

2030-23

Conference on Research Frontiers in Ultra-Cold Atoms

4 - 8 May 2009

Ultracold Fermi gases in quasi low dimensions

ZHANG Wei

Renmin University of China Physics Department 59, Zhong Guan Cun Da Jie Hai Dian Beijing 100872 PEOPLE'S REPUBLIC OF CHINA

Ultracold Fermi Gases in Quasi Low Dimensions

Wei Zhang Physics Department, Renmin University of China, Beijing

ICTP, Trieste, Italy, May 2009

Luming Duan (Umich) Guin-Dar Lin Jason Kestner Congjun Wu (UCSD) Qijin Chen (UChicago) Hui Hu (RUC) Yingmei Liu (NIST) Xuzong Chen (PKU)

Support: NSF, DARPA, RUC, NSF-China

Outline

Introduction

- □ Ultracold Fermi gases in quasi low dimensions
- □ Feshbach resonance
- □ BCS-BEC crossover in 3D

Fermions in quasi-low dimensions: two-body problem

- □ Binding energy
- □ DOF in strongly confined transverse directions

Fermions in quasi-low dimensions: many-body problem

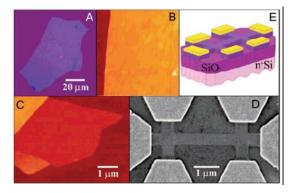
- □ Effective low D Hamiltonian and dressed molecules
- □ BCS-BEC crossover in Q2D: an example
- □ The significance of dressed molecules

Summary

Fermi systems in low dimensions

QHE

Semiconductors



a 250

200

150

100

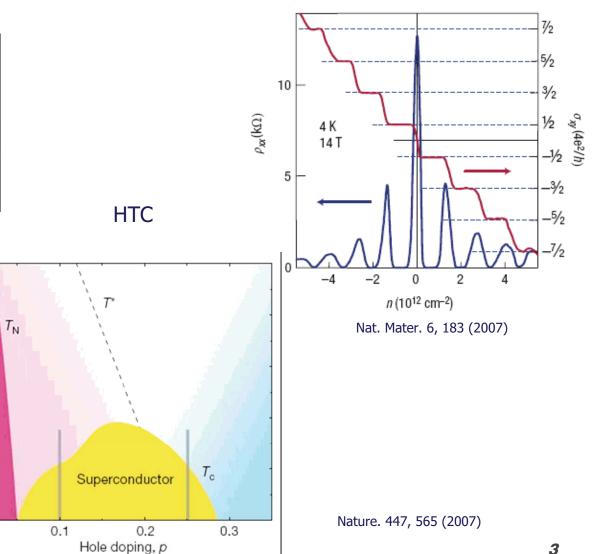
50

0.0

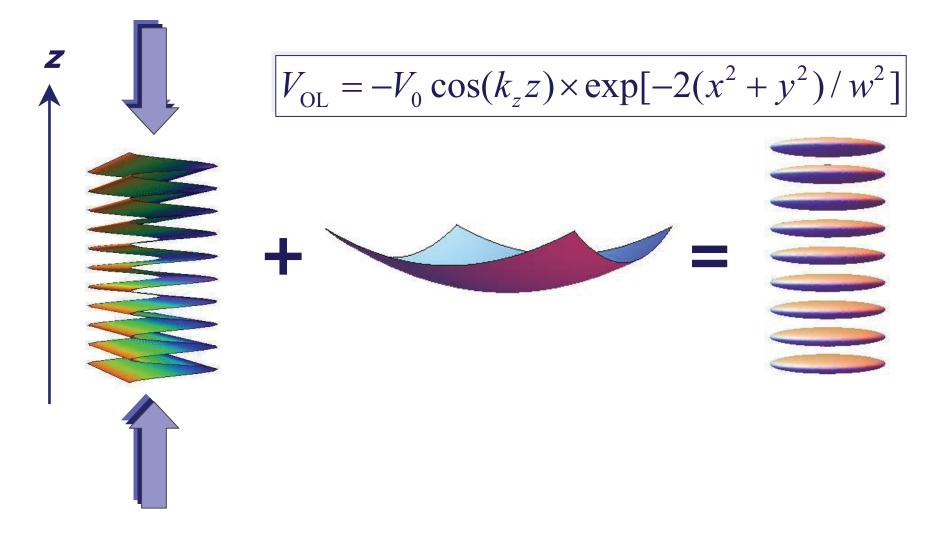
AF insulato

Temperature (K)

Science 306, 666 (2004)



Fermi gases in optical lattice



Quasi-low Dimensional Fermi system

$$V_{\rm OL} \approx V_z + V_\perp = \frac{m}{2} (\omega_z^2 z^2 + \omega_\perp^2 r^2)$$

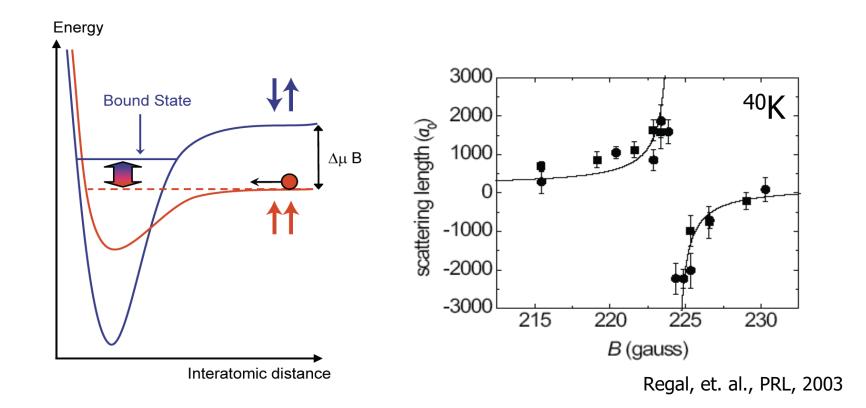
with $\omega_z \gg \omega_\perp$

Quasi 2D Conditions:

 \Box Trapping potential $\hbar \omega_z >> E_F, k_B T >> \hbar \omega_\perp$

- □ 3D interaction $a_z = \sqrt{\hbar/(m\omega_z)} >> R_e$ R_e is interaction potential range (~nm) a_z ~um
- Q1D geometry: 2D lattice

Feshbach Resonance

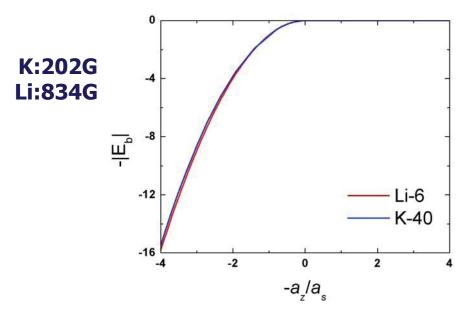


Two-body Problem

Two-channel Model

$$H_{3D} = \sum_{\sigma=\uparrow,\downarrow} \int d^3 \mathbf{x} \psi_{\sigma}^{+} \left(-\frac{\hbar^2 \nabla^2}{2m} + V_{ext} \right) \psi_{\sigma} + \int d^3 \mathbf{x} \phi^{+} \left(-\frac{\hbar^2 \nabla^2}{4m} + 2V_{ext} + v_b \right) \phi$$
$$+ g_b \int d^3 \mathbf{x} \left(\psi_{\uparrow}^{+} \psi_{\downarrow}^{+} \phi + \text{H.C.} \right) + U_b \int d^3 \mathbf{x} \psi_{\uparrow}^{+} \psi_{\downarrow}^{+} \psi_{\downarrow} \psi_{\uparrow}$$

Binding Energy: Wide FR

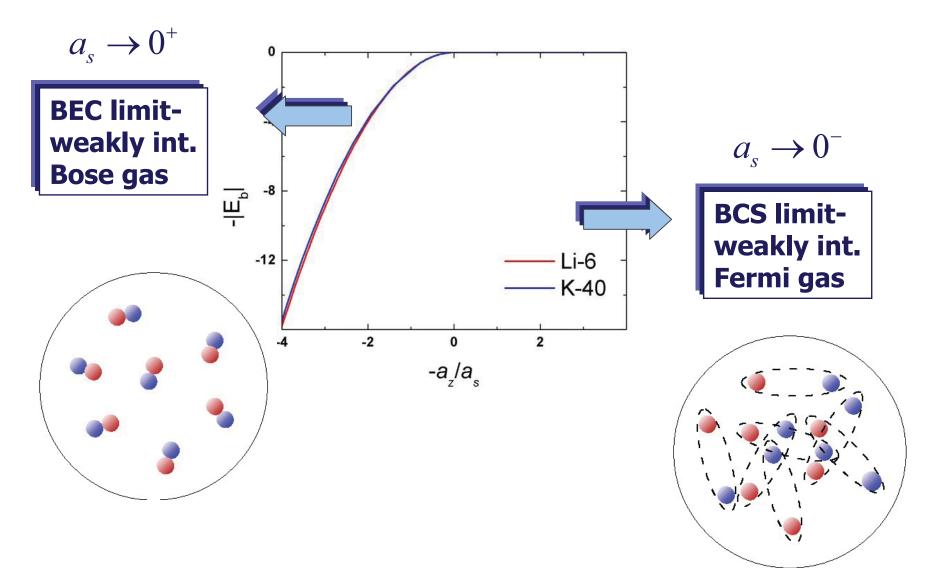


$$a_s = a_{bg} \left(1 - \frac{W}{B - B_0} \right)$$

$$a_z = \sqrt{\hbar / (m\omega_z)}$$

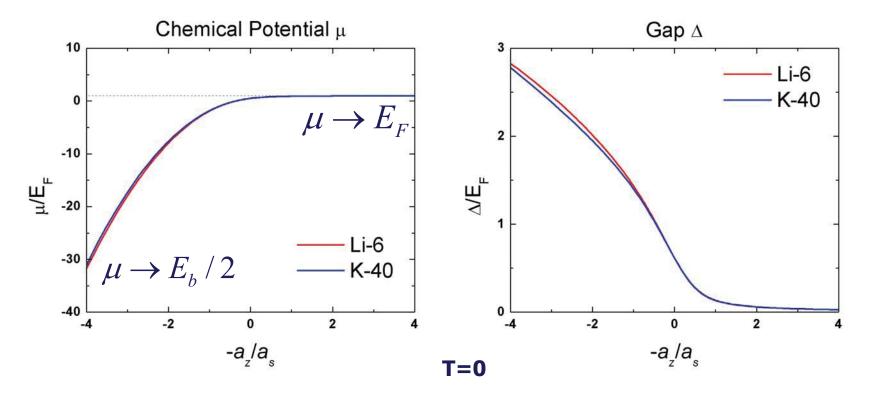
Universality

BCS-BEC Crossover in 3D



BCS-BEC Crossover in 3D

$$H = \sum_{\mathbf{k},\sigma} a_{\mathbf{k}\sigma}^{+} \left(\varepsilon_{\mathbf{k}} - \mu \right) a_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} b_{\mathbf{q}}^{+} \left(\varepsilon_{\mathbf{q}} / 2 + v_{b} - 2\mu \right) b_{\mathbf{q}}^{+}$$
$$+ \left(g_{b} / L^{3/2} \right) \sum_{\mathbf{k},\mathbf{q}} \left(a_{\mathbf{k}+\mathbf{q},\uparrow}^{+} a_{-\mathbf{k},\downarrow}^{+} b_{\mathbf{q}} + \text{H.C.} \right) + \left(U_{b} / L^{3} \right) \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} a_{\mathbf{k}+\mathbf{q},\uparrow}^{+} a_{-\mathbf{k},\downarrow}^{-} a_{\mathbf{k}'+\mathbf{q},\uparrow}^{+} \right)$$



9

Outline

Introduction

- □ Fermi systems in low dimensions
- □ Feshbach resonance
- □ BCS-BEC crossover in 3D

Fermions in quasi-low dimensions: two-body problem

- □ Binding energy
- □ Excited states in strongly confined directions
- Fermions in quasi-low dimensions: many-body problem
 - □ Effective Hamiltonian and dressed molecules
 - □ BCS-BEC crossover in Q2D: an example
 - □ The significance of dressed molecules

Summary

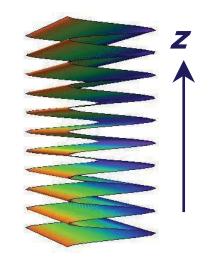
Two-body Problem in Quasi-2D

Two-channel Model

$$H_{3D} = \sum_{\sigma=\uparrow,\downarrow} \int d^3 \mathbf{x} \psi_{\sigma}^{+} \left(-\frac{\hbar^2 \nabla^2}{2m} + V_{ext} \right) \psi_{\sigma} + \int d^3 \mathbf{x} \phi^{+} \left(-\frac{\hbar^2 \nabla^2}{4m} + 2V_{ext} + v_b \right) \phi$$
$$+ g_b \int d^3 \mathbf{x} \left(\psi_{\uparrow}^{+} \psi_{\downarrow}^{+} \phi + \text{H.C.} \right) + U_b \int d^3 \mathbf{x} \psi_{\uparrow}^{+} \psi_{\downarrow}^{+} \psi_{\downarrow} \psi_{\uparrow}$$

- Strong confinement along z-direction
- Homogeneous in x-y plane

$$\omega_x = \omega_y = 0$$



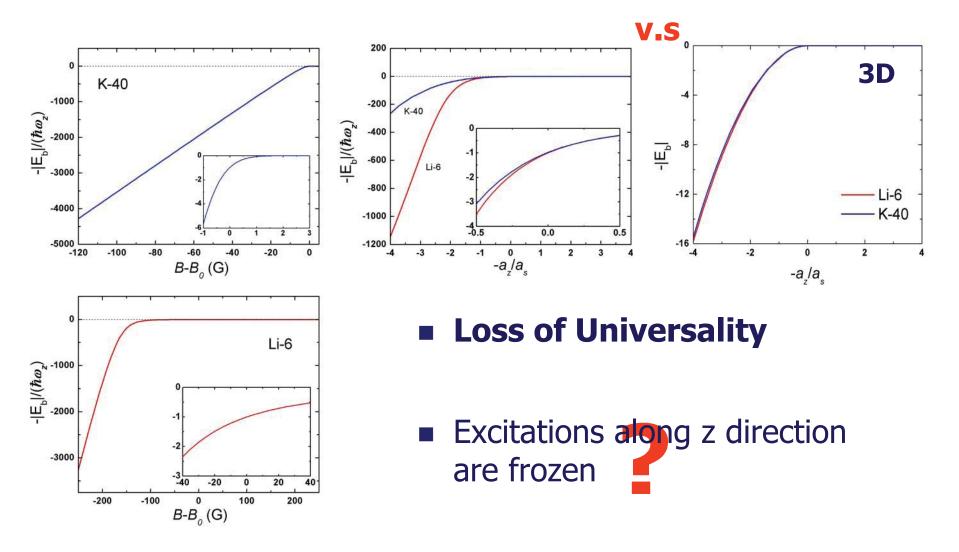
First Trial: Push to 2D

• Excited states along z direction are completely frozen.

$$\square \text{ fermions:} \quad \psi_z = \left(\frac{m\omega_z}{\pi \hbar}\right)^{1/4} \exp\left(-\frac{m\omega_z z^2}{2\hbar}\right)$$
$$\square \text{ molecules:} \quad \phi_z = \left(\frac{2m\omega_z}{\pi \hbar}\right)^{1/4} \exp\left(-\frac{m\omega_z z^2}{\hbar}\right)$$

$$H_{2\mathrm{D}} = \sum_{\sigma=\uparrow,\downarrow} \int d^2 \mathbf{r} \psi_{\perp\sigma}^{+} \left(-\frac{\hbar^2 \nabla_{\perp}^2}{2m} + \frac{\hbar \omega_z}{2} \right) \psi_{\perp\sigma} + \int d^2 \mathbf{r} \phi_{\perp}^{+} \left(-\frac{\hbar^2 \nabla_{\perp}^2}{4m} + v_b + \frac{\hbar \omega_z}{2} \right) \phi_{\perp} + g_b \left(\frac{m \omega_z}{2\pi\hbar} \right)^{1/4} \int d^2 \mathbf{r} \left(\psi_{\perp\uparrow}^{+} \psi_{\perp\downarrow}^{+} \phi_{\perp} + \mathrm{H.C.} \right) + U_b \left(\frac{m \omega_z}{2\pi\hbar} \right)^{1/2} \int d^2 \mathbf{r} \psi_{\perp\uparrow}^{+} \psi_{\perp\downarrow}^{+} \psi_{\perp\downarrow} \psi_{\perp\uparrow}$$

Results



More General Description

Expanded by Harmonic Oscillators

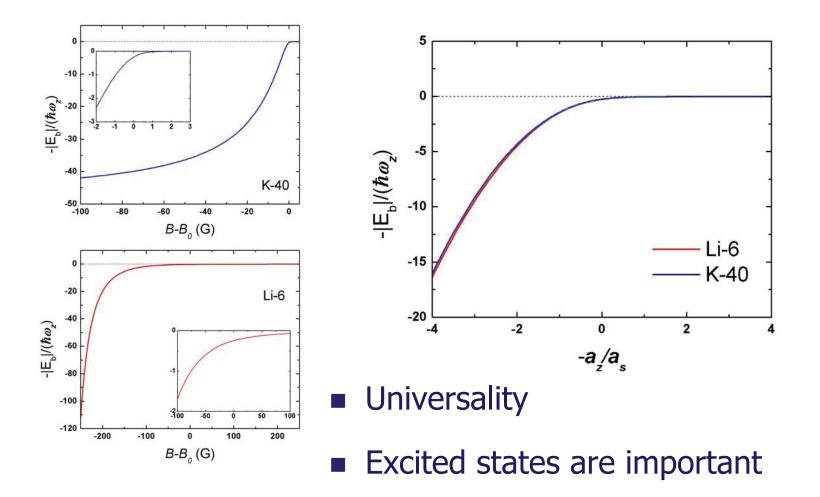
□ fermions:
$$\psi_z = \sum_m a_m \Psi_m(z)$$

□ molecules: $\phi_z = \sum_m b_m \Phi_m(z)$

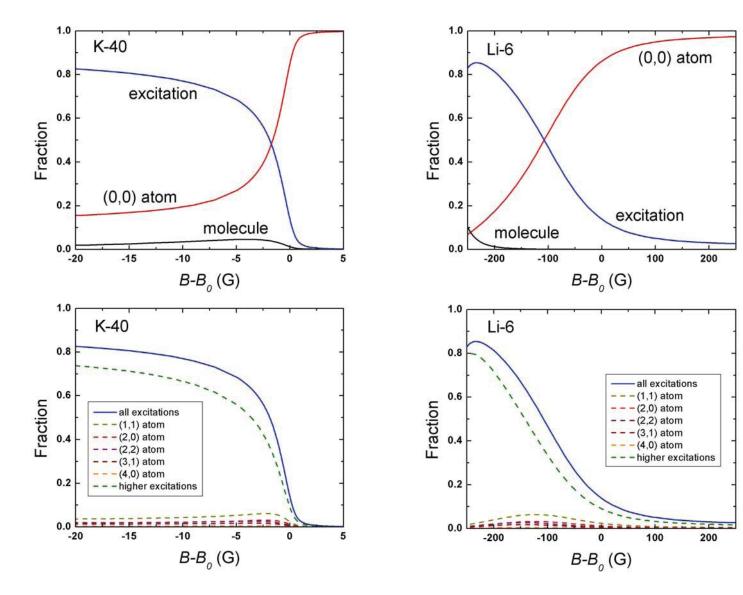
$$\begin{aligned} H_{2\mathrm{D}} &= \sum_{m,\mathbf{k},\sigma} a_{m\mathbf{k}\sigma}^{+} \left(\varepsilon_{m\mathbf{k}} + \frac{\hbar\omega_{z}}{2} \right) a_{m\mathbf{k}\sigma} + b_{0}^{+} \left(\frac{\varepsilon_{00}}{2} + \nu_{b} + \frac{\hbar\omega_{z}}{2} \right) b_{0} \\ &+ \frac{g_{b}}{L} \left(\frac{m\omega_{z}}{\hbar} \right)^{1/4} \sum_{m,n,\mathbf{k}} \gamma_{mn} \left(a_{m,\mathbf{k},\uparrow}^{+} a_{n,-\mathbf{k},\downarrow}^{+} b_{00} + \mathrm{H.C.} \right) \\ &+ \frac{U_{b}}{L^{2}} \left(\frac{m\omega_{z}}{\hbar} \right)^{1/2} \sum_{\substack{m,n,\mathbf{k},\\m',n',\mathbf{k}'}} \gamma_{mn} \gamma_{m'n'} a_{m,\mathbf{k},\uparrow}^{+} a_{n,-\mathbf{k},\downarrow}^{+} a_{n',-\mathbf{k},\downarrow}^{+} a_{m',\mathbf{k},\uparrow}^{-} \end{aligned}$$

Two-body Problem Revisited

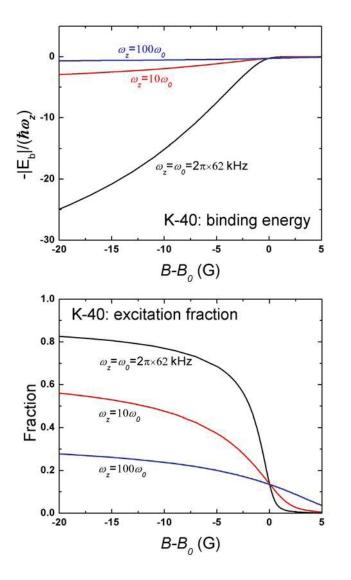
Binding Energy:

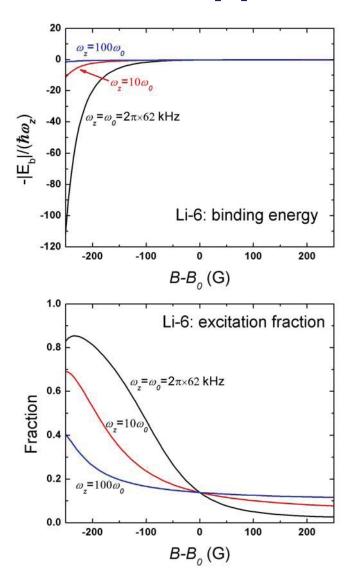


Population of Molecules and Excitations

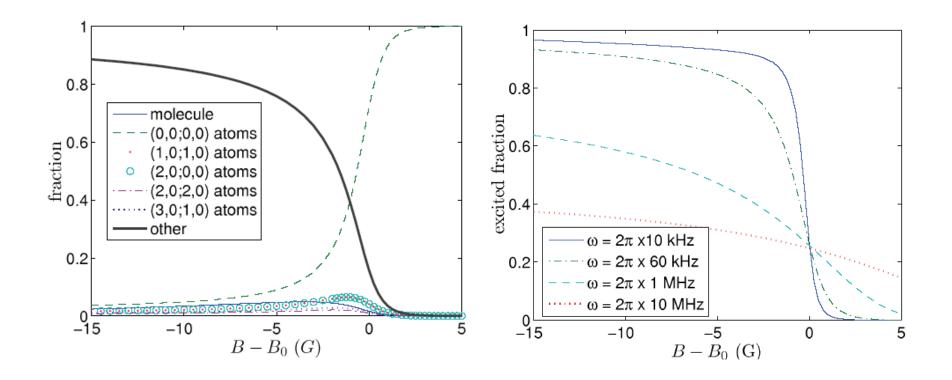


Excitation fraction cannot be suppressed

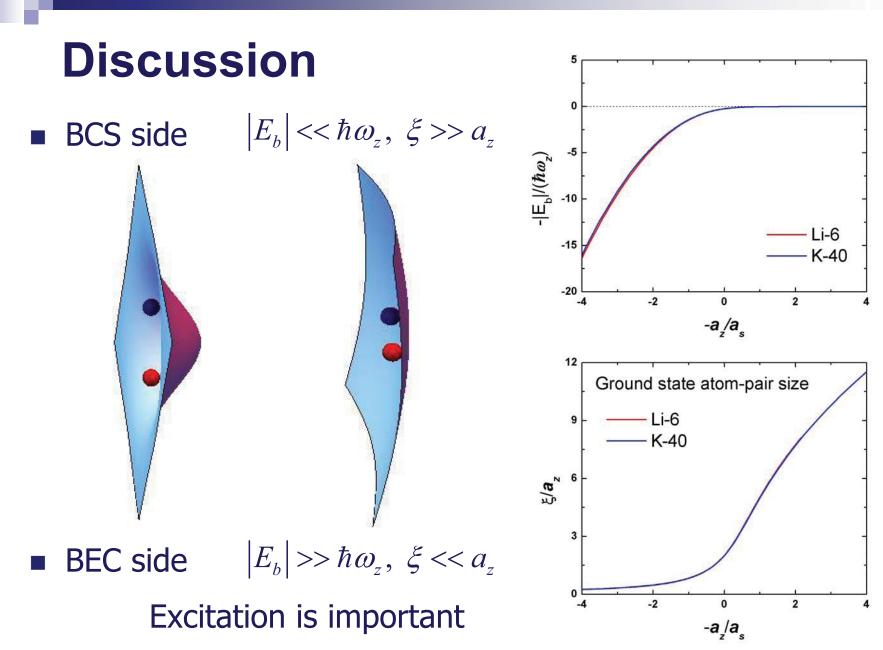




Two-body problem in Q1D



Kestner et. al., PRA, 74, 053606



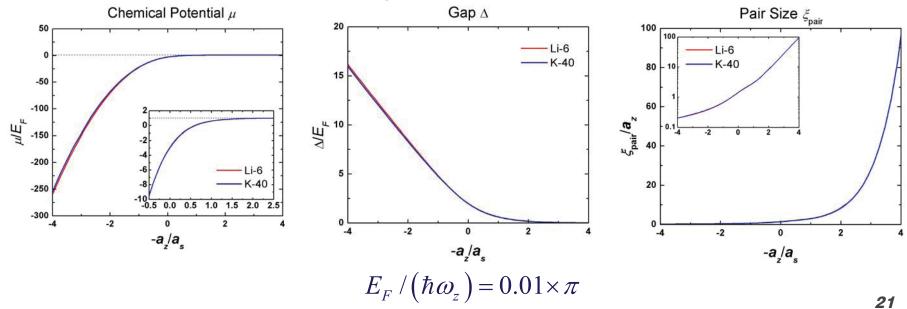
- No matter how strong the confinement is, excited states can still be populated to a sizable value.
 Quasi low D will never be low D
- ? Are these excited states important in a many-body problem?
- ? If yes, how to deal with them?

BCS-BEC Crossover of a Q2D system: a 2D model w/o excited states

Assume ground state along z-direction-> 2D model

$$H_{2\mathrm{D}} = \sum_{\mathbf{k},\sigma} a_{0\mathbf{k}\sigma}^{+} \left(\varepsilon_{0\mathbf{k}} + \frac{\hbar\omega_{z}}{2} - \mu \right) a_{0\mathbf{k}\sigma} + \frac{U_{\mathrm{eff}}}{L^{2}} \left(\frac{m\omega_{z}}{2\pi\hbar} \right)^{1/2} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} a_{0,\mathbf{k}+\mathbf{q},\uparrow}^{+} a_{0,-\mathbf{k},\downarrow}^{+} a_{0,\mathbf{k}'+\mathbf{q},\uparrow}^{+} a_{0,-\mathbf{k}',\downarrow}^{+} a_{$$

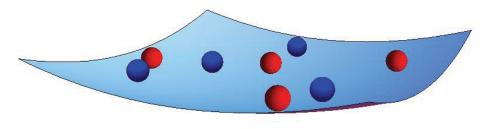
MF Approach: homogeneous case, T=0



Inhomogeneous case

Harmonic trap

$$V_{\perp}(r) = \frac{1}{2}m\omega_{\perp}^2 r^2$$

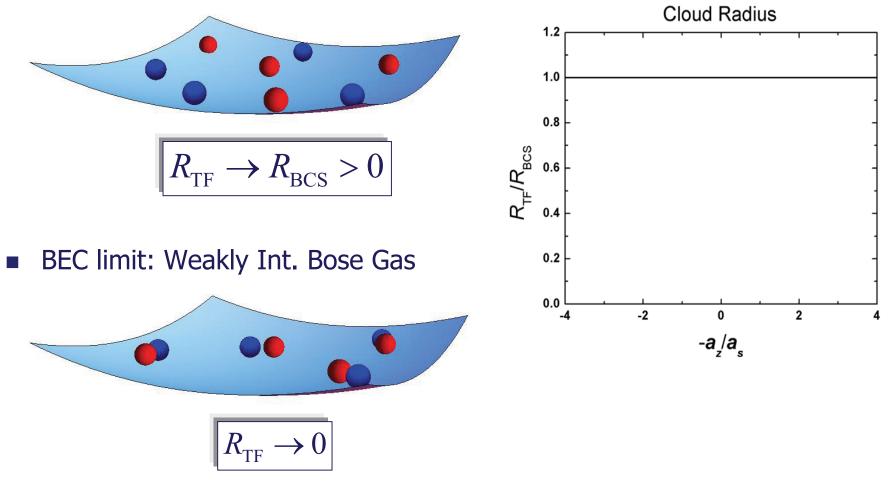


$$\mu(r) = \mu_0 - V_{\perp}(r) = \mu_0 - \frac{1}{2}m\omega_{\perp}^2 r^2$$

- Total Particle No. $N = 2\pi \int_0^{R_{\text{TF}}} n(r) r dr$
- Thomas-Fermi Radius $n(R_{\rm TF}) = 0$

A constant TF Radius?

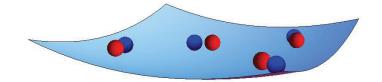
BCS limit: Weakly Int. Fermi Gas



The Failure of the pure 2D model

• Equation of State
$$n(r) = \frac{1}{\pi a_z^2} \left[\frac{F(a_s, a_z)}{2} + \mu(r) \right]$$

$$2\mu = 2\pi a_z^2 n - F(a_s, a_z)$$



Chemical Pot. of Eff. binding energy Bosons

- Constant interaction between effective bosons.
- The failure of the pure 2D model: cannot predict a weakly interacting Bose gas in the BEC limit.

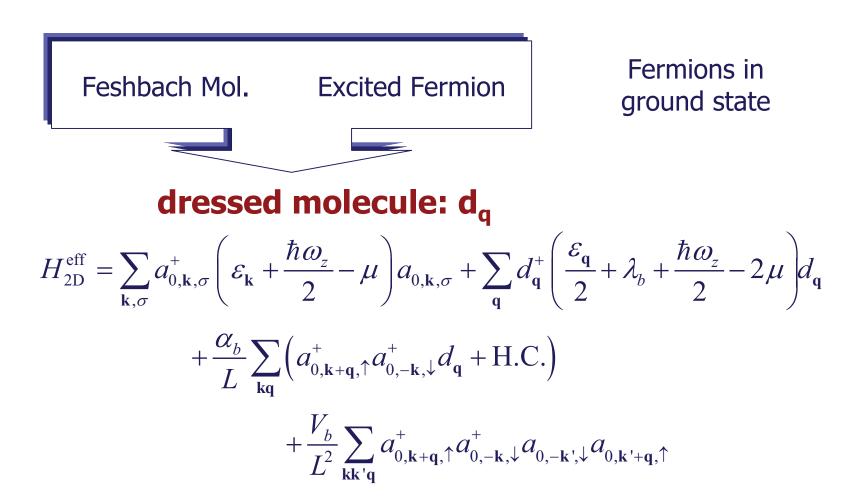
- The excited states seem to be important for many-body problems
- ? How to incorporate them?

$$\begin{split} H_{2\mathrm{D}} &= \sum_{m,\mathbf{k},\sigma} a_{m\mathbf{k}\sigma}^{+} \left(\varepsilon_{m\mathbf{k}} + \frac{\hbar\omega_{z}}{2} - \mu \right) a_{m\mathbf{k}\sigma} + \sum_{m,\mathbf{q}} b_{m\mathbf{q}}^{+} \left(\frac{\varepsilon_{m\mathbf{q}}}{2} + v_{b} + \frac{\hbar\omega_{z}}{2} - 2\mu \right) b_{m\mathbf{q}}^{+} \\ &+ \frac{g_{b}}{L} \left(\frac{m\omega_{z}}{\hbar} \right)^{1/4} \sum_{m,n,l,\mathbf{k},\mathbf{q}} \gamma_{mn} \left(a_{m,\mathbf{k}+\mathbf{q},\uparrow}^{+} a_{n,-\mathbf{k},\downarrow}^{+} b_{l\mathbf{q}} + \mathrm{H.C.} \right) \\ &+ \frac{U_{b}}{L^{2}} \left(\frac{m\omega_{z}}{\hbar} \right)^{1/2} \sum_{\substack{m,n,\mathbf{k},\\m',n',\mathbf{k}',\mathbf{q}}} \gamma_{mn} \gamma_{m'n'} a_{m,\mathbf{k}+\mathbf{q},\uparrow}^{+} a_{n',-\mathbf{k},\downarrow}^{+} a_{n',-\mathbf{k},\downarrow}^{+} a_{m',\mathbf{k}'+\mathbf{q},\uparrow} \end{split}$$

- Hard to solve, even in MF level
- A detour is needed.....

- The detour turns out to be an effective Hamiltonian
 - Can mimic the original Hamiltonian, at least around the regime of interest.
 - \Box Easy to solve.

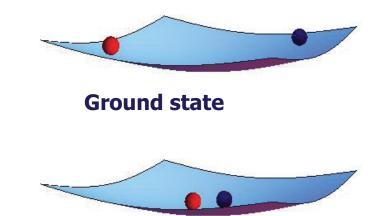
The Effective Hamiltonian



Kestner et. al., PRA, 76, 063610 WZ et. al., PRA, 77, 063613

Matching parameters

- How to deal with excited states?
 - Excited states is populated when pair size is small
 - Short-range physics is dominated by two-body process due to diluteness condition



Excited state

Matching cond.	Original H	Effective H
Bg. Scattering	U_{b}	V_b
Binding E.	E _b	E _b
Population	excitation+ Feshbach mol.	dressed mol.

Validity

In the T-matrix representation, the matching conditions actually match two quantities:

 \Box The position of singular points of T(x)

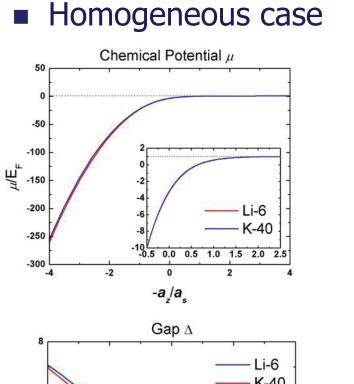
- \Box The first derivative of 1/T(x) around singular points
- Thus, the effective H is approximately identical to the original H around the binding energy, with error to the order of

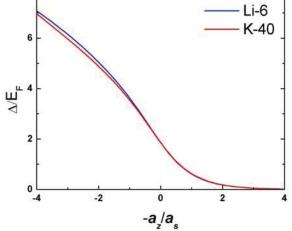
$$\Delta V = O\left(\frac{\mu - E_b / 2}{\hbar \omega_z}\right)^2$$

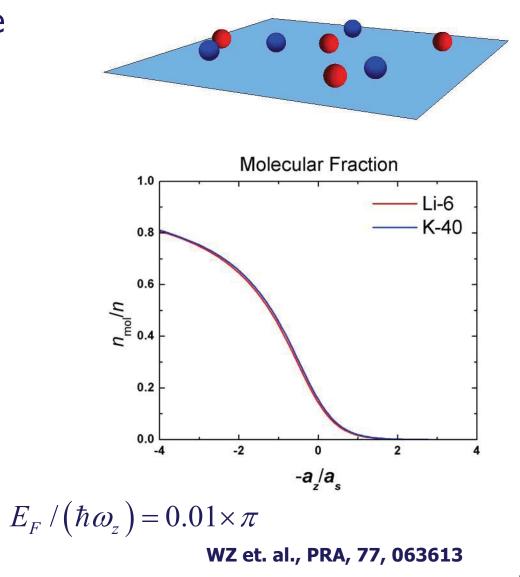
Since $\mu - E_b / 2 \le E_F$, the validity of this effective H is guaranteed by the quasi-low-D or the diluteness conditions

$$\hbar\omega_z >> E_F; \quad na_z^2 << 1$$

BCS-BEC Crossover in Q2D revisited

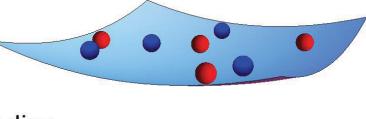


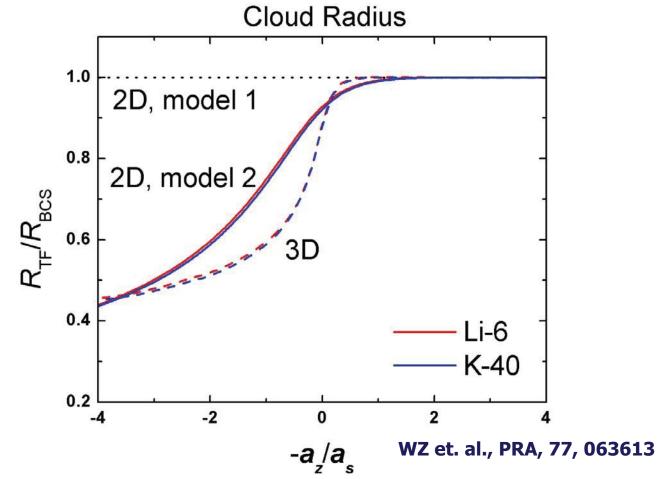




31

TF radius





BKT transition

MF+phase fluctuation

$$\Delta(r,t) = \Delta_0 \exp[i\theta(r,t)]$$

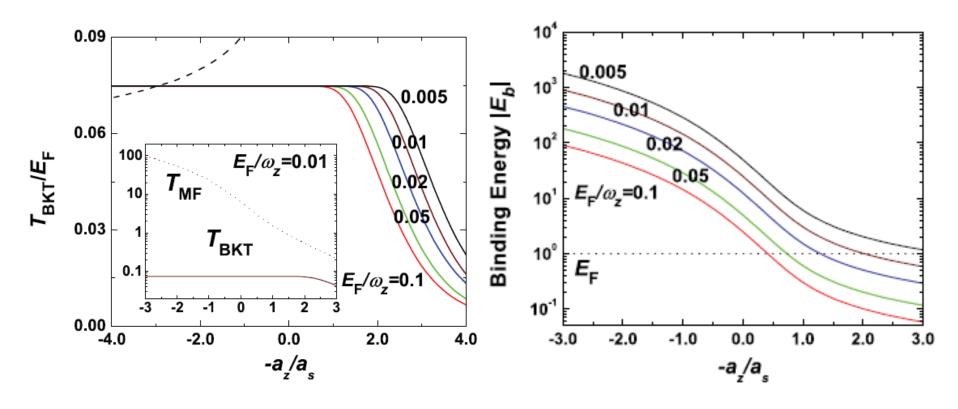
$$S_{\text{eff}} = S_0 + S_{\text{fluc}}$$
$$S_{\text{fluc}} \approx \frac{1}{2} \int_0^{\hbar/k_B T} d\tau \int d^2 \mathbf{r} \left[i J \partial_\tau \theta + K \left(\partial_\tau \theta \right)^2 + \rho_s \left(\nabla \theta \right)^2 \right]$$

BKT transition temperature

$$T_{BKT} = \frac{\pi}{2} \rho_s^R$$

$$\rho_s = \frac{1}{4m} \left\{ n_{\text{mol}} + \frac{1}{L^2} \sum_{\mathbf{k}} \left[1 - \frac{\varepsilon_{\mathbf{k}}}{E_{\mathbf{k}}} \tanh\left(\frac{E_{\mathbf{k}}}{2k_B T}\right) \right] - \frac{\hbar^2}{4mk_B T L^2} \sum_{\mathbf{k}} k^2 \operatorname{sech}^2\left(\frac{E_{\mathbf{k}}}{2k_B T}\right) \right\}$$

BKT transition



WZ et. al., PRA, 78, 043617

34

Summary

- In quasi low D conditions, no matter how strong the transverse confinement is, fermions can still be populated to excited states, and these populations do matter.
- These degrees of freedom can be incorporated by introducing an effective Hamiltonian.
 - □ The excited states are described by dressed molecules.
 - The effective H takes the form of a 2-channel model, with parameters given by matching 2-body physics.
 - As an example, this model has been used to analyze BCS-BEC crossover in Q2D, and predicted the trend of TF radius as expected.