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THE FRONTIER OF THE ‘FEW’

Few-component systems are severely under-appreciated.
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THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS
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THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS

Arizona, Brian Anderson’s group



THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS
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THE ‘FEW’ FRONTIER: FEW-PARTICLE EXPERIMENTS



FRONTIER OF THE ‘FEW’

EXPERIMENT

Difficult to access in traditional condensed matter experiments

THEORY

Nontrivial phenomena, surprisingly unexplored.

Traditional condensed-matter view: ‘merely’ finite-size effects.

For few-component systems, natural to study far-from-equilibium

situations, or states far from the ground state.



VORTEX DIPOLE OR VORTEX PAIR IN A

TRAPPED 2D BOSE-EINSTEIN CONDENSATE

VORTEX DIPOLE

Stationary states.

Conservative

dynamics –

defect trajectories.

Many open questions
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Phys. Rev. A 77,

053610 (2008)

VORTEX PAIR

Precession with

mutual orbiting

VORTEX TRIPLET

....



WHY VORTEX DIPOLES?

• VD’s appear in many 2D situations.
Normal fluids & superfluids; turbulent
flow; flow over a sharp barrier, ...

• Vital for physics of Kosterlitz-Thouless
transitions in 2D.
Probed experimentally, ENS

• Fascinating analogies to vortex rings in
3D, solitons in 1D.
Some of our results have analogs in 3D
vortex ring physics.

• Created recently experimentally in
BEC’s by sudden perturbation.

• Can in principle be created & studied by
phase imprinting.

TIME-DEPENDENT GPE

i
∂ψ(t)

∂t
= − 1

2
%2 ψ + Vtr(r)ψ + g|ψ|2ψ

• Trap units.

• Isotropic (CIRCULAR) 2D trap →

Vtr(x, y) = 1
2
(x2 + y2)

• g is an EFFECTIVE 2D
interaction parameter.

g ∝ g3D × N ×
√
ωz

• Conservative dynamics only.
No dissipation.
No temperature.
No quantum depletion or fluctuations



TWO COMPETING EFFECTS

Vortex dipole in

uniform condensate

is self-propelled.

Fetter, Phys. Rev. 1965

Single vortex in non-uniform

condensate is driven by inhomogeneity.

1n 2n

inhomogeneous BEC precession in trap

Rokhsar, PRL 1997

VORTEX DIPOLE IN TRAP −→
Small distance: mutually driven motion dominates.

Large distance: inhomogeneity-driven motion dominates.

Balance → stationary solution.
xd



STATIONARY SOLUTIONS

• Stationary ‘soliton’-like solution at small g. Bifurcation at g ≈ 18.

• For g ! 18, one ‘soliton’ and one vortex-dipole branch.
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Similar bifurcations: in 3D (vortex RING instead of vortex dipole); in elongated trap.



DYNAMICS (VORTEX TRAJECTORIES); LARGE g
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• Simpler at large g.

• g = 150 shown here.

• Not periodic (‘almost’).

• Trajectories elongated in y
direction.
‘Reflection’ at edges clearer.

• Extra features.
Curvatures at outer parts.
Pointy feature at outer edge.
Direction reversal for
large initial xd).



VARIATIONAL FORMULATION

Lagrangian : L =

∫

dr

[

i

2

(

ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)

+ 1
2
ψ∗ %2 ψ − Vtr(r) |ψ|2 − 1

2
g |ψ|4

]

Trial w.f. : ψ = A(t) gv(u1)e
iφ1 gv(u2)e

−iφ2 fc(|z|2)

{

ui = |z − zi|/ξ
φi = tan−1(y−yi

x−xi
)

2D coordinates bundled into complex z = x + iy. Vortex at z1, antivortex at z2.

Euler-Lagrange equations for zi = xi + iyi:
∂L

∂x1
=

d

dt

(

∂L

∂ẋ1

)

→ equations of motion for x1, y1, x2, y2.

Vortex shape function
gv(u): ideally We used gv(u) = u −→

gv(u1) eiφ1 = |z − z1|eiφ1 = z − z1

ψ = [z − z1(t)]
[

z∗ − z∗
2(t)

]

fc(|z|2)



VARIATIONAL CALCULATION (1): STATIONARY SOLUTION

ψ = [z − z1(t)]
[

z∗ − z∗2(t)
]

fc(|z|2)







z1 = x1 + iy1 vortex

z2 = x2 + iy2 antivortex

Good phase structure, unreliable (rigid) vortex size.

Stationary solution for
x1(0) = xs, xd = 2xs



INSIGHTS FROM VARIATIONAL CALCULATION (2) - DYNAMICS

• Increasing initial distance
xd = 2x1(0).

• Each defect revolves
around a stationary point.

• This trajectory type occurs
in full GPE solutions.
Not periodic,
additional effects...

• Results qualitative only.

• Last trajectory is an
artifact.



TRAJECTORIES; SMALL g
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g = 10 and g = 50.

Many more unexplained features.

VORTEX POSITIONS alone are not
sufficient description.
Additional dynamics possibilities!

E.g.,
coupling to vortex shape dynamics;
extra defect pairs;
influence of ‘nearby’ soliton-like state.

OPEN ISSUES

• Don’t understand all features of
defect trajectories.
Even at large g!!

• Do trajectories become periodic in
g → ∞ limit?
Above some critical g value?

• Do trajectories lose features
in g → ∞ limit?
i.e., become smoother?

• Details of reflection, e.g.,
in elongated condensate.



VORTEX PAIR

-2 -1 0 1 2
-2

-1

0

1

2



EDGE

LOCALIZATION

R. Pinto, M. Haque, S. Flach,

arXiv:0902.3249 P.R.A, in press

1D Bose-Hubbard model in an OPEN chain (has edges)

Ĥ = − t
L−1
∑

j=1

(

a†jaj+1 + a†j+1aj

)

+
U

2

L
∑

j=1

a†ja
†
jajaj

Consider n = 2, 3, 4 bosons.

!

"

#

$
For n ≥ 3 bosons, edge states are stable.



EDGE-LOCALIZED CONFIGURATIONS
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‘Stable’ means almost an eigenstate at large U/t.



TIME EVOLUTION
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EDGE-LOCALIZATION: SPECTRAL PICTURE (2, 3 BOSONS)

Bosons in 10-site chain.

Negative-U spectra: U = −10

Left: 2 bosons. Right: 3 bosons.



EDGE-LOCALIZATION: SPECTRAL PICTURE (4 BOSONS)
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EDGE-LOCALIZATION: PHYSICS

• Spectral separation.

• Degenerate perturbation theory:

competition between energy shifts at O(t2) and

manifold mixing at O(tn).

arXiv:0902.3249

• ‘Collective’ phenomenon, even with n = 3 bosons.

• Experimentally observable?

Don’t know yet. (realizing edge, trap effects...)



DEGENERATE PERTURBATION THEORY

| 3 >

| 2 >

| 1 >

| 4 >

Degenerate manifold at t/U = 0.

States |j〉 and |j + 1〉 connect at O(tn).

State |1〉 acquires different shift at O(t2).

State |2〉 acquires different shift at O(t4).



| L > + | R > and | L > + | R >

| R > = | L > = 

Edge eigenstates:



EDGE LOCALIZATION: MORE BOSONS

For more bosons, a hierarchy of localization patterns.

n ≥ 5 bosons −→ can also be bound in site 2

n ≥ 7 bosons −→ can also be bound in site 3

... ...etc

Actually, several hierarchies, with other localization patterns:

2 2 0 0 0 0 ......



EDGE LOCALIZATION: OTHER MODELS

Similar localization phenomenon in spinless fermion models:

Ĥ = − t
L−1
∑

j=1

(

c†jcj+1 + c†j+1c
)

+ V
L−1
∑

j=1

c†jc
†
j+1cj+1cj

And therefore also in the XXZ spin chain:

H = Jx

L−1
∑

j=1

[

Sx
j Sx

j+1 + Sy
j Sy

j+1 + ∆Sz
j S

z
j+1

]

(M. Haque, to appear soon)
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THE FRONTIER OF THE ‘FEW’

Few-vortex dynamics: Two vortices in a 2D trapped condensate

Few-particle dynamics: localization at lattice edge

Few-component systems are severely under-appreciated.

−→ A new frontier opened up by ultracold atom physics.
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