Conference on Research Frontiers in Ultra-Cold Atoms

4-8 May 2009

The frontier of the few

HAQUE Masudul
Max Planck Institute for Physics of Complex Systems
Nöthnitzerstrasse 38
D-01187 Dresden
GERMANY

THE FRONTIER OF THE 'FEW'

Rich \& unexpected behaviors in

Few-vortex dynamics

Few-particle dynamics

Masud Haque

Max-Planck Institute for Physics of Complex Systems (MPI-PKS)

Dresden, Germany

The frontier of the 'few'

Few-vortex dynamics:

> Two vortices in a 2D trap (Bose condensate)

Few-particle dynamics:
Few-boson Iocalization at Iattice edge (Bose-Hubbard model)

Masud Haque

Max-Planck Institute for Physics of Complex Systems (MPI-PKS)

Dresden, Germany

THE FRONTIER OF THE 'FEW'

Few-component systems are severely under-appreciated.
$\longrightarrow \quad$ A new frontier opened up by ultracold atom physics.

Masud Haque

Max-Planck Institute for Physics of Complex Systems (MPI-PKS)

Dresden, Germany

NICE PEOPLE THANK THEIR COLLABORATORS

Vortex dipole dynamics

Weibin Li

Dresden

Stavros
Komineas

Dresden

 \downarrow CreteEdge localization

Ricardo Pinto

Dresden

Riverside

Sergej Flach
Dresden

THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS

JILA, ~ 2001
Prediction: Rokhsar 1997

MIT, separation of doublequantized vortex

THE ‘FEW’ FRONTIER: FEW-VORTEX EXPERIMENTS

Arizona, Brian Anderson's group

The ‘few’ Frontier: Few-vortex experiments

Sao Paolo, V. Bagnato's group

The ‘few’ FRONTIER: FEW-PARTICLE EXPERIMENTS

c

FRONTIER OF THE 'FEW’

EXPERIMENT

Difficult to access in traditional condensed matter experiments

THEORY

Nontrivial phenomena, surprisingly unexplored.
Traditional condensed-matter view: 'merely' finite-size effects.

For few-component systems, natural to study far-from-equilibium situations, or states far from the ground state.

Vortex dipole or vortex pair in A

trapped 2D Bose-Einstein Condensate

VORTEX DIPOLE

Stationary states.

Conservative dynamics defect trajectories.

Many open questions

Why vortex dipoles?

Time-DEPENDENT GPE

- VD's appear in many 2D situations.

Normal fluids \& superfluids; turbulent flow; flow over a sharp barrier, ...

- Vital for physics of Kosterlitz-Thouless transitions in 2D.
Probed experimentally, ENS
- Fascinating analogies to vortex rings in 3D, solitons in 1D.
Some of our results have analogs in 3D vortex ring physics.
- Created recently experimentally in BEC's by sudden perturbation.
- Can in principle be created \& studied by phase imprinting.
$i \frac{\partial \psi(t)}{\partial t}=-\frac{1}{2} \nabla^{2} \psi+V_{\operatorname{tr}}(\mathbf{r}) \psi+g|\psi|^{2} \psi$
- Trap units.
- Isotropic (cIRCULAR) 2D trap \rightarrow

$$
V_{\operatorname{tr}}(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)
$$

- g is an effective 2D interaction parameter.

$$
g \propto g_{3 \mathrm{D}} \times N \times \sqrt{\omega_{z}}
$$

- Conservative dynamics only.

No dissipation.
No temperature.
No quantum depletion or fluctuations

Two COMPETING EFFECTS

Vortex dipole in uniform condensate is self-propelled.

Fetter, Phys. Rev. 1965

Single vortex in non-uniform condensate is driven by inhomogeneity.

precession in trap

Rokhsar, PRL 1997

Vortex dipole in Trap \longrightarrow
Small distance: mutually driven motion dominates.
Large distance: inhomogeneity-driven motion dominates.
Balance \rightarrow stationary solution.

STATIONARY SOLUTIONS

- Stationary 'soliton'-like solution at small g. Bifurcation at $g \approx 18$.
- For $g \gtrsim 18$, one 'soliton' and one vortex-dipole branch.

$$
g=11
$$

$$
g=25
$$

$$
g=60
$$

Similar bifurcations: in 3D (vortex RING instead of vortex dipole); in elongated trap.

DYNAMICS (VORTEX TRAJECTORIES); LARGE g

- Simpler at large g.
- $g=150$ shown here.
- Not periodic ('almost').
- Trajectories elongated in y direction.
'Reflection' at edges clearer.
- Extra features.

Curvatures at outer parts. Pointy feature at outer edge. Direction reversal for large initial x_{d}).

VARIATIONAL FORMULATION

Lagrangian :

$$
L=\int d r\left[\frac{i}{2}\left(\psi^{*} \frac{\partial \psi}{\partial t}-\psi \frac{\partial \psi^{*}}{\partial t}\right)+\frac{1}{2} \psi^{*} \nabla^{2} \psi-V_{\operatorname{tr}}(\mathbf{r})|\psi|^{2}-\frac{1}{2} g|\psi|^{4}\right]
$$

$$
\text { Trial w.f. : } \quad \psi=A(t) g_{\mathrm{v}}\left(u_{1}\right) e^{i \phi_{1}} g_{\mathrm{v}}\left(u_{2}\right) e^{-i \phi_{2}} f_{\mathrm{C}}\left(|z|^{2}\right) \quad\left\{\begin{array}{l}
u_{i}=\left|z-z_{i}\right| / \xi \\
\phi_{i}=\tan ^{-1}\left(\frac{y-y_{i}}{x-x_{i}}\right)
\end{array}\right.
$$

2D coordinates bundled into complex $z=x+i y$. Vortex at z_{1}, antivortex at z_{2}.
Euler-Lagrange equations for $z_{i}=x_{i}+i y_{i}: \quad \frac{\partial L}{\partial x_{1}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x_{1}}}\right)$
\rightarrow equations of motion for $x_{1}, y_{1}, x_{2}, y_{2}$.

Vortex shape function $g_{\mathrm{v}}(u)$: ideally

We used $g_{\mathrm{V}}(u)=u \longrightarrow$

$$
\begin{aligned}
& g_{\vee}\left(u_{1}\right) e^{i \phi_{1}}=\left|z-z_{1}\right| e^{i \phi_{1}}=z-z_{1} \\
& \psi=\left[z-z_{1}(t)\right]\left[z^{*}-z_{2}^{*}(t)\right] f_{\mathrm{C}}\left(|z|^{2}\right)
\end{aligned}
$$

VARIATIONAL CALCULATION (1): STATIONARY SOLUTION

$\psi=\left[z-z_{1}(t)\right]\left[z^{*}-z_{2}^{*}(t)\right] \quad f_{\mathrm{C}}\left(|z|^{2}\right) \quad \begin{cases}z_{1}=x_{1}+i y_{1} & \text { vortex } \\ z_{2}=x_{2}+i y_{2} & \text { antivortex }\end{cases}$

Good phase structure, unreliable (rigid) vortex size.

Stationary solution for $x_{1}(0)=x_{\mathrm{s}}, x_{\mathrm{d}}=2 x_{\mathrm{s}}$

Insights From variational calculation (2) - Dynamics

- Increasing initial distance $x_{d}=2 x_{1}(0)$.
- Each defect revolves around a stationary point.
- This trajectory type occurs in full GPE solutions. Not periodic, additional effects...
- Results qualitative only.
- Last trajectory is an artifact.

TRAJECTORIES; SMALL g

$$
g=10 \text { and } g=50
$$

Many more unexplained features.
vortex positions alone are not sufficient description.
Additional dynamics possibilities!
E.g.,
coupling to vortex shape dynamics;
extra defect pairs;
influence of 'nearby' soliton-like state.

OPEN ISSUES

- Don't understand all features of defect trajectories.
Even at large $g!$!
- Do trajectories become periodic in $g \rightarrow \infty$ limit?
Above some critical g value?
- Do trajectories lose features in $g \rightarrow \infty$ limit?
i.e., become smoother?
- Details of reflection, e.g., in elongated condensate.

Vortex pair

EDGE
 LOCALIZATION

1D Bose-Hubbard model in an OPEN chain (has edges)

$$
\hat{H}=-t \sum_{j=1}^{L-1}\left(a_{j}^{\dagger} a_{j+1}+a_{j+1}^{\dagger} a_{j}\right)+\frac{U}{2} \sum_{j=1}^{L} a_{j}^{\dagger} a_{j}^{\dagger} a_{j} a_{j}
$$

Consider $n=2,3,4$ bosons.

For $n \geq 3$ bosons, edge states are stable.

EDGE-LOCALIZED CONFIGURATIONS

stable

StABLE

'Stable' means almost an eigenstate at large U / t.

Time Evolution

Edge-localization: spectral picture (2,3 bosons)

Bosons in 10-site chain.
Negative- U spectra: $\quad U=-10$
Left: 2 bosons. Right: 3 bosons.

EDGE-LOCALIZATION: SPECTRAL PICTURE (4 BOSONS)

EDGE-LOCALIZATION: PHYSICS

- Spectral separation.
- Degenerate perturbation theory:
competition between energy shifts at $\mathcal{O}\left(t^{2}\right)$ and manifold mixing at $\mathcal{O}\left(t^{n}\right)$.
arXiv:0902.3249
- 'Collective' phenomenon, even with $n=3$ bosons.
- Experimentally observable?

Don't know yet. (realizing edge, trap effects...)

DEGENERATE PERTURBATION THEORY

｜ $\mathrm{L}>=$ ：山山川い．．．．

$\mid R>=\ldots . 山 山 山!$
Edge eigenstates：$|L\rangle+|R\rangle$ and $|L\rangle+|R\rangle$

EDGE LOCALIZATION: MORE BOSONS

For more bosons, a hierarchy of localization patterns.
$n \geq 5$ bosons $\longrightarrow \quad$ can also be bound in site 2
$n \geq 7$ bosons $\longrightarrow \quad$ can also be bound in site 3 ...etc

Actually, several hierarchies, with other localization patterns:

$$
\begin{array}{llllll}
2 & 2 & 0 & 0 & 0 & 0
\end{array}
$$

EDGE LOCALIZATION：OTHER MODELS

Similar localization phenomenon in spinless fermion models：

$$
\hat{H}=-t \sum_{j=1}^{L-1}\left(c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c\right)+V \sum_{j=1}^{L-1} c_{j}^{\dagger} c_{j+1}^{\dagger} c_{j+1} c_{j}
$$

And therefore also in the $X X Z$ spin chain：

$$
H=J_{x} \sum_{j=1}^{L-1}\left[S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}\right]
$$

（M．Haque，to appear soon）

THE FRONTIER OF THE ‘FEW’

Few-vortex dynamics: Two vortices in a 2D trapped condensate

Few-particle dynamics: localization at lattice edge

Few-component systems are severely under-appreciated.
$\longrightarrow \quad$ A new frontier opened up by ultracold atom physics.

Masud Haque

Max-Planck Institute for Physics of Complex Systems (MPI-PKS)

Dresden, Germany

