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Confronting
Assumptions

1. Are rubidium atoms in an optical lattice described
by the standard Bose-Hubbard model?

Only for n<2

2.Do interactions play any role in time-of-flight
expansion from an optical lattice?

No (for Rb and typical geometries)

3. Is the RF spectrum of bosons in an optical lattice
dominated by a single sharp peak?

Yes for Rb, No if interactions are stronger




Including on-site

correlations in Bose-
Hubbard Model




On-site Correlations
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Generalized Hubbard
Model
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How big are corrections?




FINding coefticients

SOLVE n-BODY 1-SITE PROBLEM

Vi potential in single-site problem

Actual potential
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3D

Results Vs CUBIC LATTICE
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cf. T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens
Foundations of Physics, 28, 549 (1998)




Rubidium Parameters

35 (Gaussian ansatz for single-site wavefunction)
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= Interactions dramatically modify hopping matrix
0 5 10152025 elements.
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Higher Mott lobes require deeper lattice than

thought

O 5 10 15 20 25 Reported in experiments:
[ex. Campbell et al. Science
Vo/ER 313 (2006)]
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More exotic settings

ARRAYS OF 1D TUBES Hopping requires rearranging few-body

state on each site.

Restrict to lowest energy n-particle states
on each site: same effective model
Energy scales below on-site excitation gap:
topology of phase diagram: same as
standard Bose-Hubbard
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More exotic settings

ARRAYS OF QUANTUM HALL Experiments (uncoupled puddles):
PUDDLES Edina Sarajlik, Nate Gemelke, and Steve Chu

v v Theory of spinning up uncoupled puddles:
. Popp, Paredes, and Cirac, PRA 2004
. . Baur, Hazzard, and Mueller, PRA 2008
. Q: What happens when hopping is allowed?
. . Restrict to lowest energy n-particle states
. on each site: (Laughlin State)
& Ay Get same effective model
rotate near on-site small
oscillation frequency
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Coupled Quantum Hall

Puddles

PHASE DIAGRAM
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Coupled Quantum Hall
Puddles

SUPERFLUID ORDER PARAMETER
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Coupled puddles probes non-local order parameter introduced by
Girvin and MacDonald, PRL 58, 1252 (1987)




Confronting
Assumptions

1. Are rubidium atoms in an optical lattice described
by the standard Bose-Hubbard model?

Only for n<2

2.Do interactions play any role in time-of-flight
expansion from an optical lattice?

No (for Rb and typical geometries)

3. Is the RF spectrum of bosons in an optical lattice
dominated by a single sharp peak?

Yes for Rb, No if interactions are stronger




Interactions during time-

of-flight expansion




Interpreting Time-of-
flight expansion

Standard Interpretation: Long-time expansion = Momentum distribution

Any atom that moves distance d in time t must
have momentum e md/t

B

All atoms are
initially at r=0

Requires: No interactions during expansion
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Interpreting Time-of-

flight expansion
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Requires: No interactions during expansion




......... C.on;folgfedl 3./m.1 1
VORTICES .
20+
IN TIME OF .
/—\10'
FLIGHT FROM g Feo
~— O 1Y .
A ROTATING =
OPTICAL 0
LATTICE 0
~30
t=2ms
30 —20 —10 0 10 20 30
r (pm)
(b)
éom.folw.ad 3 urr; . 15t
Assumes: 500 | _
no interactions _ ] I
during expansion 100 b 05k
el .
=] Q
= & L &
_100} —0.5F
—1 F
—200 ¢
_ 15t ) ..
= ne-time limi
Goldbaum and f0ms Longtime It

Mueller, PRA 2009 —200 —100 ? 100 200 ~15 -1 —05 3/02'5 115

(c) (d)




uantitative
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We now discuss briefly the effect of interactions on the
expansion, and show that this is negligible compared to
the finite ToF effect. When the cloud has just been re-
leased from the lattice potential, each on-site wavefunc-
tion W, expands independently with a characteristic ex-
pansion time w;', until t ~ t* = \/h/(wr,ER) where
the wavefunctions expanding from neighboring sites start
to overlap. At this time, in the usual situation where
wrt* > 1, the local density has dropped dramatically by
a factor (wpt)™3 < 1. Hence, the interaction energy con-
verts into kinetic energy on the time scale of a few oscilla-
tion periods only, and expansion becomes rapidly ballis-
tic. The parameter controlling the importance of interac-

1/4
tions is given by n = % ~ V8T 4 (EL;) i , with U
being the on-site interaction energy. For typical parame-
ters, n is small (for instance n ~ 0.05 for V) = 10 Er and
the experimental parameters of [3]). Hence, we expect
only small corrections to the non-interacting picture of
ballistic expansion. This has been confirmed using a vari-
ational model of the expanding condensate wavefunction
[15]. This model predicts that the ”Wannier” envelope
expands faster as compared to the non-interacting case,
which does not affect the interference pattern, and picks
up a site-dependent phase factor formally similar to the
Fresnel term discussed previously, but with a very weak
prefactor n < 1 which has negligible influence in prac-
tice. We conclude that interactions essentially contribute
to the expansion of the on-site wavefunctions, without
significant dephasing of the interference pattern.

Gerbier, Trotzky, Foeling, Schnorberger, Thompson, Widera, Bloch, Pollet, Troyer,
Capogrosso-Sansone, Prokof'ev, Svistunov, PRL 101, 155303 (2008)




Method

INITIAL: Gutzwiller Ansatz

Neglect interactions between atoms on different sites

AFTER EXPANSION:

T >0

sites number

7 n

S a0

number

n

Just time-evolve the n-body wavefunction on each site.
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INnteractions
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* Sites with more particles spread out more

* Too much spread -- only interfere in overlap
region

* Sites with more particles gain extra phase

* Dephasing Kills interference




Resu ‘t 2D lattice Vo = 10ER
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Confronting
Assumptions

1. Are rubidium atoms in an optical lattice described
by the standard Bose-Hubbard model?

Only for n<2

2.Do interactions play any role in time-of-flight
expansion from an optical lattice?

No (for Rb and typical geometries)

3. Is the RF spectrum of bosons in an optical lattice
dominated by a single sharp peak?

Yes for Rb, No if interactions are stronger




RF Spectra of Lattice

Bosons




RF Spectroscopy

COLD COLLISION SHIFT Sum Rule: Oktel and Levitov, PRL 83, 6 (1999)
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BOSONS IN OPTICAL LATTICE

Exp: Ketterle group [Science, 313, 649 (2006)] Thy: Hazzard and Mueller [PRA 2007]
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Beyond the sum rule

Previous assumption: Homogeneous spectrum is sharp
Line Shape in trap -- solely from inhomogeneities

Question assumption: Sun, Lannert, Vishveshwara, Phys. Rev. A 79, 043422 (2009)
(simple case -- violated sum rule)

PHYSICAL PICTURE

RF photon generates one of two
types of excitations

Homogeneous spectrum:
bimodal

Our new calculation: Random Phase Approximation




EOM approach to RPA

H = - Z tczacya"'z o T F C]oCJU+Z(Z_CJOC;JCj‘BCjﬂ)

o={a,b}.(i.j)
Hy = Z ’y(t)cbca + H.c.
j
Make time dependent variational ansatz

i n

[4(t) = ®[Z(fn( ) [1,0); + gn(t) In — 1. 1), )]
Minimize
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Solve EOM to linear order in Hys
plot rate of transfer vs frequency

SATISFIES SUM RULES, WARD IDENTITIES,...




Result -- Rb parameters

U.o — 10250, Rb
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Result -- Stronger int
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Hybridization
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Summary

1. Are rubidium atoms in an optical lattice described
by the standard Bose-Hubbard model?

Only for n<2

2.Do interactions play any role in time-of-flight
expansion from an optical lattice?

No (for Rb and typical geometries)

3. Is the RF spectrum of bosons in an optical lattice
dominated by a single sharp peak?

Yes for Rb, No if interactions are stronger




