

2030-25

Conference on Research Frontiers in Ultra-Cold Atoms

4 - 8 May 2009

Bose gas in atom-chip experiment: from ideal gas to quasi-condensate

BOUCHOULE Isabelle

Chargee de Recherche au CNRS Laboratoire Charles Fabry de l'Institut d'Optique Groupe d'Optique Atomique, Campus Polytechnique RD 128, 91127 Palaiseau Cedex FRANCE

Density fluctuations in a very elongated Bose gas : from ideal gaz to quasi-condensate

Isabelle Bouchoule

Institut d'Optique, Palaiseau.

Trieste, May 2009

Physics in 1D gases

- 1D physics very different from 3D : no bec phenomena (no sturation of excited state population)
- Enhanced effect of interactions
- Special case of quantum correlated systems : exact solutions exist
- Chip experiment well suited to study 1D physics

Outline

1 Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas

2 Experimental study of the cross-over towards quasi-bec

- Observation of bunching effect
- Inhibition of bunching in the quasi-bec regime
- Failure of Hartree-Fock theory to explain the transition towards a quasi-bec

3 Other results

4 Conclusion

Outline

1 Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas

2 Experimental study of the cross-over towards quasi-bec

- Observation of bunching effect
- Inhibition of bunching in the quasi-bec regime
- Failure of Hartree-Fock theory to explain the transition towards a quasi-bec

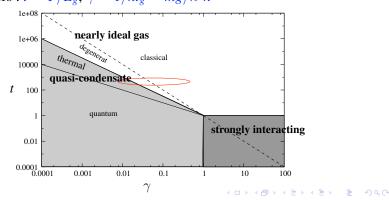
3 Other results

4 Conclusion

1D Bose gas with repulsive contact interaction

$$H = -\frac{\hbar^2}{2m} \int dz \psi^+ \frac{\partial^2}{\partial_z^2} \psi + \frac{g}{2} \int dz \psi^+ \psi^+ \psi \psi,$$

Exact solution : Lieb-Liniger Thermodynamic : Yang-Yang (60') n, TLength scale : $l_g = \hbar^2/mg$, Energy scale $E_g = \hbar^2/2ml_g^2$ Parameters : $t = T/E_g, \gamma = 1/nl_g = mg/\hbar^2 n$



Theory for pure 1D gaz

Experimental study of the cross-over towards quasi-bed

Other results

shot noise

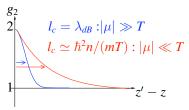
+

bunching

Conclusion

Nearly ideal gas regime : bunching phenomena

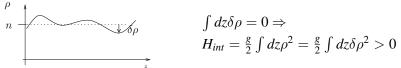
- For each quantum state, Boltzmann distribution \rightarrow particle number fluctuations : $\langle n_k^2 \rangle - \langle n_k \rangle^2 = \langle n_k \rangle$
 - Two-body correlation function $g_2(z)$



- Bunching effect \rightarrow density fluctuations. $\langle n(z) n(z') \rangle = \langle n \rangle^2 g_2(z'-z) + \langle n \rangle \delta(z-z')$
- Bunching : correlation between particles. Quantum statistic

• Classical field
$$\psi = \sum a_k e^{ikz}$$
: speckle phenomena
 $n_k = |a_k|^2 \Rightarrow \langle n_k^2 \rangle - \langle n_k \rangle^2 = \langle n_k \rangle^2$

Crossover towards quasi-condensate



Reduction of density fluctuations at low temperature/high density Cross-over temperature :

$$\frac{1}{N}H_{int} \propto gn \simeq |\mu| \quad \Rightarrow \quad T_{c.o.} \simeq \frac{\hbar^2 n^2}{2m} \sqrt{\gamma}$$

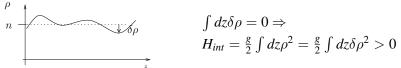
- For $T \ll T_{c.o.}$: quasi-bec regime
- bunching effect killed

$$g_{2}$$

$$2 \qquad \xi = \hbar / \sqrt{mgn} \qquad T > gn$$

$$1 \qquad z$$

Crossover towards quasi-condensate



Reduction of density fluctuations at low temperature/high density Cross-over temperature :

$$\frac{1}{N}H_{int} \propto gn \simeq |\mu| \quad \Rightarrow \quad T_{c.o.} \simeq \frac{\hbar^2 n^2}{2m} \sqrt{\gamma}$$

- For $T \ll T_{c.o.}$: quasi-bec regime
- bunching effect killed

$$g_{2}$$

$$g_{2}$$

$$\xi = \hbar / \sqrt{mgn}$$

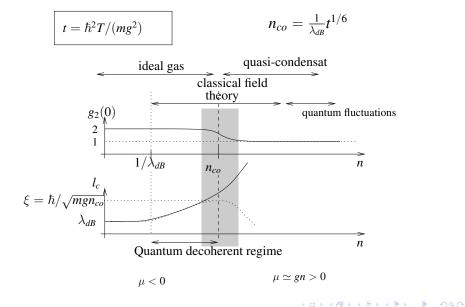
$$T > gn$$

$$T < gn$$

$$z$$

Theory for pure 1D gaz

1D weakly interacting homogeneous Bose gas



One-dimensional gas trapped in a harmonic potential

Competition : Interaction-induced cross-over / finite size BEC • Cross over towards quasi-bec ω small Local density approach $V = 1/2m\omega^2 z^2$ Cross-over : $n(z = 0) = n_{c.o.}$ $N_{c.o.} \simeq \frac{k_B T}{\hbar \omega} \ln \left(t^{1/3} \right)$

Validity of LDA : $l_c \ll L$ At cross-over $\Rightarrow |\hbar\omega \ll (mg^2T^2/\hbar^2)^{1/3}$

• Finite size condensation phenomena at large ω

$$N_c = \frac{k_B T}{\hbar \omega} \ln\left(2T/\hbar \omega\right)$$

• LDA condition in 3D world : $g = 2\hbar\omega_{\perp}a$ for $a \ll l_{\perp} = \sqrt{\hbar/m\omega_{\perp}}$ $\omega \ll \omega_{\perp} (T/\hbar\omega_{\perp})^{2/3} (a/l_{\perp})^{2/3}$

Easily satisfied

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bouhoule et al., PRA 75 031606 (2007)

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas

2 Experimental study of the cross-over towards quasi-bec

- Observation of bunching effect
- Inhibition of bunching in the quasi-bec regime
- Failure of Hartree-Fock theory to explain the transition towards a quasi-bec

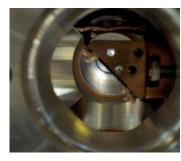
3 Other results

Conclusion

Realisation of very anisotropic traps on an atom chip

Use of a H shape trap

 $I_{1} \downarrow \underbrace{L=2.8 \text{ mm}}_{I_{1}+I_{2}}$ $I_{2} \uparrow A_{B_{ext}}$

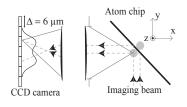


Transverse confinement : $I_1 + I_2 = 3A$ and $B_{ext} = 30G$: $\omega_{\perp} = 2\pi \times 2800Hz$ Longitudinal confinement : $\omega_z \propto (I_1 - I_2)^2 : 6Hz \rightarrow 20Hz$

- ⁸⁷Rb atoms MOT transfered into the magnetic trap (3×10^6 atoms)
- Radio-frequency evaporative cooling
 → T ≃ 200nK ≃ 1.5ħω⊥, N ≃ 5000.

Absorption images

• Imaging geometry



2 pictures taken :

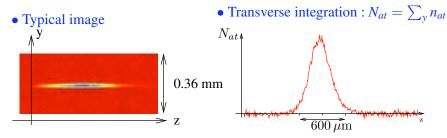
* With atoms and trap still on

* Without atoms (delay of 200 ms)

Atom per pixel : $n_{at} = \frac{\Delta^2}{\sigma} \ln(\frac{I_2}{I_1})$.

Error if variation of density on a scale smaller than pixel size and high optical density

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ



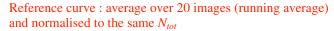
Nat

Noise measurement

A typical curv

Inspired by *Föling et al. Nature* **434**, *481*, M. Greiner et al., PRL **94**, 110401 Statistical analysis over about 300 images taken in the same condition.

Presence of "real" atomic fluctuations



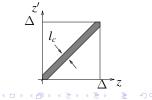
Contribution of photon shot noise substracted

Pixel size : $l_c \ll \Delta \ll L \Rightarrow$ LDA valid

 $L = 600 \,\mu m$

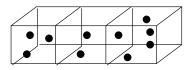
$$\langle N^2 \rangle - \langle N \rangle^2 = \int_{\Delta} \int_{\Delta} \left(\langle n(z)n(z') \rangle - \langle n \rangle^2 \right)$$

= $\langle N \rangle + \langle n \rangle^2 \Delta \int dz (g_2(z) - 1)$



Atom-number fluctuations in an ideal Bose gas

- For each eigenstate : $\langle n^2 \rangle \langle n \rangle^2 = \langle n \rangle + \langle n \rangle^2$
- Many occupied eigenstates



$$\langle N_t^2 \rangle - \langle N_t \rangle^2 = \langle N_t \rangle + \sum_i \langle n_i \rangle^2$$

For G equally occupied states,

$$\left\langle N_{t}^{2} \right
angle - \left\langle N_{t}
ight
angle^{2} = \left\langle N_{t}
ight
angle + rac{1}{G} \left\langle N_{t}
ight
angle^{2}$$

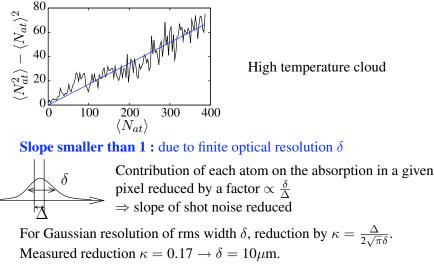
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- To observe bunching : G should not be too high
- Ratio bunching/shot noise : $\langle N_t \rangle / G = psd$

$$G \simeq \left(\frac{T}{\hbar\omega_{\perp}}\right)^2 \frac{\hbar}{\Omega} \text{ for non degenerate gas. } \Omega = \Delta \sqrt{mk_BT}$$

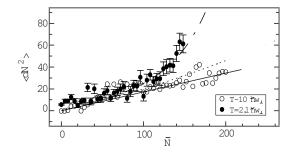
$$G \downarrow \text{ when } \langle N \rangle \uparrow \text{ for a degenerate gas.}$$

Observation of atomic shot noise



Measured resolution : $8\mu m$

Observation of atomic bunching and evidence for quantum decoherent regime



Temperature deduced from longitudinal profile.

Dotted : non-degenerate gas approximation Dashed-dotted : Exact formula

Expected atom number fluctuations in a one dimensional system in quasibec regime

Pixel size Δ much larger than healing length $\xi = \hbar / \sqrt{mgn}$ \Rightarrow Relevant excitations are phonons

Energy of a phonon of wave vector *k* :

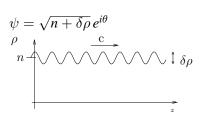
$$H_k = \Delta \left(rac{g}{2} \delta
ho_k^2 + n rac{\hbar^2 k^2}{2m} heta_k^2
ight)$$

Thermodynamic equilibrium :

$$\frac{k_B T}{2} = \Delta \frac{g}{2} \langle \delta \rho_k^2 \rangle \qquad (k_B T \gg gn)$$

Atom number fluctuations :

$$\operatorname{Var} N = \int_{\Delta} \int_{\Delta} \langle \delta \rho(z) \delta \rho(z') \rangle = \int \int \sum_{k} \langle \delta \rho_{k}^{2} \rangle e^{ik(z-z')} = \Delta^{2} \langle \delta \rho_{0}^{2} \rangle$$
$$\Rightarrow \quad \operatorname{Var} N = \Delta \frac{k_{B}T}{g}$$



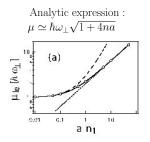
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Expected atom number fluctuations in a nearly one dimensional system in quasibec regime

- $n \ll 1/a$: Purely one dimensional case recovered. $(g = 2\hbar\omega_{\perp}a)$
- *n* of the order or larger than 1/a: Transverse breathing associated with a longitudinal phonon has to be taken into account.

Thermodynamic argument :

$$\operatorname{Var}(N) = k_B T \left(\frac{\partial N}{\partial \mu} \right)_T$$



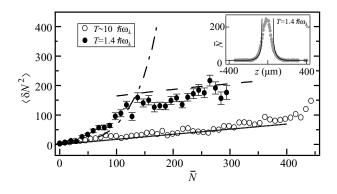
$$\Rightarrow \operatorname{Var}(N) = k_B T \Delta \frac{\sqrt{1 + 4na}}{2\hbar\omega_{\perp} a}$$

In good agreement with a 3D Bogoliubov calculation of Var(N).

イロト 不得 とうほう 不良 とう

ъ

Experimental results in the quasibec regime

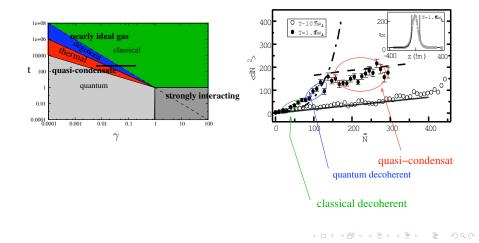


- Temperature fitted from the wings of the profile
- Good agreement with theory for low temperature

Estève et al. PRL 96, 130403

Conclusion on density fluctuations measurement

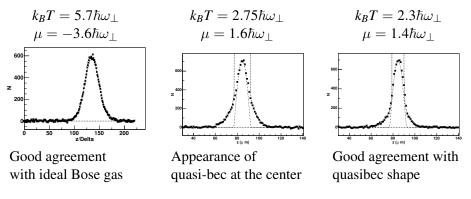
Most features of weakly interacting 1D Bose gases observed



Density profile through the transition towards quasibec

Nature of the transition towards quasi-bec : driven by interactions

In situ density profile by absorption imaging



Wings : ideal Bose gas equation of state Quasi-bec shape : $\mu_{loc} = \mu - m\omega^2 z^2/2 = \hbar\omega_{\perp}\sqrt{1+4na}$

ション 人口 マイビン イビン トロン

Success of Hartree-Fock theory in 3D Bose gases

3D ideal Bose gases : BEC for $\rho_c = 2.612.../\lambda_{dB}^3$ For weak interactions ($\rho a^3 \ll 1$), Mean-field theories accurate. •For $\rho < \rho_c$: Hartree-Fock theory

variational method : non interacting Bosons that experienced V_{eff} .

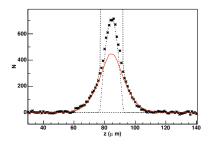
$$\Rightarrow V_{eff}(r) = 2g\rho(r), \qquad g = 4\pi\hbar^2 a/m$$

- ρ_c unchanged
- for a gas trapped in harmonic potential, small shift of N_c (Gerbier et al., Phys. Rev. Lett. 92, 030405 (2004))

• Beyond mean-field

- Validity of Mean-Field (Landau-Ginzburg criteria) : $|T - T_c|/T_c > a\rho^{1/3}$.
- Beyond mean-field effects :
 - small shift of T_c ,
 - change of critical exponent (Donner et al., Sience 315 :1556 (2007)

Failure of Hartree-Fock theory : a quasibec without condensation



Hartree-Fock calculation

*Population in the ground state $N_0/N_{tot} \simeq 3 \times 10^{-3} \ll 1.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The appearance of quasi-bec is not explained by Hartree-Fock theory. First failure of mean field theory in a weakly interacting regime. *J.-B. Trebbia et al. PRL* **97**, 250403 (2006)

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas

2 Experimental study of the cross-over towards quasi-bec

- Observation of bunching effect
- Inhibition of bunching in the quasi-bec regime
- Failure of Hartree-Fock theory to explain the transition towards a quasi-bec

3 Other results

Conclusion

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Other experimental results

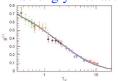
• Phase fluctuations measurement in weakly interacting gases. $\langle \psi^+(z)\psi(0)\rangle = ne^{-mTz/2n\hbar^2}$

Dettmer et al. PRL 87, 160406 (2001), Richard et al. PRL 91, 010405 (2003)

• Quantum phase fluctuations in weakly interacting 1D gas

S. Hofferberth et eal., Nature Physics 4, 489 (2008)

• Strongly interacting 1D gases : fermionization



Kinoshita et al. PRL 95, 190406 (2005)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Outline

Theoretical results on weakly interacting 1D gases

- Homogeneous gases
- harmonically trapped gas

2 Experimental study of the cross-over towards quasi-bec

- Observation of bunching effect
- Inhibition of bunching in the quasi-bec regime
- Failure of Hartree-Fock theory to explain the transition towards a quasi-bec

3 Other results

Conclusion

Prospects

- Study of 1D gases in the strong interaction regime. expected : $\omega_{\perp} = 40$ kHz, n = 1 at/ μ m
- Better imaging system \Rightarrow Higher order of the distribution $\rightarrow g_3$
- Reaching quantum fluctuations
- Study of correlation length of density fluctuations in 1D gases.
 - Correlation between pixels
 - Tomography method
- Study of density fluctuations in 2D gases. Use of rf dressed potentials

Collaborators

Members of the chip experiment Theoreticians collaborators

- Chris Westbrook
- Jérôme Estève
- Thorsten Schumm
- Jean-Baptiste Trebbia
- Carlos Garrido-Alzar
- Julien Armijo

- Karen Kheruntsyan
- Gora Shlyapnikov

Micro-fabrication

- LPN laboratory
- Dominique Mailly