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Dirty boson problem (Fisher et al. 1989)

Central topic in condensed matter physics

Quantum
degeneracy

Interaction

Disorder

Important differences compared to the 
metal-insulator transition in Fermi systems



• Insulating – conducting (superfluid)
(Quantum)  phase transition

Natural order parameter (ρs≠0 T<Tc) in contrast to metals
where true phase transition only at T=0 (otherwise a 
crossover).

• Absence of Pauli exclusion
Repulsive interactions crucial in preventing condensation
in the lowest localized single-particle eigenstate of the 
random potential.
No perturbation expansion around non-interacting limit



Liquid 4He in porous media
Reppy and coworkers since 1983

Full pores
Films on vycor

T=0 extrapolation

• Tc is reduced compared to bulk helium

• localization below a critical density



Ultracold gases (Florence-Paris-Rice-Urbana)

Roati et al. (2008)
Localization in 1D 
quasi-periodic lattice

Billy et al. (2008)
Localization in 1D 
speckle potential



Theory of disordered Bose-Hubbard lattice model
numerical studies: Krauth, Trivedi and Ceperley 1991, ….

Commensurability plays
an important role
e.g. disorder can favor superfluidity

Two types of insulator:
i.incompressible Mott phase
ii.compressible Bose glass phase



Outline

• Random potential created by optical speckles

• Superfluid transition in continuous 3D systems

• Thermodynamic behavior and evidence of Bose
glass phase
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Optical speckles

Probability distribution of intensity V
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Autocorrelation function

c = disorder correlation length
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many s.p. bound states in 
typical well of size c

s.p. bound states only in rare wells
of size >> c or depth >> V0

c≈10μm  (Fort et al. 2005-Clément et al. 2005)
c≈0.3μm (Billy et al. 2008) (≈ n-1/3)

Usual speckle patterns are 2D: c 
z >> c

We consider a 3D pattern with the same c in each direction



Connection with δ-correlated disorder

)()()( rrrr ′−=′ γδVV assume Γ(r) gaussian
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Self-averaging

[ ] ∫∫ = )()( )( /1 33 VfVPdVVfrdL r valid for large volumes L3

Example:
TD of a classical non-interacting gas
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typical values L≈20-50 c

Huang and Meng 1992
Lopatin and Vinokur 2002
Falco et al. 2007



Transition temperature: clean system (Pilati et al. 2008)

PIMC simulations for hard- and soft-spheres
finite-size scaling up to N=105 particles

PRL97 Grüter et al. 1997
PRA04 Nho and Landau 2004

[ ])(29.11 3/10 anTT CC +=

Low-density limit
Kashurnikov et al. 2001
Arnold and Moore 2001

More details in Sebastaino’s poster



V0=0

Tc/Tc
0=0.5

Effect of disorder on 
the superfluid behavior



Transition temperature: disordered system

Canonical ensemble
c is fixed : n c

3=0.24 such that n4π c
3/3≈1

For larger values of V0 the dependence on the realization becomes stronger
we perform the calculation in the grand-canonical ensemble



Classical percolation threshold

Mobiliy edge for classical particles:

Accessible volume: ∫
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2D speckles

Φ=30% Φ=50%

3D speckles

%40≅Φc

Experimental: 
Smith and Lobb 1979
Numerical : 
Weinrib 1982

002.0≈≈Φ cc E compare with Φc=0.03 of Swiss-cheese model



Critical chemical potential

• Scaling behavior: weak dependence on T
and interaction  (mobility edge)

• Large effects of quantum localization

Behavior of  OBDM

normal

superfluid



Critical density

nc
0

nc
0

nc
0=2.6(mkBT/2π 2)3/2

For large disorder nc>>nc
0  

→ exotic normal phase (Bose glass?)



Thermodynamics for large disorder strength

c<< n-1/3 disorder is a small perturbation

c>> n-1/3 (ξ=1/√(8πna) at low T) LDA can be applied

000 )0()( VVEVE +==

( )032
0 →cV

T=0 GP equation ( ) ( ))( )()(0 rrr VVgn −−= μϑμ

0

/

0

10

V
gne

V
V +=+ −μμfrom the normalization

condition

00 2    gnV μgn   V =>>• if

• if μ>Ec n0(r)>0 along a percolation path



T≠0 Hartree-Fock
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1) elementary excitations

2) thermal component

3) normalization

At low T lowest excitations live at the border of condensate lakes
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T 4

T 7/2

T 2

GP eq. HF

Evidence of T 2 behavior at low T
Bose glass phase

V0=10kBTc
0

na3=10-6



Conclusions

Critical behavior at the superfluid-normal
transition with correlated disorder

if n c
3≈1 disorder has a large effect

suppression of Tc

quantum localization
Bose glass phase



Thank you for your attention!

The Trento team

Come to visit us!





Finite-size scaling
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Density profiles


