

2030-21

Conference on Research Frontiers in Ultra-Cold Atoms

4 - 8 May 2009

Superfluid transition in a Bose gas with correlated disorder

GIORGINI Stefano BEC Bose Einstein Condensation CNR INFM

Dipartimento di Fisica Universita' degli Studi di Trento Via Sommarive 14 38050 Povo ITALY Superfluid transition in a Bose gas with correlated disorder

Research Frontiers in Ultracold Atoms Trieste, May 4-8 2009

Istituto Nazionale per la Fisica della Materia Research and Development Center on Bose-Einstein Condensation

Dipartimento di Fisica – Università di Trento

Dirty boson problem (Fisher et al. 1989)

Central topic in condensed matter physics

Important differences compared to the metal-insulator transition in Fermi systems

• Insulating – conducting (superfluid)

(Quantum) phase transition

Natural order parameter ($\rho_s \neq 0 \ T < T_c$) in contrast to metals where true phase transition only at T=0 (otherwise a crossover).

• Absence of Pauli exclusion

Repulsive interactions crucial in preventing condensation in the lowest localized single-particle eigenstate of the random potential.

No perturbation expansion around non-interacting limit

Liquid ⁴He in porous media Reppy and coworkers since 1983

- T_c is reduced compared to bulk helium
- localization below a critical density

Ultracold gases (Florence-Paris-Rice-Urbana)

Roati et al. (2008) Localization in 1D quasi-periodic lattice

Billy et al. (2008) Localization in 1D speckle potential

Theory of disordered Bose-Hubbard lattice model

numerical studies: Krauth, Trivedi and Ceperley 1991,

FIG. 3. Superfluid density ρ_s/ρ vs interaction strength U/t in a 10×10 system of density $\rho=1$ and $\beta t=4$. The values of the disorder parameter are V/t=0 (triangles) and 2 (squares).

Outline

- Random potential created by optical speckles
- Superfluid transition in continuous 3D systems
- Thermodynamic behavior and evidence of Bose glass phase

Optical speckles

Probability distribution of intensity V

$$P(V) = \frac{e^{-V/V_0}}{V_0}$$

Autocorrelation function

$$\Gamma(r) = \left\langle V(\mathbf{r'})V(\mathbf{r'}+\mathbf{r})\right\rangle - V_0^2$$

 ℓ_{c} = disorder correlation length

 $\ell_c \approx 10 \mu m$ (Fort et al. 2005-Clément et al. 2005) $\ell_c \approx 0.3 \mu m$ (Billy et al. 2008) (≈ $n^{-1/3}$)

Usual speckle patterns are 2D: $\ell_c^z >> \ell_c$ We consider a 3D pattern with the same ℓ_c in each direction

Connection with δ-correlated disorder

$$\langle V(\mathbf{r})V(\mathbf{r'})\rangle = \gamma \delta(\mathbf{r} - \mathbf{r'})$$
 assume $\Gamma(\mathbf{r})$ gaussian
 $\gamma \propto V_0^2 \ell_c^3$

Huang and Meng 1992 Lopatin and Vinokur 2002 Falco et al. 2007

Self-averaging

 $1/L^3 \int d^3r f[V(\mathbf{r})] = \int dV P(V)f(V)$ valid for large volumes L^3

Example:

TD of a classical non-interacting gas $\frac{E}{N} = \frac{3}{2}k_BT + \frac{\int d^3r V(\mathbf{r})e^{-V(\mathbf{r})/k_BT}}{\int d^3r \ e^{-V(\mathbf{r})/k_BT}} = \frac{3}{2}k_BT + \frac{V_0}{1+V_0/k_BT}$ typical values $L\approx 20-50\ell_c$

Transition temperature: clean system (Pilati et al. 2008)

PIMC simulations for hard- and soft-spheres finite-size scaling up to N=10⁵ particles

More details in Sebastaino's poster

Low-density limit

Transition temperature: disordered system

Canonical ensemble ℓ_c is fixed : $n\ell_c^3=0.24$ such that $n4\pi\ell_c^3/3\approx 1$

For larger values of V_0 the dependence on the realization becomes stronger we perform the calculation in the <u>grand-canonical ensemble</u>

Classical percolation threshold

Accessible volume: $\Phi(E) = \frac{1}{L^3} \int_{V(\mathbf{r}) < E} d^3 r = 1 - e^{-E/V_0}$

Mobiliy edge for classical particles: $\Phi(E_c) = \Phi_c$

$$\Phi_c \cong 40\%$$

Experimental: Smith and Lobb 1979 Numerical : Weinrib 1982

Ф=30%

Ф=50%

3D speckles

 $\Phi_c \approx E_c \approx 0.002$

compare with $\Phi_c=0.03$ of Swiss-cheese model

Critical chemical potential

- Scaling behavior: weak dependence on *T* and interaction (mobility edge)
- Large effects of quantum localization

Critical density

For large disorder $n_c >> n_c^0$ \rightarrow exotic normal phase (Bose glass?)

Thermodynamics for large disorder strength

 $\Box \ \ell_{c} << n^{-1/3} \text{ <u>disorder is a small perturbation</u>} \quad \left(V_{0}^{2} \ell_{c}^{3} \to 0\right)$ $E(V_{0}) = E(V_{0} = 0) + V_{0}$

 \Box $\ell_c >> n^{-1/3}$ ($\xi = 1/\sqrt{(8\pi na)}$ at low *T*) LDA can be applied

T=0 GP equation
$$gn_0(\mathbf{r}) = (\mu - V(\mathbf{r})) \mathcal{G}(\mu - V(\mathbf{r}))$$

from the normalization condition

$$\frac{\mu}{V_0} + e^{-\mu/V_0} = 1 + \frac{gn}{V_0}$$

- if $V_0 >> gn$ $\mu = \sqrt{2gnV_0}$
- if $\mu > E_c$ $n_0(\mathbf{r}) > 0$ along a percolation path

T≠0 Hartree-Fock

1) elementary excitations $\varepsilon(\mathbf{p},\mathbf{r}) = \frac{p^2}{2m} + V(r) - \mu + 2g[n_0(\mathbf{r}) + n_T(\mathbf{r})]$ 2) thermal component $n_T(\mathbf{r}) = \int \frac{d^3p}{(2\pi\hbar)^3} \frac{1}{e^{\varepsilon(\mathbf{p},\mathbf{r})/k_BT} - 1}$ 3) normalization $n = \int d^3r \left[n_0(\mathbf{r}) + n_T(\mathbf{r}) \right]$

At low T lowest excitations live at the border of condensate lakes

$$\varepsilon(\mathbf{p},\mathbf{r}) = \frac{p^2}{2m} + \left| V(r) - \mu \right|$$

their density of states as $\varepsilon \rightarrow 0$

$$g(\varepsilon) \propto \varepsilon^{3/2} \longrightarrow E \propto T^{7/2}$$
 at low T

Evidence of T^2 behavior at low T

Bose glass phase

Critical behavior at the superfluid-normal transition with correlated disorder

if $n\ell_c^3 \approx 1$ disorder has a large effect

- suppression of T_c
- quantum localization
- Bose glass phase

Thank you for your attention!

The Trento team

Come to visit us!

PHYSICAL REVIEW B

VOLUME 20, NUMBER 9

1 NOVEMBER 1979

Percolation in two-dimensional conductor-insulator networks with controllable anisotropy

L. N. Smith^{*} and C. J. Lobb Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (Received 18 January 1979; revised manuscript received 22 May 1979)

The conductivities of two-dimensional conductor-insulator networks generated photolithographically from laser speckle patterns have been measured. Isotropic networks with $\approx 450\,000$ statistically independent units show a percolation threshold $f_c \approx 41\%$ conductor and a critical exponent $t \approx 1.30$. Measurements on anisotropic networks and numerical simulations indicate that either f_c , t, or the size of the "asymptotic region" must vary with the degree of anisotropy.

Finite-size scaling

Density profiles

 $T = 3.2 T_{c}^{0}$

