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Few-vortex dynamics:

Two vortices in a 2D trap (Bose condensate)

Few-particle dynamics:

Few-boson localization at lattice edge (Bose-Hubbard model)
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THE FRONTIER OF THE ‘FEW’ \

Few-component systems are severely under-appreciated.

— A new frontier opened up by ultracold atom physics.
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THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS \
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THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS \

Arizona, Brian Anderson’s group

B B
Eoh . Y
S il bb.ﬂ’i oo




THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS \

Sao Paolo, V. Bagnato's group
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THE ‘FEW’ FRONTIER: FEW-PARTICLE EXPERIMENTS
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Repulsively bound atom pairs in an optical lattice
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FRONTIER OF THE ‘FEW’ \
EXPERIMENT \

Difficult to access in traditional condensed matter experiments

THEORY \

Nontrivial phenomena, surprisingly unexplored.
Traditional condensed-matter view: ‘merely’ finite-size effects.

For few-component systems, natural to study far-from-equilibium
situations, or states far from the ground state.



VORTEX DIPOLE

Stationary states.
Conservative

dynamics —
defect trajectories.

Many open questions

Phys. Rev. A 77,
053610 (2008)

VORTEX DIPOLE OR VORTEX PAIR IN A

TRAPPED 2D BOSE-EINSTEIN CONDENSATE

VORTEX PAIR

Precession with
mutual orbiting

VORTEX TRIPLET




WHY VORTEX DIPOLES? I

VD’s appear in many 2D situations.

Normal fluids & superfluids; turbulent

flow; flow over a sharp barrier, ...

Vital for physics of Kosterlitz-Thouless

transitions in 2D.
Probed experimentally, ENS

Fascinating analogies to vortex rings in

3D, solitons in 1D.

Some of our results have analogs in 3D

vortex ring physics.

Created recently
BEC's by sudden perturbation.

Can in principle be created & studied by

phase imprinting.

experimentally in

1
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TIME-DEPENDENT GPE I

o - 192y 4+ W@y + glvl2y

Trap units.

Isotropic (CIRCULAR) 2D trap —

Vir(z,y) = 3(2° + ¢°)

g IS an EFFECTIVE 2D
interaction parameter.

g X g3p X N X Jw;

Conservative dynamics only.

No dissipation.

No temperature.

No quantum depletion or fluctuations



TWO COMPETING EFFECTS I

Vortex dipole in Single vortex in non-uniform
uniform condensate condensate is driven by inhomogeneity.
is self-propelled. o
@
inhomogeneous BEC precession in frap
Fetter, Phys. Rev. 1965 Rokhsar, PRL 1997

VORTEX DIPOLE IN TRAP —
Small distance: mutually driven motion dominates.

LLarge distance: inhomogeneity-driven motion dominates.
Balance — stationary solution.



STATIONARY SOLUTIONS

e Stationary ‘soliton’-like solution at small g. Bifurcation at g = 18.

e For g 2 18, one ‘soliton’ and one vortex-dipole branch.

Energy (trap units)

Similar bifurcations: in 3D (vortex RING instead of vortex dipole); in elongated trap.

- - - -



DYNAMICS (VORTEX TRAJECTORIES); LARGE g |
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Simpler at large g.
g = 150 shown here.
Not periodic (‘almost’).

Trajectories elongated in y
direction.
‘Reflection’ at edges clearer.

Extra features.

Curvatures at outer parts.
Pointy feature at outer edge.
Direction reversal for

large initial xq).



VARIATIONAL FORMULATION |

Lagrangian : L _/ [ (w E_wa?ﬂ*) + vy — Va(r) [¥]° —1ig |"¢|4]

ui = |z = zi|/€

Trial w.f. : b = A(®t) gv(u1)e'” gy(ua)e " fe(|z]?) {915' = tan™' (%)

2D coordinates bundled into complex z = x 4+ iy. Vortex at z;, antivortex at z».
oL d ( OL
Euler-Lagrange equations for z; = x; + 1y;: — = (_)

8:61 895'1

— equations of motion for x1, y1, x2, yo.

Vortex shape function
gv(u): ideally We used gy(u) = u —

gv(ui) € = |z—z1]e = z—2

[z — 21(0)] [2" = 23(8)] fe(|=]?)




‘ VARIATIONAL CALCULATION (1): STATIONARY SOLUTION
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Good phase structure, unreliable (rigid) vortex size.
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INSIGHTS FROM VARIATIONAL CALCULATION (2) - DYNAMICS
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Increasing initial distance
xqg = 221(0).

Each defect revolves
around a stationary point.

This trajectory type occurs
in full GPE solutions.

Not periodic,

additional effects...

Results qualitative only.

LLast trajectory is an
artifact.



TRAJECTORIES; SMALL g I
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g =10 and g = 50.
Many more unexplained features.

VORTEX POSITIONS alone are not
sufficient description.
Additional dynamics possibilities!

E.qg.,

coupling to vortex shape dynamics;
extra defect pairs;

influence of ‘nearby’ soliton-like state.

OPEN ISSUES I

Don't understand all features of
defect trajectories.
Even at large g!!

Do trajectories become periodic in
g — oo limit?
Above some critical g value?

Do trajectories lose features
in g — oo limit?
i.e., become smoother?

Details of reflection, e.qg.,
in elongated condensate.




VORTEX PAIR




EDGE R. Pinto, M. Haque, S. Flach,

LOCALIZATION arXiv:0902.3249 P.R.A, in press

1D Bose-Hubbard model in an OPEN chain (has edges)

R L—1 ; ; U
0= -t (gotae) + 2.

Loy
Z a;a,a;a;5

Consider n =2, 3, 4 bosons.

{ For n > 3 bosons, edge states are stable. J




EDGE-LOCALIZED CONFIGURATIONS \
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‘Stable’ means almost an eigenstate at large U/t.



SITE OCCUPANCIES

TIME EVOLUTION \
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EDGE-LOCALIZATION: SPECTRAL PICTURE (2, 3 BOSONS)
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Bosons in 10-site chain.

Negative-U spectra: U = —10
Left: 2 bosons.

Right: 3 bosons.
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EDGE-LOCALIZATION: SPECTRAL PICTURE (4 BOSONS) I
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EDGE-LOCALIZATION: PHYSICS \

Spectral separation.

Degenerate perturbation theory:

competition between energy shifts at O(t2) and
manifold mixing at O1").

arXiv:0902.3249

‘Collective’ phenomenon, even with n = 3 bosons.

Experimentally observable?

Don’'t know yet. (realizing edge, trap effects...)



DEGENERATE PERTURBATION THEORY \

Degenerate manifold at t/U = 0.
States [j) and |j 4+ 1) connect at O(t").

State |1) acquires different shift at O(t?).

State |2) acquires different shift at O(t%).
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L >= @[, IR>= L.

Edge eigenstates: |[L>+|IR> and IL>+IR>



EDGE LOCALIZATION: MORE BOSONS \

For more bosons, a hierarchy of localization patterns.
n > 5 bosons — can also be bound in site 2

n > 7 bosons — can also be bound in site 3

...etc

Actually, several hierarchies, with other localization patterns:



EDGE LOCALIZATION: OTHER MODELS

Similar localization phenomenon in spinless fermion models:
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THE FRONTIER OF THE ‘FEW’ \

Few-vortex dynamics: Two vortices in a 2D trapped condensate

Few-particle dynamics: localization at lattice edge

Few-component systems are severely under-appreciated.

— A new frontier opened up by ultracold atom physics.
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