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Confronting 
Assumptions

1.Are rubidium atoms in an optical lattice described 

by the standard Bose-Hubbard model?

2.Do interactions play any role in time-of-flight 

expansion from an optical lattice?

3.  Is the RF spectrum of bosons in an optical lattice 

dominated by a single sharp peak?

Only for n<2

No (for Rb and typical geometries)

Yes for Rb, No if interactions are stronger



Including on-site 

correlations in Bose-

Hubbard Model

HAZZARD AND MUELLER, ARXIV:0902.4707

Are rubidium atoms in an optical lattice described by the 

standard Bose-Hubbard model?



On-site Correlations

INTERACTIONS SPREAD 

OUT WAVEFUNCTIONS
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Generalized Hubbard 
Model

H = −
∑

〈i,j〉;m,n

t
(mn)
ij |m + 1〉i|n − 1〉k〈m|i〈n|j +

∑
i,n

En|n〉i〈n|i

STANDARD HUBBARD MODEL

t
(mn)
ij = t

√
n(m + 1)

En = Un(n − 1) − μn

How big are corrections?

n

m

n − 1

m + 1
t(mn)

+ pair hopping +...



Finding coefficients
SOLVE n-BODY 1-SITE PROBLEM

Actual potential

V

V1

En ≈ 〈n|H|n〉
Full Hamiltonian

Lowest energy solution to 

1-site problem

t
(mn)
ij = −

[
〈m + 1|i〈n − 1|j

]
H
[
|m〉i|n〉j

]
+

Em + En

2

[
〈m + 1|i〈n − 1|j

][
|m〉i|n〉j

]

potential in single-site problem



Results
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2 particles

cf. T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens 

Foundations of Physics, 28, 549 (1998)



Rubidium Parameters
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Reported in experiments:

[ex. Campbell et al. Science 

313 (2006)]

CONCLUSIONS:

Interactions dramatically modify hopping matrix 

elements.

Higher Mott lobes require deeper lattice than 

thought
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In progress

Exactly solve 2-

site problem -- 

extract 

parameters

Hazzar d, Shumway , Mueller



More exotic settings
ARRAYS OF 1D TUBES

H = −
∑

〈i,j〉;m,n

t
(mn)
ij |m + 1〉i|n − 1〉k〈m|i〈n|j +

∑
i,n

En|n〉i〈n|i

Hopping requires rearranging few-body 

state on each site.

Restrict to lowest energy n-particle states 

on each site:  same effective model

Energy scales below on-site excitation gap: 

topology of phase diagram: same as 

standard Bose-Hubbard



More exotic settings
ARRAYS OF QUANTUM HALL 

PUDDLES

H = −
∑

〈i,j〉;m,n

t
(mn)
ij |m + 1〉i|n − 1〉k〈m|i〈n|j +

∑
i,n

En|n〉i〈n|i

Experiments (uncoupled puddles): 

Edina Sarajlik, Nate Gemelke, and Steve Chu

Restrict to lowest energy n-particle states 

on each site: (Laughlin State)  

                      Get same effective model

Theory of spinning up uncoupled puddles:

Popp, Paredes, and Cirac, PRA 2004

Baur, Hazzard, and Mueller, PRA 2008

Q: What happens when hopping is allowed?

rotate near on-site small

oscillation frequency



Coupled Quantum Hall 
Puddles

DEEP LATTICE

t(01) = t

t(02) = t
π2

32

√
V0

ER

t(12) = t
π4

1024

√
V0

ER

Integrals -- can do analytically

PHASE DIAGRAM
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Coupled Quantum Hall 
Puddles

SUPERFLUID ORDER PARAMETER

Coupled puddles probes non-local order parameter introduced by 

Girvin and MacDonald, PRL 58, 1252 (1987) 

〈∑
i

|n〉i〈n − 1|i
〉

= 〈R†〉 �= 0

R†ψ(z1, · · · , zn) = φ(z1, · · · , zn+1)

∝ e−|zn+1|2
n∏

i=1

(zn+1 − zi)ψ(z1, · · · , zn)
2



Confronting 
Assumptions

1.Are rubidium atoms in an optical lattice described 

by the standard Bose-Hubbard model?

2.Do interactions play any role in time-of-flight 

expansion from an optical lattice?

3.  Is the RF spectrum of bosons in an optical lattice 

dominated by a single sharp peak?

Only for n<2

No (for Rb and typical geometries)

Yes for Rb, No if interactions are stronger



Interactions during time-

of-flight expansion

Do interactions play any role in time-of-flight 

expansion from an optical lattice?

KUPFERSCHMIDT, GOLDBAUM AND MUELLER, UNPUBLISHED

GOLDBAUM AND MUELLER, PRA (2009) 



Interpreting Time-of-
flight expansion

Standard Interpretation: Long-time expansion = Momentum distribution

Requires: No interactions during expansion

All atoms are 

initially at r=0

Any atom that moves distance d in time t must

have momentum p = md/t
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Assumes:

no interactions

during expansion



Quantitative

Gerbier, Trotzky, Foeling, Schnorberger, Thompson, Widera, Bloch, Pollet, Troyer, 

Capogrosso-Sansone, Prokof'ev, Svistunov, PRL 101, 155303 (2008)

We now discuss briefly the effect of interactions on the
expansion, and show that this is negligible compared to
the finite ToF effect. When the cloud has just been re-
leased from the lattice potential, each on-site wavefunc-
tion Wμ expands independently with a characteristic ex-

pansion time ω
−1

L , until t ≈ t∗ =
√

�/(ωLER) where
the wavefunctions expanding from neighboring sites start
to overlap. At this time, in the usual situation where
ωLt∗ � 1, the local density has dropped dramatically by
a factor (ωLt)−3 � 1. Hence, the interaction energy con-
verts into kinetic energy on the time scale of a few oscilla-
tion periods only, and expansion becomes rapidly ballis-
tic. The parameter controlling the importance of interac-

tions is given by η = U
�ωL

≈ √
8π asn0

λL

(
V0

ER

)1/4

, with U

being the on-site interaction energy. For typical parame-
ters, η is small (for instance η ≈ 0.05 for V0 = 10 ER and
the experimental parameters of [3]). Hence, we expect
only small corrections to the non-interacting picture of
ballistic expansion. This has been confirmed using a vari-
ational model of the expanding condensate wavefunction
[15]. This model predicts that the ”Wannier” envelope
expands faster as compared to the non-interacting case,
which does not affect the interference pattern, and picks
up a site-dependent phase factor formally similar to the
Fresnel term discussed previously, but with a very weak
prefactor η � 1 which has negligible influence in prac-
tice. We conclude that interactions essentially contribute
to the expansion of the on-site wavefunctions, without
significant dephasing of the interference pattern.



Method
INITIAL: ψ =

∏
sites

i

⎡
⎢⎢⎢⎢⎢⎣

∑
number

n

φ
(n)
i

⎤
⎥⎥⎥⎥⎥⎦Gutzwiller Ansatz

Neglect interactions between atoms on different sites

AFTER EXPANSION:

ψ =
∏
sites

i

⎡
⎢⎢⎢⎢⎢⎣

∑
number

n

φ
(n)
i (t)

⎤
⎥⎥⎥⎥⎥⎦

Just time-evolve the n-body wavefunction on each site.
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+
∑

j

(
ρj(r, t) − |Λj(r, t)|2

)

= time evolved “superfluid order parameter” on site j

    (gives interference peaks)

ρj(r, t) =
∑

n

n

∫
dr1 · · · drn−1

∣∣∣φ(n)
i (r1, . . . , rn−1, r; t)

∣∣∣2
= time evolved “density” on site j

    (gives incoherent background)
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φ
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Interactions

Sites with more particles spread out more

Too much spread -- only interfere in overlap 

region

Sites with more particles gain extra phase

Dephasing kills interference



Result

SMALL PARAMETER
scattering length

size of Wannier state
= 0.066

2D lattice V0 = 10ER

a=0,5,50 nm
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25 ms time of flight

STRUCTURE IN BRAGG PEAKS
vortices



Confronting 
Assumptions

1.Are rubidium atoms in an optical lattice described 

by the standard Bose-Hubbard model?

2.Do interactions play any role in time-of-flight 

expansion from an optical lattice?

3.  Is the RF spectrum of bosons in an optical lattice 

dominated by a single sharp peak?

Only for n<2

No (for Rb and typical geometries)

Yes for Rb, No if interactions are stronger



RF Spectra of Lattice 

Bosons

Is the RF spectrum of bosons in an optical 

lattice dominated by a single sharp peak?

HAZZARD AND MUELLER, UNPUBLISHED



RF Spectroscopy

BOSONS IN OPTICAL LATTICE

|2>

|1>

�0

|2>

|1>

�0 + ��

COLD COLLISION SHIFT

Exp: Ketterle group [Science, 313, 649 (2006)] Thy: Hazzard and Mueller [PRA 2007]

Sum Rule: Oktel and Levitov, PRL 83, 6 (1999) 



Beyond the sum rule
Previous assumption: Homogeneous spectrum is sharp

Line Shape in trap -- solely from inhomogeneities

Question assumption: Sun, Lannert, Vishveshwara, Phys. Rev. A 79, 043422 (2009) 

PHYSICAL PICTURE

RF photon generates one of two

types of excitations

Homogeneous spectrum: 

bimodal

(simple case -- violated sum rule)

Our new calculation: Random Phase Approximation



EOM approach to RPA

SATISFIES SUM RULES, WARD IDENTITIES,...

Make time dependent variational ansatz

Minimize

Solve EOM to linear order in Hrf

S =
∫

dt

[
1
i
〈ψ(t)|∂t|ψ(t)〉 − 〈ψ(t)|H + Hrf |ψ(t)〉

]

plot rate of transfer vs frequency



Result -- Rb parameters
 

Final state int almost same as initial
Rb

RESULT
Homogeneous spectrum is

unimodal

Trap averaged spectrum

Red line: Sum Rule Calculation



Result -- Stronger int
Bimodality observable:

Spatially resolved 

spectrum shows two 

shells

Trap averaged spectrum

(no signature)



Hybridization

KE cost:

Blocks hopping of

excess particles
KE cost:

loss of Bose enhancement



Summary

1.Are rubidium atoms in an optical lattice described 

by the standard Bose-Hubbard model?

2.Do interactions play any role in time-of-flight 

expansion from an optical lattice?

3.  Is the RF spectrum of bosons in an optical lattice 

dominated by a single sharp peak?

Only for n<2

No (for Rb and typical geometries)

Yes for Rb, No if interactions are stronger


