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Outline

� Summary

� Introduction

� Ultracold Fermi gases in quasi low dimensions

� Feshbach resonance

� BCS-BEC crossover in 3D

� Fermions in quasi-low dimensions: two-body problem

� Binding energy 

� DOF in strongly confined transverse directions

� Fermions in quasi-low dimensions: many-body problem

� Effective low D Hamiltonian and dressed molecules

� BCS-BEC crossover in Q2D: an example

� The significance of dressed molecules
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Fermi systems in low dimensions
QHE

HTC

Semiconductors

Science 306, 666 (2004)

Nat. Mater. 6, 183 (2007)

Nature. 447, 565 (2007)
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Fermi gases in optical lattice
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� Quasi 2D Conditions:

Quasi-low Dimensional Fermi system
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� Trapping potential �				 �� �� TkE BFz ,

� 3D interaction
Re is interaction potential range (~nm)
az~um

ezz Rma 		� )/( ��

� Q1D geometry: 2D lattice
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Feshbach Resonance

Regal, et. al., PRL, 2003

40K
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Universality
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Two-body Problem
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� Binding Energy: Wide FR
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BCS-BEC Crossover in 3D

BCS limit-
weakly int. 
Fermi gas

0sa
��

BEC limit-
weakly int. 
Bose gas

0sa
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BCS-BEC Crossover in 3D
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Outline

� Summary

� Introduction

� Fermi systems in low dimensions

� Feshbach resonance

� BCS-BEC crossover in 3D

� Fermions in quasi-low dimensions: two-body problem

� Binding energy 

� Excited states in strongly confined directions

� Fermions in quasi-low dimensions: many-body problem

� Effective Hamiltonian and dressed molecules

� BCS-BEC crossover in Q2D: an example

� The significance of dressed molecules
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Two-body Problem in Quasi-2D
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� Two-channel Model

� Strong confinement along z-direction

� Homogeneous in x-y plane
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First Trial: Push to 2D

� Excited states along z direction are completely frozen.
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Results

?
� Excitations along z direction 

are frozen 

� Loss of Universality

3D

v.s
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More General Description

� Expanded by Harmonic Oscillators
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Two-body Problem Revisited

� Binding Energy��

� Universality

� Excited states are important
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Population of Molecules and Excitations
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Excitation fraction cannot be suppressed
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Two-body problem in Q1D

Kestner et. al., PRA, 74, 053606
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Discussion

� BCS side ,  b z zE a� "## 		�

Excitation is important

� BEC side ,  b z zE a� "		 ##�
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? Are these excited states important in a many-body 
problem?

? If yes, how to deal with them?

� No matter how strong the confinement is, excited 

states can still be populated to a sizable value.

Quasi low D will never be low D
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BCS-BEC Crossover of a Q2D system: 

a 2D model w/o excited states
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� MF Approach: homogeneous case, T=0

� Assume ground state along z-direction-> 2D model
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� Harmonic trap

2 21
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� LDA
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Inhomogeneous case
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A constant TF Radius?

� BEC limit: Weakly Int. Bose Gas

TF 0R �

� BCS limit�Weakly Int. Fermi Gas

TF BCS 0R R� 	
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The Failure of the pure 2D model

� Equation of State 2

( , )1
( ) ( )

2

s z

z

F a a
n r r

a
�

�
$ %� �& '( )

22 2 ( , )z s za n F a a� �� �

Chemical Pot. of Eff. 
Bosons

binding energy

� Constant interaction between effective bosons.

� The failure of the pure 2D model: cannot predict a 
weakly interacting Bose gas in the BEC limit.
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� The excited states seem to be important for many-body 
problems

? How to incorporate them?
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� Hard to solve, even in MF level

� A detour is needed……


 �

2D

, , ,

1/ 4

, , , ,
, , , ,

1/ 2

' ' , , , ,2

2
2 2 2

               + H.C.

                    

mz z
m m m m b m

m m

b z
mn lm n

m n l

b z
mn m n m n

H a a b b

g m
a a b

L

U m
a a

L

� �
�

�� �
� � � �

�
!

�
! !

� � �

� �
� � � �

�
� � �

� �� �� � � � � � �� �� �
� � � �

� � �� �
� �

� �� � �
� �

� �

�

q

k k k q q

k q

qk q k
k q

k q k

� �

�

�
', ', ', ' ,

, , ,
', ', ',

n m
m n
m n

a a�
� � � � �� k k q

k
k q



27

� The detour turns out to be an effective Hamiltonian

� Can mimic the original Hamiltonian, at least around the 
regime of interest.

� Easy to solve.
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The Effective Hamiltonian

dressed molecule: dq

Fermions in 
ground state

Excited FermionFeshbach Mol.
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Kestner et. al., PRA, 76, 063610

WZ et. al., PRA, 77, 063613



29

� How to deal with excited states?

� Excited states is populated 
when pair size is small

Ground state

Excited state

� Short-range physics is dominated 
by two-body process due to 
diluteness condition

Matching parameters

dressed mol.excitation+ 

Feshbach mol.

Population

Binding E.

Bg. Scattering

Effective HOriginal HMatching cond.

bU bV

bE bE
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Validity

� In the T-matrix representation, the matching conditions actually 
match two quantities: 

� The position of singular points of T(x)

� The first derivative of 1/T(x) around singular points

� Thus, the effective H is approximately identical to the original H 
around the binding energy, with error to the order of 

2

/ 2b
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V O
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� Since                        �the validity of this effective H is 
guaranteed by the quasi-low-D or the diluteness conditions
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BCS-BEC Crossover in Q2D revisited

� Homogeneous case


 �/ 0.01F zE � �� ��

WZ et. al., PRA, 77, 063613
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� In a harmonic trap

TF radius

WZ et. al., PRA, 77, 063613
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BKT transition

� MF+phase fluctuation
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BKT transition

WZ et. al., PRA, 78, 043617



35

Summary

� In quasi low D conditions, no matter how strong the transverse 

confinement is, fermions can still be populated to excited states, 

and these populations do matter.

� These degrees of freedom can be incorporated by introducing an 

effective Hamiltonian.

� The excited states are described by dressed molecules.

� The effective H takes the form of a 2-channel model, with parameters 

given by matching 2-body physics.

� As an example, this model has been used to analyze BCS-BEC 

crossover in Q2D, and predicted the trend of TF radius as expected.


