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Original motivation (from experiments):

Jin (2003), Grimm (2004), Ketterle (2003-2008)

Atomic (6Li,40Na) energy levels in a magnetic field:

involved in pairing
  (N 1 2=N  =N/2 )

3(N  =0)

~80 MHz~~~~~> hν

| 3 >

| 2 >

| 1 >



Questions:

1) From the shape of RF spectra, is it possible to
extract the value of the “pairing gap” (order
parameter below Tc , pseudo-gap above Tc , · · · ) ?

No interaction: hν = ε3 − ε2

|1 > and |2 > interact: hν �= ε3 − ε2 (pairing)

|1 > and |3 > interact: (final-state effects)

2) To what extent final-state effects affect the RF
spectra ?



Learning from the molecular calculation
(Chin & Julienne - 2005):

When af = 0 =⇒ RF spectrum ∝ density of

final states × |FT of initial wave function|2
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When af �= 0 =⇒ RF spectrum:
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Analogy with Excitonic Effect in
Semiconductors:
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=⇒ competition between finite-gap (−→) and

excitonic (←−) effects !



Characteristics of molecular spectra:
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=⇒ suggestion : when af is sufficiently �= ai

• The position of the bound peak recedes
away from threshold



• A frequency window opens up in the continuum,
where the spectrum “resembles” the one with
af = 0 !
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Single molecule ⇒ many-body system:

Question: How does one extend the molecular
calculation to finite density n and temperature T ?

In this case, by varying ai across a Fano-Feshbach
resonance, one realizes the BCS-BEC crossover:

ai < 0, kF |ai |
<
∼ 1

BCS limit of
Cooper pairs

0 < ai , kFai
<
∼ 1

BEC limit of
composite bosons

(kF = Fermi wave vector related to n)

———— ◦ ———— ◦ ———— ◦ ————>

−1.0 0.0 1.0 (kF ai)
−1



Recovering the molecular RF spectra from
the many-body RF spectra:

In BEC limit, the many-body RF spectrum IN(ω) is
related to molecular RF spectrum I0(ω) as follows:

IN(ω) = Nmol I0(ω) (Nmol = number of molecules)

For the many-body system, Nmol is obtained as:

Nmol ≈ N0 (condensate) for T 
 Tc

Nmol ≈ N ′ (non− condensate) for T ≈ Tc

⇒ different “many-body diagrams” are expected to
be important in the two temperature regimes !



Use this as a criterion to “classify” the
theory work on many-body RF spectra:

Group (year) ai af N0 N ′

Törma (2004) yes no yes no
Griffin (2005) yes no yes no
Levin (2005) yes no yes no

Bruun & Stoof (2008) yes no yes no
Yu & Baym (2006) yes yes yes no

Strinati (2008) yes yes yes no
Mueller (2008) yes yes yes no
Levin (2009) yes yes yes no

Strinati (2009) yes yes no yes



Experimental coupling plane for 6
Li:
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The system Hamiltonian (6
Li):

Deal with “broad” Fano-Feshbach resonances.

• Bare contact interaction v12 between spins “1”
and “2” ⇒ regularize it via the scattering
length a12 ↔ ai (initial-state effects)

• Bare contact interaction v13 between spins “1”
and “3” ⇒ regularize it via the scattering
length a13 ↔ af (final-state effects)

• Bohr frequency ω32 = ε3 − ε2 between “bare”
atomic levels 3 and 2

• Two chemical potentials:
μ ↔ common to spins “1” and “2” (N1 = N2)
μ3 ↔ spin “3” (N3 = 0)



What does an RF experiment measure?

dN3(t)
dt

as induced by the perturbing Hamiltonian:

H ′(t) = γ

∫
dr e i(qRF ·r−ωRF t) ψ†3(r)ψ2(r) + h.c .

qRF ≈ 0 and ωRF = frequency of RF radiation.

dN3(t)
dt

is related to the current operator:

I (t) = i [H ′(t),N3]

= −iγ

∫
dr e i(qRF ·r−ωRF t) ψ†3(r)ψ2(r) + h.c .



Within linear-response theory . . .

. . . one ends up with the (retarded ↔ R) spin-flip
correlation function:

ΠR(r, r′; t − t ′) = −iθ(t − t ′)〈[B(r, t),B†(r′, t ′)]〉

where B(r, t) = e iKtψ†2(r)ψ3(r)e
−iKt =⇒

the RF spectrum is given by

I (ωth) = −2γ2

∫
dr dr′ Im{ΠR(r, r′;ωth)}

where ωth = ωRF + μ− μ3 is a “theoretical”
detuning frequency.



Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara
counterpart of the retarded correlation function:

Π(r, r′;ων) =

∫ β

0

dτ e iωντ

× 〈Tτ

[
ψ2(r

′, 0)ψ†2(r
′, τ+)ψ3(r, τ)ψ

†
3(r

′, 0+)
]
〉

where ων = 2πν/β [ν integer and β = (kBT )−1]

and Tτ = imaginary time-ordering operator =⇒

analytic continuation in the complex ωth−plane.

A quite difficult part of the whole story !
(↔ sometimes recourse to Padé approximants)



Hierarchy of approximations below Tc :

• ai = 0 , af = 0 =⇒ non-interacting atoms

RF spectrum is a delta spike at ωRF = ω32

take this as the “reference frequency” =⇒

ωexp = ωRF − ω32

• ai �= 0 , af = 0 =⇒ atom in initial state “2”

correlates with its mate in “1” within the BCS

approximation =⇒ RF spectrum is obtained

from the BCS bubble



BCS & BCS-RPA diagrams below Tc :
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RF spectrum from BCS bubble at T = 0:

0 ω

Ι( ω )

μ 2 + Δ2 μ−

ω −3/2

Reference line (non interacting)



Hierarchy of approximations below Tc : (II)

• ai �= 0 , af �= 0 =⇒ in addition, atom in

final state “3” interacts with atom left behind

in state “1” =⇒ the RF spectrum is obtained

from the BCS-RPA series

• In both cases (BCS & BCS-RPA), in the BEC

limit we get:

Nmol ↔ N0 = Volume ×

(
m2 ai

8π

)
Δ2

BCS



RF spectrum from BCS-RPA at T = 0:
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Comparison with experiments below Tc :
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When af is quite different from ai :
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Hierarchy of approximations above Tc :

The self-energy Σ(k) with “pairing fluctuations”
plays a crucial role =⇒ for atoms “2” interacting
with atoms “1”

Σ2(k) = −
∫

dq Γ21(q)G1(q − k)

• ai �= 0 , af = 0 =⇒ RF spectrum is obtained

from the DOS (density-of-states) diagram



DOS & AL diagrams above Tc :
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Hierarchy of approximations above Tc : (II)

• ai �= 0 , af �= 0 =⇒ RF spectrum is obtained

from the AL (Aslamazov-Larkin) diagram with

two different pairing propagators:

Γ21 (↔ ai) and Γ31 (↔ af )

• AL diagram requires use of Padé approximants !

• In both cases (DOS & AL), in the BEC limit:

Nmol ↔ N ′ = Volume ×

(
m2 ai

8π

)
Δ2
∞

with Δ2
∞ =

∫
dq e iωνη Γ21(q)

• Definition of Δ∞ holds for arbitrary couplings.



Comparison with experiments for T ≈ Tc :
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Comparison between DOS and DOS+AL
on an absolute scale:
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Further comparison with data (T ≈ T
∗):
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=⇒ do not forget about the presence
of the bound state with DOS+AL !



We are here (∗) ↙ :
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What do we learn from the RF spectra?

Information about the pair-correlation function:

g↑↓(r) = 〈ψ†↑(r)ψ
†
↓(0)ψ↓(0)ψ↑(r)〉 −

(n

2

)2

• Small-r behavior:

lim
r→0

r2 g↑↓(r) =

(
m Δ

4π

)2

where Δ ←→ BCS gap ΔBCS , or Δ∞ , or a
combination of both.

• Average spatial behavior in terms of

ξ2
pair =

∫
dr r2 g↑↓(r)∫
dr g↑↓(r)



Conclusions:

♣ Inclusion of final-state effects is essential for
a correct understanding of the RF spectra of
ultra-cold Fermi atoms.

♣ There exists a competition between
pairing-gap (−→) and excitonic (←−) effects.

♣ BCS bubble
⊕

BCS-RPA diagrams at low T.

♣ DOS with pairing self-energy
⊕

AL diagrams
above Tc (possibly needed also below Tc).

♣ Extract from RF spectra information about
the pair-correlation function.



Additional material: Extracting Δ∞ from
“tail” of RF spectra

In the green region of the coupling plane , it is
possible to extract the quantity Δ∞ from the RF
spectra via the following “prescription” :

• Normalize the continuum peak to its own area

• Multiply the resulting spectrum by
(

ω
EF

)3/2

• From the intermediate plateau read off

the value 3
25/2

(
Δ∞

EF

)2



An example: (kFai)
−1 = 0 and T ≈ T

∗
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On the physical meaning of Δ∞:

In our theory, the wave-vector distribution function
n(k) has the asymptotic behavior (for large |k|)

n(k) ≈
(m Δ∞) 2

k4
,

to be compared with Shina Tan’ result

n(k) ≈
C

k4
,

where C is the “contact intensity” that enters
several quantities of a Fermi gas in a universal way.

From our theory we identify C = (m Δ∞) 2.



Δ∞ throughout the BCS-BEC crossover:

• BCS regime : Δ∞ = 2π
m
|ai |n for T

<
∼ (ma2

i )
−1

• BEC regime : Δ2
∞ = 4πn

m2ai

for T
<
∼ (ma2

i )
−1

• Unitarity regime for T → T+
c : Δ∞

EF

� 0.75

to be compared with the value 0.8EF of the
“pseudo gap” extracted from single-particle
spectral function.



Δ∞ vs T at unitarity:
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Comparison of DOS+AL with BCS-RPA
when Tc ≤ T ≤ T

∗:
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“Gedanken” experiment:

Once theory has been tested to work properly =⇒
do calculations where experiments cannot be done !
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ξpair vs ξw within BCS bubble at T = 0
throughout the BCS-BEC crossover:
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Checking Padé approximants for RF
spectra both below and above Tc :
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In both cases, confront with an independent
calculation made directly on the real-frequency axis.




