_c :



In both cases, confront with an independent calculation made directly on the real-frequency axis.