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Abstract. This article briefly surveys the topological properties of DNA.
We sketch how the helical structure of DNA intimately links the geometry
and topology of the molecule. We then discuss the proteins responsible for
regulating this DNA geometry and topology, and the mathematical questions
that arise when understanding them. We next turn our attention to the site-

specific recombinases, proteins that change DNA topology as a by-product of
their primary action. We discuss one topological model that predicts the types
of knots and links that arise from site-specific recombination. We conclude
with a discussion of the tangle model, and give an extended example where it
was useful in understanding the mechanism of a site-specific recombinase.

1. Introduction

Historically, knot theorists were motivated in part by chemical considerations.
Lord Kelvin conjectured that different elements were comprised of different knotted
vortices of the then-fashionable pervasive ether. (See [85] for a great introduction
to the early history of knot theory.) His friend Peter Guthrie Tait, who was also
interested in vortex rings, began to classify knots and links, and produced the first
modern knot tables—on display at the British Library.

While the original applied motivation for understanding knots evaporated, knot
theory is once again being utilized by biologists and chemists. Beginning in the mid-
1980s, when linked and knotted DNA was first experimentally found, topologists
have played an increasing role in exploring the ramifications. This brief article
surveys some of the landscape charted out in the new interdisciplinary territory of
DNA Topology.

1.1. What this article covers. This article is based on a lecture given at
the 2008 AMS Short Course “Applications of Knot Theory”, organized by Erica
Flapan and myself, and so retains some of the informal tone of a lecture. The
audience—then and (intended) now—is mathematicians who know some topology,
and are interested in learning more about its interplay with molecular biology. Ac-
cordingly, here we give an introductory overview of this, focussing on knots in a
fundamental biochemical setting—those formed by DNA. We begin in Section 2,
by sketching the basic primary and secondary structure of DNA, and then shift our
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focus to the more topologically relevant tertiary structure. In Section 3, we model
DNA as a topological ribbon. We describe the Serret-Frenet framing, and introduce
the fundamental relation Lk = Tw + Wr. In Section 4, we discuss the importance
of DNA supercoiling for compactification, base-pair access and the free energy. In
Section 5, we give a brief overview of the two families of proteins, type I and type II
topoisomerases, that regulate DNA supercoiling and DNA knotting/linking, respec-
tively. We touch on the topological question of type II topoisomerase unknotting,
and its relation to the more general subject of knot adjacency. In Section 6, we
discuss the primary biological techniques to separate and distinguish DNA knots
and links. In Section 7, we introduce another family of DNA topology-changing
proteins, the site-specific recombinases. And finally, in Section 8, we discuss the
tangle model for site-specific recombination.

1.2. What this article doesn’t cover, and where to read more. Both
for space and expertise constraints, this article is a necessarily brief introduction
to an extraordinarily rich interdisciplinary area. So unfortunately, there are a
number of fascinating topics that we’ve only touched on or entirely neglected. For
example, we only briefly sketch the basic background material for the energetics of
DNA supercoiling. Similarly, our understanding of the structure and mechanism of
type II topoisomerases has radically improved in the past 18 months, particularly
with the emergence of the first crystal structure of a yeast-DNA co-complex [29].
Interested readers may also want to consult the Proceedings of the Topoisomerase
conference held in Norwich in July 2008 for more details. Likewise, we will gloss
over the many models of DNA migration through an electrophoretic gel. Also, we
will not discuss the beautiful rod models for DNA.

There are a number of general expository treatments of (facets of) this area.
We encourage the interested reader to consult, for example, the books of Volo-
godskii [98] and Frank-Kanemetskii [37], as well as overview articles by Pohl [73]
and Weber [103] (the last in French, but with a nice historical overview), and the
similar 1992 AMS short course [28]. From a more biological viewpoint, we rec-
ommend Maxwell and Bates’ DNA Topology [65], and Mobile DNA for more on
recombination. [21].

2. Structure of DNA

2.1. Primary and secondary structure. DNA, Deoxyribonucleic Acid, is
the molecule (or group of molecules) responsible for encoding all genetic information
and instructions in living organisms. The information stored in DNA determines
all hereditary traits, for example, eye colour and susceptibility to inherited diseases.
For this reason, DNA is often referred to as the blueprint (or more accurately the
recipe book) for life.

The structure of DNA was famously pieced together by Francis Crick and
James Watson, based on beautiful X-ray images of Rosalind Franklin [102]. DNA
is composed of pairs of repeated units called nucleotides. Each nucleotide consists
of a phosphate group, a (2′-deoxyribose) sugar, and one of four bases: Adenine,
Thymine, Guanine or Cytosine.

These nucleotides form a twisted ladder, the famous ‘double helix’ [102]. The
alternating sugar and phosphate groups form the backbones, or sides of the ladder,
and stacked pairs of bases form the rungs of the ladder. These bases always pair
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attention on the most prevalent (and hence relevant) structure, B-form DNA. This
is a regular right-handed helix with bases on the inside. Depending on its environ-
ment, there are approximately 10.5 base pairs per complete turn of the helix. We
will discuss this in more detail below. There is both a major and minor groove in
the helix. These grooves allow access to the base pairs.

The secondary structure of DNA, its helical geometry, also has deep biological
consequences. For example, the double helix is more difficult to unzip than a
straight ladder. This difficulty in accessing the base pair rungs results in fewer
accidental changes to the DNA sequence, thus protecting the genetic code.

2.2. Tertiary structure. A decade after the double helix discovery, Vinograd
found the fundamental tertiary structural feature: the axis of the DNA can also be
coiled in space [84], leading to ‘supercoiled’ DNA. (To visualize this, imagine the
handset cord of an often-used phone: it is highly twisted, possibly crossing itself
and is under tension.)

The DNA axis is often linear, as in the case of human genomic DNA. Linear
DNA is often attached to a protein scaffolding which constrains the topology, for
example during nucleosomal compactification discussed in Section 4.1 below.

Perhaps more interestingly, the DNA axis is frequently circular—this occurs
when the ends of the 2 backbone strands are covalently bonded. Bacterial genomic
DNA, chloroplast DNA, and human mitochondrial DNA are all examples of DNA
with a circular axis. Additionally, most DNA used in biochemical labs, plasmid
DNA, is circular.

Even more interestingly, the central DNA axis can also be knotted or linked.
For example, DNA knots and links (known as catenanes in the biological literature)
occur during replication (DNA copying) and recombination (DNA rearranging). We
will discuss DNA knots and links below in more detail. For now, we emphasize that
the constrained or circular axis, coupled with the two levels of coiling (the double
helix and supercoiling), already leads to the nontrivial topology of DNA.

3. DNA as a topological ribbon: Lk = Tw + Wr.
The interplay between topology and geometry

From the outset, characterizing supercoiled DNA required a combination of
mathematicians and biologists. Călugăreanu [13] and White [105] formulated a
fundamental relation for space curves: Lk = Tw + Wr. Two geometric quantities,
Twist and Writhe (that may change under deformations of the curves) sum to a
topological quantity, Linking Number (which is invariant under such deformations).
It took the combined efforts of Fuller (a mathematician) and Vinograd (a biolo-
gist) to translate Călugăreanu and White’s and relation into biological terms and
recognize its fundamental importance for DNA [39].

To understand this relation, we shall model a molecule of circular DNA as a
twisted ribbon. For each of the two backbones, we associate a curve in 3-space (an
edge of the ribbon). By convention we name the backbones C and W , after Crick
and Watson. The orientation of these two ribbon edges will be taken to be parallel,
and so not actually inheriting the natural orientation from the underlying chemical
structure.
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These curves C and W are linked around each other, and in fact the ribbon
itself can be knotted. Likewise, if we consider more than one DNA molecule, the
ribbons themselves can be linked. We formalize this in terms of the linking number,
Lk:

Definition 3.1. Given a projection of an oriented two-component link, to each
crossing assign a ±1, depending on the orientation of the two strands.1 The linking
number, Lk is one-half their sum:

Lk =
1
2

∑
crossings

±1.

As discussed in Colin Adams’ companion article, Lk is independent of the
particular projection and is a topological invariant of the embedding of the ribbon
[1]. (As before, we say two embedded ribbons are equivalent if there exists an
orientation-preserving diffeomorphism of S3 or R3 which sends one ribbon onto the
other.

For a circular DNA molecule, the two DNA backbones, C and W , form a
(2, m)-torus link. A (2, m)-torus knot or link is one which can be drawn so that all
of its crossings occur as a row of m (positive or negative plectonemic) crossings, as
illustrated in Figure 10. Note that if m is odd, then T (2, m) is a knot and if m is
even, then T (2, m) is a link.

Lk can be defined in a variety of equivalent ways; see Rolfsen [79]. One alter-
nate description of Lk is in terms of Gauss’ integral:

(3.1) Lk =
1

4π

∫
C

∫
W

(x′ − x)(dydz′ − dzdy′) + (y′ − y)(dzdx′ − dxdz′) + (z′ − z)(dxdy′ − dydx′)

[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2

where (x, y, z) ranges over C and (x′, y′, z′) ranges over W . (Note: This is the
pullback of the area form on S2 in S3.)

3.1. Frenet framing. Roughly, we construct the Frenet framing for a regular
closed space curve γ(s), as follows. (For a more detailed treatment, see [74].)
Suppose we have a simple closed curve γ(s), parametrized by arc length s. Then
the tangent vector, T , has length 1: ||T || = ||γ̇(s)|| = 1. Then γ̇(s).γ̇(s) = 1, and
so γ̈(s) is perpendicular to γ̇(s), i.e. γ̈(s) is a normal vector. (Note: Since γ(s) is
regular, then γ̇(s) �= 0 by definition.) For simplicity, we will normalize this so that
our normal vector, N , is also a unit vector: N = γ̈(s)

||γ̈(s)|| for all s such that γ̈(s) �= 0.
We then consider the binormal B := T × N .

Since T , N and B are orthonormal, they form a basis so that any other vector
can be described as a linear combination of these—in particular, each of the vectors
Ṫ , Ṅ and Ḃ can be described as such. Given Ṫ = aT + κN + cB, for some a, κ, c,
then a = 0 since by above Ṫ is perpendicular to T . Also, since N = Ṫ

||Ṫ || , then

c = 0 and so κ = ||Ṫ ||. (κ is often called the curvature; at a given point on γ(s),
since T and Ṫ span a plane, within that plane one can draw a circle tangent to γ(s)
with maximal radius 1

κ .)
Similarly, Ṅ = −κT + τB, where τ is often called the torsion, a measure of

how nonplanar the curve is. Finally, Ḃ = Ṫ ×N + T × Ṅ = 0 + T × (−κT + τB) =
−κτT + τ2B = τṄ .

1Unfortunately, the convention adopted by biologists in the field is opposite to the usual
topologists’ convention.
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These 3 relations form the Serret-Frenet equations:

(3.2)

Ṫ = κN,

Ṅ = −κT + τB,

Ḃ = −τN.

These crossings of the 2 backbone curves come in two flavours: local and non-
local. Local crossings occur when viewing a segment of the ribbon almost edge-on,
while nonlocal crossings occur when one segment of the ribbon crosses entirely over
another. In the latter case the axis of the ribbon is also crossing over itself. (For
an elegant description of this, and a rigorous characterization of Twist in terms of
these local crossings; see [25].)

3.2. Twist. The local crossings reflect how tightly the ribbon wraps (or twists)
around its central axis. In terms of our DNA double helix, these local crossings
indicate the helical pitch (i.e. number of base pairs per complete revolution).

Intuitively, one can imagine stringing a penny onto the curve. If we marked
the northern pole, then Tw would measure how this marked point changes as we
slide the penny along the curve.

More precisely, we quantify this as Twist, Tw, using the Frenet framing, as the
total torsion of the curve γ(s):

Tw =
1
2π

∫
γ(s)

(T × N).Ṅds =
1
2π

∫
γ(s)

τds.

Then in the Frenet framing, (T ×N).Ṅ is the projection of Ṅ in the direction
of B, so by the Serret-Frenet equations, = τ .

3.3. Writhe. Writhe is an indicator of how the ribbon axis itself is contorted
in space. If we consider the axis as inheriting the orientation of the two ribbon
edges, we can sum the signed crossings of the axis with itself. This quantity is
called the writhe, Wr. Note that Wr is projection-dependent, in particular a
Reidemeister Type I move will contribute a ±1 to Wr. Unsurprisingly then, Wr
is not a topological invariant—it depends on the particular geometry of a given
projection. (Note that this terminology varies in the literature. For example,
Weber calls the signed sum of the crossings of a projection the Tait number of the
projection. Then the writhe of a simple closed curve in S3 or R3 is the average of
the Tait numbers over all projections [103]. However, we will follow the (perhaps
misleading) most common nomenclature used in the biological literature.)

More formally, we can consider writhe in terms of Gauss’ integral, as in for-
mula (3.1), with the axis representing both the C and W curve.

With this definition Wr can then be thought of in terms of the Gauss integral
as Lk above, with both integrations along the same curve (the ribbon axis).

For a DNA molecule, the self-crossings of the DNA axis contribute to writhe.
The closest macroscopic analogue is the handset of an old-fashioned telephone re-
ceiver, attached to the base by a helical cord. During normal use, the cord gains
writhe, which is released by holding the cord near the base and letting the dangling
handset spin.

As mentioned above, this relation between the topological and geometric prop-
erties of a ribbon was first discovered by Călugăreanu [13] and White [105]. Its
relevance to DNA was first noted by Fuller [39].
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Theorem 3.2 (Călugăreanu-White-Fuller). Lk = Tw + Wr.

Biologists often visualize this correspondence using a length of Taigon clear
plastic tubing, with two parallel curves drawn along the length, each representing
one edge of the ribbon. By twisting and/or coiling the tubing before closing the
ends, it helps to visualize the relation between Twist and Writhe.

Figure 2. Twist and Writhe. From Biochemistry by Donald Voet
and Judith G. Voet (2004). Reproduced with permission of John
Wiley and Sons Ltd.

For a modern treatment of this, see Dennis and Hannay [25]. For a more
detailed discussion of these differential geometric notions in terms of DNA, see
Weber [103] or Pohl [73].

4. Biological importance of DNA supercoiling

Recall that within the context of circular DNA, nontrivial writhe occurs most
commonly when the DNA axis wraps around itself in a helical manner, as discovered
by Vinograd and colleagues [84]. This is more precisely referred to as plectonemic
supercoiling, to reflect the coiled (writhed) axis of the already coiled (helical) ribbon.
Throughout we will use the term ‘supercoiling’ to mean ‘plectonemic supercoiling’.
(DNA can also wrap around proteins, as discussed below, and this type of nontrivial
writhe is referred to as solenoidal supercoiling.)

This ‘supercoiled’ DNA was found to be the native state in virtually all cells
[17]. DNA extracted from cells from a wide variety of organisms, including cauli-
flower, humans, mice and monkeys, was found to be (plectonemically) supercoiled
at approximately the same density.

We can quantify this density as follows. Given N , the number of base pairs
of DNA and h, the number of base pairs per helical repeat in given experimental
conditions, then the specific linking difference is σ:

σ =
Lk − N/h

N/h
.
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DNA supercoiling is ubiquitous because supercoiling is crucial for three primary
reasons. Firstly, it compactifies the DNA molecule. Secondly, the handedness of the
supercoiling opens the major/minor grooves for easier access to the base pairs. And
thirdly, supercoiled DNA provides an important source of free energy for cellular
reactions.

4.1. Compactification. In all organisms, the physical length of genomic
DNA is considerably larger than the diameter of the region it resides within. In
prokaryotes, the DNA floats freely around the cytoplasm, while in eukaryotes the
DNA is encapsulated within the cell nucleus. Eukaryotic genomic DNA is orders
of magnitude longer, so while the typical compactification needed to store DNA in
prokaryotes is significant, it is even more dramatic in eukaryotes. For example, the
most common bacteria E. coli has genomic DNA of length approximately 1.5mm,
and cell diameter less than 1 µ meter, requiring on the order of 103 compactifi-
cation. Human genomic DNA is approximately a meter in length and a typical
cell nucleus has diameter less than 1µm, so the compactification needed is on the
order of 106. One of the most challenging packing problems is that of the South
American lungfish, whose DNA is on the order of 35 meters.

Supercoiling is the first step of a hierarchy of compactification, the later stages
of which are still poorly understood. The (plectonemically) supercoiled DNA mol-
ecule then wraps around large proteins called histones. Then the histones string
together like pearls on a necklace. This chain of histones is then further compacted,
possibly as suggested in Figure 3.

Thus supercoiling allows the DNA to be packaged in a tightly confined volume
in a highly structured, organized manner. The orderliness of this process is crucial
for efficient information retrieval—as (segments of) DNA must be accessed rapidly
and constantly by proteins.

4.2. Access to the base pairs. The handedness of DNA supercoils in vivo
is negative. That is, the helix formed by the DNA axis is opposite in handedness to
the original double helix. If the circular molecule remains covalently closed while
supercoiling, then the linking number Lk remains constant. Then Lk = Tw + Wr
implies that their must be a compensating change in Tw.

The handedness of the supercoils means that the molecule becomes under-
twisted. Then the major and minor grooves, illustrated in Figure 1, open a small
amount. This allows easier access to the corresponding base pairs, facilitating a
wide variety of reactions. It also makes it easier to separate the DNA strands,
necessary for example for copying DNA.

4.3. Free energy. As noted above, unzipping the DNA double helix can be
difficult. But many essential reactions, including DNA copying, demand exactly
this. Fortunately, Theorem 3.2 implies that the linking number of negatively su-
percoiled DNA (the natural state of DNA in cells) will be lower than that of relaxed
DNA. It is this linking number ‘deficit’ of supercoiled DNA that provides the nec-
essary energy for local strand separation.

In addition, for many biological processes involving DNA, including helical
wrapping around histones and phage head packing, the DNA axis must be twisted
or bent [83]. To understand the energetics of these processes, we briefly discuss
how the free energy depends on linking difference.
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Figure 3. Compactifying DNA. Courtesy: National Human
Genome Research Institute

For DNA rings larger than 2000bp, it has been experimentally shown in
[27], [75], that the free energy of supercoiling, ∆G, obeys the quadratic relation

(4.1) ∆G = K(α − α0)2

where K is a proportionality constant (which depends on N , the number of base
pairs), α is the linking number, and α0 (for large DNA) is the average linking
number. (Note that α0 can be independently defined as N/h0 where h0 is the
helical repeat, or average number of base pairs over which the helical twist of the
DNA double helix increases by one.) For large N , the product NK has been
experimentally shown to be independent of length [49].

5. Regulating DNA topology

DNA molecules that differ only in Lk (not, e.g. sequence or length) are called
topoisomers. By standard thermodynamics, the concentration of DNA with linking
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number αi, [αi], is

(5.1) [αi] =
1
Z

exp
(
−∆G

RT

)
,

where Z is a normalization constant, T is the temperature in Kelvin, and R is
Boltzmann’s constant. Thus, the concentration of a given topoisomer with linking
number αi, is

(5.2) [αi] =
1
Z

exp
(
−K(αi − α0)2

RT

)
.

The graph of αi v. [αi] for equilibrium populations of topoisomers of large DNA

rings is a normal distribution with center α0 and standard deviation
√

RT
2K .

To maintain this equilibrium population, two families of proteins have evolved,
the topoisomerases2. Topoisomerases are so-called because the primary function is
to interconvert between topoisomers. Topoisomerases are classified into two fam-
ilies, depending on whether they cleave 1 DNA backbone and hence change the
linking number by steps of 1 (Type I topoisomerases) or both backbones and hence
change linking number in steps of 2 (Type II topoisomerases).

We briefly discuss these two families below, but emphasize that we are glossing
over many of the subtleties of topoisomerases—in particular, the minor differences
between family members of a given type. We refer the reader who is interested in
exploring more in these remarkable proteins to look at, e.g. [65].

5.1. Regulating DNA supercoiling: Type I topoisomerases. Given the
fundamental importance of DNA supercoiling, it is perhaps not surprising that there
are proteins whose sole function is to regulate the amount of supercoiling—the
Topoisomerase I family. Members of this family relax (negative, and in eukaryotes,
also positive) supercoils (See Figure 4.)

Type I topoisomerases effectively harness Theorem 3.2, to convert a change in
twist to a change in writhe (supercoiling). They bind (nonspecifically) to the DNA
molecule, make a transient break in one of the DNA backbones and then pass the
other backbone through before resealing and releasing the DNA. This changes the
twist, and thus for a circular or topologically constrained molecule, changes the
writhe.

One example where type I topoisomerases naturally come into play is when
the DNA helix is unzipped, for example during DNA replication (copying). If
the molecule is constrained at the end where the unzipping fork is heading, then
supercoils build up in advance of the unzipped region. If a type I topoisomerase
does not release the supercoils, then eventually the torsional strain becomes too
extreme and the DNA molecule breaks.

Type I topoisomerases are found in all organisms studied thus far, and loss of
these proteins is lethal to the cell.

2We will consider proteins, imprecisely, as small molecular machines that act on DNA. Like
DNA, they are biopolymers. The fundamental unit is an amino acid (e.g. lysine, tyrosine or
glutamine), rather than a nucleotide. There are 20 different flavours of amino acids, and the exact
composition and ordering of these amino acids determines the shape and function of the protein.
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Figure 4. Action of Topoisomerase I. From Biochemistry by Don-
ald Voet and Judith G. Voet (2004). Reproduced with permission
of John Wiley and Sons Ltd.

5.2. Regulating DNA knotting and linking: Type II topoisomerases.
Like type I topoisomerases, Type II topoisomerases are also both ubiquitous and
essential. Their primary function is to change DNA knot or link type, but they can
also remove or (in the case of DNA gyrase) add DNA supercoils.

One example where type II topoisomerases naturally come into play is when
circular DNA (such as bacterial genomic DNA) is replicated. The end result of
this process is two linked circular molecules. If a type II topoisomerase does not
unlink the two daughter molecules, then the bacterial cell cannot divide properly
and commits suicide.

Because of their crucial role in many cellular processes, type II topoisomerases
have been drug targets for both human cancer and infectious diseases [38, 61]. For
example, since bacterial type II topoisomerases differ from human, many antibiotics
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work by inhibiting these proteins, killing the bacterial infection by inhibiting un-
linking of daughter DNA as described above. Thus from both a basic biochemical
and pharmaceutical perspective, understanding the mechanism by which type II
topoisomerases act has been very important.

5.3. Mechanism of type II topoisomerases. One might assume that type
II topoisomerases, as small molecules, act independently of the global DNA topol-
ogy. Surprisingly, however, they act in a manner that preferentially unknots and
unlinks DNA—this is known in the literatures as topological simplification. Fur-
thermore, type II topoisomerases simplify DNA topology in an extraordinarily ef-
ficient manner [80]. Exactly how this is achieved has been intensely debated.

What is generally agreed on is that a generic type II topoisomerase binds to
helix-helix juxtapositions, such as a supercoil or knot/link crossing (see Figure 5).
The first helix, called the G (for Gate) segment is broken to allow the T (Trans-
ported) segment to pass in a unidirectional manner [3]. The G segment is then
resealed, resulting in a crossing change (from +1 to −1 or vice versa). This pro-
cess relies on ATP hydrolysis. [3]. A beautiful recent crystal structure of a type
II topoisomerase bound to the G segment elegantly demonstrates that a type II
topoisomerase severely bends the DNA (approximately 150◦) [29]. This supports
models that incorporate DNA bending [11, 99]. We discuss two in some detail
below.

The first model, jointly proposed by a topologist (G. Buck) biologist (L. Ze-
ichiedrich) [11], describes how the local information obtained at a crossing can be
used to determine the global topology. They classify crossings in terms of several
vector parameters, and show that certain crossing types, ‘hooked junctions’, are
associated to nonsupercoiled crossings. Crossing changes at these hooked junctions
are then more likely to lead to topological simplification.

The second model [99] by Vologodskii and co-workers, gives numerical (Monte
Carlo simulations) and indirect experimental evidence that a type II topoisomerase
actually bends the G segment into a hairpin conformation upon binding. There
is some experimental evidence that DNA knots localize, which would lead to the
T-segment inside the hairpin more often for knots than for unknots.

5.4. Topological and numerical strategies to understand type II topo-
isomerase unknotting. Topologically, understanding type II topoisomerase un-
knotting is part of a larger movement to understand what knots can be obtained
from a given one via a single crossing change, that is, by a single round of topoi-
somerase relaxation. In general, this is very large question—for example, one area
of knot theory research has been to (so far incompletely) classify all knots with
‘unknotting number 1’—that is, all knots that become the unknot after a single
crossing change.

More generally, the Gordian or strand passage distance between any 2 links or
knots K and L, d(K, L) is defined to be the minimum number of crossing changes
(+1 to −1 or v.v.) needed to convert K into L, taken over all projections. It is a
metric on the space of knot types—e.g. d(K, L) is less than or equal to the sum of
their unknotting numbers.

In this framework, we can consider which knots L are adjacent to a given knot
K—i.e. L, s.t. d(K, L) = 1 or equivalently which knots L are a single TopoII
move from K. Recently, there has been a flurry of activity in this area of ‘knot
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Figure 5. Rough mechanism of a type II topoisomerase.
Reprinted by permission from Macmillan Publishers Ltd.: Nature,
Structure and mechanism of DNA topoisomerase II. J. M. Berger,
S. J. Gamblin, S. C. Harrison, J. C. Wang (1996).

adjacency’. The problem has been attacked using both finite-type invariants and
Dehn surgery techniques. There has been some progress using both, in particular
to determine bounds on adjacency number in terms of knot genus. (Recall that
the genus g of a knot K is the minimal genus of an orientable spanning surface for
K.) One example of this is via knot concordance, since distance g knots can be
thought of as together bounding a smoothly embedded genus-g surface in 4-space.
Applications to unknotting number and knot adjacency arise from the Heegaard-
Floer knot homology of Ozsvath-Szabo and Rasmussen and from Khovanov-type
knot homologies (due to work of Rasmussen [76] and Lobb [64]). Each of these
theories are now combinatorial in nature, and so provide computable lower-bounds
for knot adjacency. In particular, they have been used to classify all knots K with
9 or fewer crossings and u(K) = 1 [71].

Because DNA is plectonemically supercoiled, then some of the most common
DNA knots and links are members of the 4-plats : knots or 2-component links that
admit a projection consisting of a braid on 4 strings, with one strand free of cross-
ings3. Considering the smaller question for 4-plat knots and links has been more
tractable, and there has been quite a bit of progress in this area already. For ex-
ample, Kanenobu and Murakami classified all unknotting number one 4-plat knots
[52], and Kohn classified all unlinking number one (necessarily 2-component) 4-plat

3We will discuss 4-plats in more detail in Section 8 below.
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links [55]. More generally, a classification of adjacent 4-plats was given indepen-
dently by Torisu, Darcy and Sumners, and John Berge [93, 24]. So in theory one
could determine exactly when two knots were related by a single TopoII move, and
the distance between any two 4-plats (i.e. the minimum number of times TopoII
must act to convert K into a different given 4-plat type). For approximately 20
low-crossing knots and their mirror images, Darcy has a table determining these
distances [24]. On the Heegaard-Floer homology side, although a priori the ho-
mologies are harder to compute the higher the crossing number of K, for 2-bridge
knots the computations are easier (for example [77]).

In parallel, numerical simluations by Stasiak and collaborators have investi-
gated the probability of K being converted into L (where possibly K � L) via
a single type II topoisomerase [90]. Loosely, they begin with a closed knotted
polymer chain, randomize it via crookshank moves, and then allow 1 more move
that could (or could not) involve a single strand passage. They then calculate the
new knot type. Some interesting things emerge—e.g., in 95% of the cases for the
unknot, a single intersegmental passage returned the unknot again.

They (nicely) imagine the knot space as a foam, with a crossing change corre-
sponding to moving between two adjacent bubbles. Then they consider the areas
between different neighbouring knot spaces, in particular, whether there is a relation
between the physical 3-D space available for configurations of a given knot and the
high-dimensional configuration space occupied by the same knot type. They argue
that only the probability to maintain the knot topology (i.e. the unknot remaining
the unknot after a single crossing change) is related to the Length/Diameter ratio
of the ideal configuration of the knot. This probability gave them a way to estimate
the surface-to-volume ratio of configuration spaces of various knots.

6. Determining DNA topology

As discussed in Section 2.2, DNA knots and links (aka links) have been im-
plicated in a number of cellular processes (see [65, 18] and references therein).
They can occur as a result of replication (discussed above) and recombination (dis-
cussed below). Knots and links also arise as the products of, i.e. as the result
of enzyme action. In addition to the topoisomerases, discussed above, knots and
links also arise as products of reactions from two other protein families, the re-
combinases and transposases [18, 72]. Most prevalently, DNA knots and links
arise as products of certain laboratory experiments (called ‘topological enzymol-
ogy’ experiments) on artificially constructed small (5–10 kb) circular molecules
[101, 47, 66, 51, 22, 48, 23, 20, 86, 16]. These product knots and links can help
determine the binding and mechanism of the protein being studied. The variety of
DNA knots and links observed has made biologically separating and distinguishing
these molecules a critical issue.

Knotted DNA was first discovered in the lab in 1981 by Liu and Davis [63].
Experimentally, DNA knots and links can be resolved in two ways: via electron
microscopy or electrophoretic migration [56, 92, 107].

DNA molecules have been visualized beautifully by electron microscopy. (See
Figure 6.) In this process, the entire DNA molecule is ensheathed in a (RecA)
coating, which thickens and stiffens the molecule. It is then possible to determine
the sign of the axis crossings and thus definitively determine the precise knot or link
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type. However, this process can be labourious and difficult, particularly produc-
ing a relatively large amount of knotted/linked DNA and deciphering the sign of
crossings. Perhaps unsurprisingly then, there are only a few dozen such published
electron microscopy images of DNA knots and links, and only a few labs (most
notably Andrzej Stasiak’s) that have developed the necessary expertise.

Figure 6. Electron microscope image of knotted DNA. Courtesy:
Shailja Pathania

A much more widespread (but incomplete) technique to separate DNA knot
and link types is that of agarose gel electrophoresis. To do this, the DNA is first
nicked—that is, one backbone strand is cut to release any supercoils. Next, one
prepares a slab of jello-like substance from agarose, a seaweed derivative. This gel
slab is then placed in an aqueous bath, a current is run through the bath, and DNA
is pipetted into one end of the gel. Recall from Section 2.1 that the DNA backbones
are composed of alternating sugar and phosphate groups. These phosphate groups
are negatively charged, and so the DNA will migrate to the positive end of the
gel. If all the nicked DNA pipetted in is of the same molecular mass and sequence,
then this process, gel electrophoresis, will stratify DNA knots and links. Under UV
light, this appears as a series of dark bands marching down the white gel. Each
band corresponds to many DNA molecules, and its intensity is proportional to the
amount of DNA present.

Gel electrophoresis is straightforward and requires relatively small amounts
of DNA. Typically the distance a given knot or link migrates through the gel is
proportional to the minimal crossing number (MCN, the fewest number of crossings
with which it can be drawn). Under standard conditions, knots of greater MCN
migrate more rapidly than those with lesser MCN [53, 91, 60]4

However, there are 1,701,936 knots with MCN ≤ 16, so a better stratification
is needed to positively identify a particular knot [50]. By cleverly running the
DNA in a second dimension, 2-dimensional gel electrophoresis can separate some
prime knots with the same MCN [92]. Unfortunately, there is no clear relationship
between relative migration of knots with the same MCN in the second dimension.

4However, there are gel conditions where, for example, the unknot will migrate ahead of the
trefoil.
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Figure 7. Gel electrophoresis of linked DNA. In this image, the
DNA was travelling towards the bottom of the page. (Author’s
Gel.)

In some cases, for DNA of a given length, (1-dimensional) gel electrophoresis
can separate some knots with the same MCN. For example, the five and seven-
crossing torus knots migrate more slowly than the corresponding five and seven-
crossing twist knots [53, 97]. This has not generalized, although recent experiments
tantalizingly indicate that knots and links may migrate linearly with respect to the
average crossing number of a particular conformation—the ideal configuration5 of
the knot or link [97, 58, 54].

To further complicate matters, gel electrophoresis is incomplete in that adjacent
bands determine only relative MCN or average crossing number, not precise values.
That is, give two DNA molecules A and B, if A runs further through the gel than B,
then A has a higher MCN than B, but one cannot immediately generalize whether
MCN(A) = MCN(B) + 1 or MCN(A) = MCN(B) + 2, etc. Nor can one determine
if MCN(B) = 3, say, or 4 without further analysis.

Thus gel electrophoresis and electron microscopy are often used in tandem.
First DNA is run through a gel to isolate a knot with a given MCN, and the
particular band of interest is physically cut out of the gel. This DNA is further
purified, and then examined via electron microscopy to determine the precise knot
or link type.

To attempt to determine the exact knot or link type without resorting to elec-
tron microscopy, one must also construct an appropriate control: a knot ladder.
This is a solution of DNA molecules whose precise MCN are known, which is then
pipetted into an adjacent well to the unknown DNA in the gel. These known knots
or links then serve as markers in the gel in which to calibrate the DNA molecules of
interest. While this can be done in some cases (e.g. T4 topoisomerase will produce
a ladder of twist knots [100]), generating such a ladder of known knots and links
from DNA of the same length and similar sequence as the unknown knots is highly
nontrivial.

Because of the challenges inherent in both electron microscopy and gel elec-
trophoresis, new methods for determining (or predicting) the precise DNA knot or

5Ideal geometric configurations of knots are the conformations that allow maximal radial
expansion of a virtual tube of uniform diameter centered around the knot [45, 54]. There is a
growing amount of mathematical literature on these ideal configurations. Originally they were
determined computationally, but recent analytic work ([15] and separately [41]) has proven the
existence and uniqueness of these solutions.
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link type has been an active arena for both mathematicians and experimentalists
(see below). More generally, modelling DNA migration through a gel is an active
area of research.

7. Changing DNA topology: Site-specific recombination

As discussed above, the sole function of type II topoisomerases is to change
DNA knot or link type. We now turn our attention to knots and links that arise
from the action of another family of proteins, the site-specific recombinases. These
proteins mediate site-specific recombination, the reshuffling of the genetic sequence,
for example changing GATTACA into ACATTAG.

Site-specific recombination is important because of its key role in a wide variety
of biological processes. The result of site-specific recombination is the deletion,
insertion or inversion of a DNA segment. (See Figure 8.) This corresponds to a
wide variety of physiological processes, including crucial steps in viral infections.

Figure 8. Outcomes of site-specific recombination.

In addition to their inherent biochemical interest, pharmaceutical and agricul-
tural industries have become increasingly involved in genetically modifying organ-
isms or testing whether a mutation in a particular gene leads to a disease. As a
result, these industries are now interested in site-specific recombinases as tools for
precisely manipulating DNA (e.g. [36]).

While changing DNA topology is not the primary function of these site-specific
recombinases, it can be a byproduct of the reaction. If the original circular DNA is
supercoiled, the supercoils can be converted into knot or link crossings during the
process of recombination. (See [7] or [21] for more information.)

7.1. The mechanics of site-specific recombination. Minimally, site-
specific recombination requires both the site-specific recombinase and two short
(30–50bp) DNA segments, the crossover sites, inserted into 1 or 2 small circular
DNA molecules [44]. If there are 2 crossover sites on a single molecule of circular
DNA, they can be in either direct orientation (head-to-tail, e.g., ...ATGC...ATGC)
or inverted orientation (head-to-head e.g. ...ATGC...CGTA). (See Figure 9.) Larger
site-specific recombination systems can also require additional proteins and DNA
sites.

During site-specific recombination, two recombinase molecules first bind to each
crossover site. The two crossover sites are then brought together within a recombi-
nase complex, B: the smallest convex region containing the four bound recombinase
molecules and the two crossover sites [88]. So B is a topological ball (i.e., it can be
deformed to a round ball). The crossover sites can be located either on the outside
or inside the 4 recombinase subunits [59, 70, 66, 62, 30, 46, 78, 4].
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Figure 9. On a circular DNA molecule, the two crossover sites
can be in direct (left image) or inverted orientation.

Site-specific recombination roughly has three stages. First, two recombinase
molecules bind to each of two specific sites on one or two molecules of circular
DNA (known as the substrate) and then bring them close together. The sites and
bound proteins together are called the recombinase complex. Next, the sites are
cleaved, exchanged and resealed. The precise nature of this intermediary step is
determined by which of the two recombinase subfamilies the particular protein
belongs to. And finally, the rearranged DNA, the product, is released.

Multiple rounds of strand exchange can occur before releasing the DNA—this
process is known as processive recombination. This is in contrast to distributive
recombination, where multiple rounds of the entire process of recombination (in-
cluding releasing and rebinding) occurs.

7.2. The two families of site-specific recombinases. Site-specific recom-
binases fall into two families—the serine (also known as the resolvase) and tyrosine
(also known as the integrase) recombinases—based on the particular amino acid
in the protein polymer that catalyzes the cleaving reaction [44]. The serine and
tyrosine recombinases also differ in their mechanism of cutting and rejoining DNA
at the crossover sites. Both families are large: an evolutionary analysis has been
performed on 72 serine recombinases [87] and a recent sequence search documents
approximately 1000 related sequences of putative tyrosine recombinases [2].

The diverse family of serine recombinases is comprised of four subfamilies6 [87].
These recombinases may trap a fixed number of supercoils before initiating recom-
bination [44]. For example, Tn3 resolvase requires three negative supercoils to be
trapped by the binding of (nonactive) resolvase molecules. These trapped supercoils
(outside of the recombinase complex) together with the recombinase complex itself
are known as the synaptic complex [101, 88]. Likewise, the invertases also require a
fixed number of supercoils trapped outside the recombinase complex. Rather than
using additional recombinase molecules, they rely on additional proteins (called ac-
cessory proteins) and DNA sites (called enhancer sequences), which facilitate the
organization of a unique synaptic complex that promotes DNA cleavage.

With serine recombinases, recombination proceeds through a concerted 4-back-
bone cleaving and rejoining reaction [44]. Serine recombinases can perform proces-
sive recombination.

In contrast, tyrosine recombinases first cleave, exchange and reseal two sugar-
phosphate backbones. The DNA-protein complex then proceeds through an inter-
mediary structure (a Holliday junction) before repeating the process with the other

6resolvases (such as Tn3 and γδ), invertases (such as Gin, Hin, Pin, and Min), large serine
recombinases (also called large resolvases) and IS elements.
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two DNA backbones [43, 44]. Most tyrosine recombinases, including the most fa-
mous members Flp, λ Int and Cre, tolerate varying numbers of supercoils outside
of the recombinase complex. (However, there are exceptions, most notably XerCD,
which trap a fixed number of supercoils using accessory proteins before initiating
cleavage [16]). Like serine recombinases, tyrosine recombinases can also employ
accessory proteins to help assemble the synaptic complex, and to drive the overall
reactions (e.g. λ Int and XerCD) [16, 4].

7.3. DNA knots and links as recombination products. As mentioned
above, site-specific recombination can transform supercoiled circular DNA into a
knot or link. Given a substrate with crossover sites in a particular orientation, a
single round of recombination mediated by a serine recombinase yields a unique
topological product. For example, Tn3 acting on an unknot with direct sites yields
exclusively the (2,2)-torus link (the Hopf link). Multiple rounds of processive re-
combination successively lead to the figure eight knot 41, the Whitehead link 52

1 and
the six-crossing knot 62. By contrast, a single round of recombination mediated
by a generic tyrosine recombinase yields a spectrum of DNA knots or links7. For
example, Flp acting on an unknot with direct sites yields the unlink and a variety
of 2-torus links: 22

1, 4
2
1, 6

2
1, 8

2
1, 102

1, 122
1, and higher-crossing links as well. This distri-

bution of knot/link products should reflect the supercoiling density of the substrate
DNA.

Understanding precisely which knots and links arise during site-specific recom-
bination can help understand the details of the process, e.g. [42]. Topological tech-
niques have played a significant role in characterizing knotted and linked products
of site-specific recombination. For example, several approaches have been developed
to determine a particular DNA knot or catenane type, including utilizing the node
number for knots [18], the Jones polynomial for catenanes [6], Schubert’s classifi-
cation of 4-plats [104] and the HOMFLY polynomial [106]. Below, we discuss two
large topological contributions to our understanding of site-specific recombination.

7.4. Predicting DNA knot and link products. Recently, Buck and Fla-
pan [8, 7] developed a predictive model for DNA knots and links that arise as
products of site-specific recombination. More specifically, rather than focusing on
a specific recombinase as many earlier studies have done, the authors presented
a topological model that predicts which knots and links can occur as products of
site-specific recombination in general. They do this by describing the topology of
how DNA knots and links are formed as a result of a single—or multiple rounds
of processive—recombination event(s), given a plectonemically supercoiled unknot,
unlink, or T (2, m) torus knot or catenane substrate. (See Figure 10 for illustrations
of each substrate type.)8

The general idea is to consider a ball B containing the convex hull of the
four recombinase molecules, and a spanning surface D (consisting of a disc for
the unknot, two disjoint discs for the unlink, or twisted band for a torus knot or
link) whose boundary is the unrecombined DNA axis. Then consider D ∩ B pre-
recombination and post-recombination. Similarly, characterize D ∩ cl(S3 \ B) for
each substrate. Restrict these possibilities using topological arguments. Then glue

7There are a few exceptions to this, for example the tyrosine recombinase XerCD. However,
in this introductory article we will consider only the generic case.

8Note: All figures represent the axis of duplex DNA.
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Figure 10. Above: Possible conformations of the recombinase
complex. Below: Possible substrates: the unknot, unlink, or torus
knot or link.
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Figure 11. Product family, and subfamilies. Note that this fam-
ily contains the same torus knots and links as subfamily 1.

each of the post-recombinant forms of D ∩ B to each form of D ∩ cl(S3 \ B) to
classify possible product knots and links.

The model is independent of the size of the substrate, the sign of the super-
coils and the site orientation. The model relies on three assumptions, each sup-
ported by biological evidence. Given these assumptions, the authors predict that
products arising from site-specific recombination must be members of a single fam-
ily of products (illustrated in Figure 11). This is a specific family of Montesinos
knots and links, described in more detail in Section 8.1, given by ( 1

p , 1
q , r

rs+1), with
p, q, r, s ∈ Z.
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One comforting thing about this family is its small size. As mentioned above,
the minimal crossing number (MCN) of a DNA knot or catenane can be determined
experimentally [60]. For small values of the MCN there are not many knots or links
with a given value. However, the number of knots and links with MCN = n grows
exponentially as a function of n [33], and there are 1,701,936 knots with MCN ≤
16 [50]. So knowing the MCN is not sufficient to determine the knot or catenane.

However, as proved in [8], the total number of knots and links in the family
F (p, q, r, s) of Figure 11 grows linearly with n3. So the proportion of all knots
and links which are contained in our family decreases exponentially as n increases.
Thus, knowing the MCN of a product and knowing that the product is in one of
this families allows us to significantly narrow the possibilities for its knot or link
type.

There are several applications of this work. Firstly, it can predict knot and link
products for previously uncharacterized data. Secondly, it can determine pathway
of recombination: processive (multiple strand exchanges before releasing) versus
distributive (entire recombination process repeats). In particular, it predicts that
any knot or link product that is not of the family above must arise distributively.
And finally, this work can help determine sequence of products of processive re-
combination.

This recent work complements earlier results of [89], which used the tangle
model described below and several biologically reasonable assumptions to solve
tangle equations. They then determined which (4-plat) knots and links arise as
a result of (possibly processive) site-specific recombination on the unknot for the
serine subfamily of recombinases. In addition to an unknotted substrate for a
generic recombinase, the more recent work allows substrates that are unlinks with
one site on each component, as well as (2, m)-torus knots and links. The more recent
work of [8, 7] also does not assume the tangle model holds or that the products
must be 4-plats. This is particularly important as (distributive) recombination
has been seen to produce knots and links which are connected sums, and thus not
4-plats.

8. The tangle model

We now consider the alternative scenario. Suppose we know the substrate and
product topologies for a given site-specific recombinase. For example, as above, we
have determined that Flp acting on an unknot with direct sites yields the unlink
and a variety of 2-torus links: 22

1, 4
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1, 122
1. Our goal is now to use this

input, together with topological arguments to determine details of the pathway
and/or mechanism. For example in [42], using the topological products as probes,
it was determined that Flp aligns the crossover sites so that their sequences are
aligned antiparallel to each other.

In the tangle model different regions of the DNA molecule are represented
by tangles, and the action of the recombinase as a change in one of the tangles.
Given the substrate and product topologies, mathematicians can help biologists by
finding all tangle combinations that may explain the recombinase’s action. Some of
these mathematically possible solutions can then be eliminated through biological
considerations. Here, the input is the knot or link type of both the substrate
and product DNA. The output of the tangle model is a list of solutions to the
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corresponding tangle equations, which yield a corresponding set of solutions for the
recombination pathway and/or mechanism.

The tangle model was originally developed by Ernst and Sumners to describe
the action of particular site-specific recombinases in terms of tangle sums [34].
Building on the experimental work of Wasserman and Cozzarelli [101] and Con-
way’s theory of tangles [19], they used their tangle model to make predictions—later
experimentally verified—about how the recombinase Tn3 resolvase interacts with
DNA [34]. The tangle model has since been used to determine various features of
protein-DNA interactions for a number of specific proteins [9, 10, 23, 24, 96, 42,
35, 89, 95, 94].

8.1. Tangles, tangle operations and double branch covers. We begin
by stating a few elementary facts about tangles. (For a more comprehensive intro-
duction to tangles, see [9] and [40].) A tangle T is (the isotopy (rel ∂) class of) a
pair (B3, t), where B3 is a 3-ball with a given boundary parametrization with four
distinguished boundary points labelled NW, NE, SW, SE, and t consists of a pair
of properly embedded unoriented arcs with endpoints NW, NE, SW and SE. We
say two tangles C and D are equivalent if there exists an isotopy taking C to D,
which remains the identity on ∂C.

Tangles can be divided into three mutually exclusive families: locally knotted,
rational and prime. See Figure 12.

Figure 12. From left to right, a rational, prime and locally knot-
ted tangle.

A tangle is locally knotted if there exists a sphere in B3 meeting t transversely
in 2 points such that the 2-ball bounded by the sphere intersects t in a knotted
spanning arc.

Rational tangles are the second family; they are so-called because their iso-
topy classes are in one-to-one correspondence with the extended rational numbers
(Q ∪ {∞}) via a continued fraction expansion, as first constructed by Conway [19].
(See [12] for an outline of the original proof, based on branched covering spaces.
Alternatively see [40] for subsequent nice classifications that utilize less machinery.)
A tangle whose corresponding rational number is p

q will be denoted by
(

p
q

)
. Ratio-

nal tangles are formed by an alternating series of horizontal and vertical half-twists
of two (initially untwisted) parallel arcs (and hence are freely isotopic to them).
Any continued fraction decomposition of p

q = an + 1/(an−1 + ... (1/a1)) yields a
finite list of integers [a1, . . . , an] which tell us how to twist the strands around each
other to get a diagram of the tangle. The (0) tangle corresponds to two untwisted
horizontal arcs (one joining NE to NW and one joining SE to SW), whereas the
(∞) tangle corresponds to two untwisted vertical arcs. The double branch cover of
a rational tangle is a solid torus.
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All locally unknotted, nonrational tangles are prime. Bleiler proved that the
minimal prime tangle has a minimal projection with five crossings [5].

There are several operations one can perform on tangles. We concentrate on
two. (See Figure 13.)

Figure 13. Two tangle operations: sum and numerator closure.

The first operation forms a knot or 2-component link from a given tangle A:
the numerator closure, N(A). This adds an unknotted arc joining the northern
endpoints, and another unknotted arc joining the southern endpoints, or equiva-
lently, the boundary of A and (0) are identified so that EA is identified with E(0)

for E ∈ {NE, NW, SE, SW}.
The numerator closure of a rational tangle yields a 4-plat or rational knot : a

knot or 2-component link that admits a projection consisting of a braid on 4 strings,
with one strand free of crossings [12]. Given two rational tangles

(
p
q

)
and

(
p′

q′

)
,

then N
(

p
q

)
= N

(
p′

q′

)
iff p = p′ and q±1 ≡ q mod p. Thus given a 4-plat, we

can write it as the numerator closure of a rational tangle that is unique up to the
relationship above. Schubert showed that all 4-plats are prime knots [81]. We will
denote the 4-plat obtained by the numerator closure of

(
p
q

)
as b(p, q). For example,

we can write the unknot as b(1, 1), and the trefoil as b(3, 1).
The second operation, tangle sum, takes a pair of tangles A, B, and, under

certain restrictions, yields a third tangle, A + B, by identifying the eastern hemi-
spheric boundary disk of A with the western one of B in such a way that NEA

is identified with NWB and SEA is identified with SWB . Note that the (0) tan-
gle is the identity under this operation: A + (0) = A. Beware that under tangle
addition, we cannot distinguish between A + (p) added to (−p) + B and A added
to B. Thus although tangle summands are written in their simplest form, they
are unique only up to an arbitrary number of compensating positive and negative
horizontal twists. For example, given a solution P = (p), R = (r) and Ok = (s),
then P = (p + n), R = (r + n) and Ok = (s − n) is another solution which is not a
minimal projection.

A particular class of prime tangles is obtained by tangle sum of rational tangles
Montesinos tangles [68, 67, 69]. We will use the notation

(
a1
b1

, a2
b2

, . . . , an

bn

)
to

denote the Montesinos tangle obtained by the tangle sum of the rational (possibly
integral) tangles

(
a1
b1

)
,
(

a2
b2

)
, . . . ,

(
an

bn

)
.

Since the sum of a rational tangle and an integral tangle yields a rational
tangle [14], a Montesinos (nonrational) tangle must have at least two nonintegral
summands. The numerator closure of a Montesinos tangle is called a Montesinos
knot or link. The model discussed in Section 7.4 predicts that all knots and links



24 DOROTHY BUCK

arising from site-specific recombination fall within a small subfamily of Montesinos
knots and links.

Note that N(A1 + A2 + · · · + An) is isotopic to the numerator closure of the
sum of the same tangles re-ordered by a cyclic permutation and/or a reversal of
order. (See Chapter 12 in [12] for a primer on Montesinos tangles and knots).

8.2. Double branch covers. Given a tangle T , then we will use T̃ to mean
the double cover of B3, branched over t. In general, we will write dbc(K) to denote
the three-manifold that is the double cover of S3 branched over the set K. We now
turn our attention to the (compact, connected and orientable) three-manifolds that
arise as double branch covers of tangles or 4-plats.

If P is a rational tangle, then P̃ is a solid torus, which we will denote by VP .
(See Figure 14.)

Figure 14. Double branch cover of a 3-ball branched over a ra-
tional tangle is a solid torus.

Schubert showed that dbc(b(p, q)) is a special type of well-understood three-
manifold, the lens space L(p, q). Two 4-plats b(p, q) and b(p′, q′) are equivalent if
and only if their corresponding double branch covers, the lens spaces L(p, q) and
L(p′, q′), are homeomorphic [81], so b(p, q) = b(p′, q′) if and only if p = p′ and
q±1 ≡ ±q′ mod p. (See Rolfsen [79], for a good introduction to lens spaces.)
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Figure 15. Tangle model of recombination: Substrate DNA is the
numerator closure of the 3 tangles Ok

f , Oc and P . Recombination
is modelled as replacing tangle P with tangle R.

8.3. An illustration of the tangle model.
8.3.1. Tangle model for a tyrosine recombinase. We can now describe in full

detail a generalization, introduced in [89], of the original tangle model of Ernst
and Sumners [34]. We illustrate this model with a generic member of the tyrosine
family of recombinases, the protein Flp (pronounced ‘flip’). Flp has served as
the paradigm for site-specific recombination, and there are a number of proteins
(including Cre, and λ Int acting on LR sites) whose products are, topologically
speaking, identical to those of Flp.

We model each of the substrates and products as the numerator closure of the
sum of three tangles. Each tangle arc represents a segment of double-stranded DNA.
In the tangle model pioneered by Ernst and Sumners [34], the cutting and joining
of DNA is assumed to be completely localized: two of the tangles are unchanged by
the action of the protein. In the substrate, the first tangle, P (Parental), represents
the two short crossover sites that Flp recognizes and to which it chemically binds
and then cuts, rearranges and re-seals. This action can be thought of as removing
P and replacing it with a new tangle, R (Recombinant), in the product. The
second tangle, Oc, represents the part of the DNA that is physically constrained,
but unchanged, by the protein (O stands for Outside and c for constrained). The
last tangle, Ok

f , represents the part of the DNA that is free (hence the subscript f)
from protein binding constraints. Ok

f can vary depending on the amount of DNA
supercoiling present at the time Flp acts. The superscript k indexes these different
possibilities. (See Figure 15.)

In terms of tangles, this implies that the substrate and products can be mod-
elled as:

N(Ok
f + Oc + P ) = substrate (before recombination),

N(Ok
f + Oc + R) = product (after recombination)

where k ∈ {0, 1, 2, 3} represents the degree of supercoiling in the substrate. Ok
f

varies as k varies, so we obtain different products, as described below.
When Flp acts on DNA it yields a variety of torus knots (for inverted repeats)

or links (for direct repeats), depending on Ok
f .
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More precisely, when Flp acts on a DNA molecule with inverted sites, experi-
ments have shown that the resulting DNA can be an unknot (with a different DNA
sequence), or a knot with up to 11 crossings [43]. Crisona et al. have obtained
images (using electron microscopy) of the simplest products, and have shown that
they are the torus knots b(1, 1) (the unknot), primarily positive b(3, 1) and exclu-
sively positive b(5, 1) [23]. This experimental evidence indicates that Flp begins
with an unknotted DNA substrate with inverted repeats, b(1, 1) and converts it via
tangle surgery into a torus knot b(±(2k + 1), 1), where k ∈ {0, 1, 2, 3}. See Figure
16.

Figure 16. Substrate and products of Flp recombination.

We thus model the action of Flp on DNA with inverted repeats as:

Before: N(Ok
f + Oc + P ) = b(1, 1) = unknot, for k ∈ {0, 1, 2, 3}

After: N(O0
f + Oc + R) = b(1, 1) = unknot,

N(Ok
f + Oc + R) = b(±(2k + 1), 1) = torus knot for k ∈ {0, 1, 2, 3}.

8.3.2. Tangle model for a serine recombinase. Recall that, in contrast to a
generic tyrosine recombinase, proteins in the serine family of recombinases, such as
Tn3, require a fixed number of supercoils before they begin cutting and rejoining
DNA. Once this requirement is met, they rearrange the DNA, occasionally multiple



DNA TOPOLOGY 27

times, before releasing it. The corresponding tangle equations: from substrate
N(Of + Oc + P ) = K0 to products N(Of + Oc + nR) = Kn are:

N(Of + Oc + P ) = K0 for the substrate,
N(Of + Oc + R) = K1

N(Of + Oc + R + R) = K2

...
N(Of + Oc + R + · · · + R︸ ︷︷ ︸

n

) = Kn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for the products.

These equations were first solved (i.e., all constituent tangles have been charac-
terized, given the substrate and product 4-plats) by Ernst and Sumners [34]. In
particular, they found that O = Of + Oc = (−3, 0), R = (1) and if P is rational,
then P = (2n, 3, 0), for n ∈ N.

Note, in particular, that since O is always the vertical tangle (−3, 0), then the
free part of DNA, Of , does not vary. This single, fixed Of is what made the serine
recombinase tangle equations more tractable than the generic integrases, whose
equations involve a family of tangles Ok

f , indexed by k.

8.4. Strategy. Given the set of tangle equations above, whose products (4-
plats) are known, the goal is to determine the constituent tangles (up to equivalence
as discussed above). The interplay of tangles and 4-plats with their corresponding
double branch covers is the key to many of the results in tangle calculus. For
instance, if C and D are tangles, and D is a rational tangle, then the dbc(C +
D) is obtained by gluing C̃ and D̃ = VD along annuli that are the lifts of their
corresponding gluing disks. If D is integral, then the gluing annulus is boundary
reducible, and dbc(C + D) � C̃ [9].

The sum and subsequent numerator closure of two tangles C and D induces
a gluing of the boundaries of their respective double branch covers C̃ and D̃. If
N(C +D) yields a 4-plat b(p, q), then C̃ ∪h D̃ must be the lens space L(p, q), where
h is the map that takes µ∂C̃ to pλ∂D̃ +qµ∂D̃. In particular, when C and D are both
rational, C̃ = VC and D̃ = VD are solid tori, and they form a Heegaard splitting
VC ∪h VD of L(p, q).

Replacing tangle P in N(O + P ) by tangle R to obtain N(O + R) is called
tangle surgery. If P and R are rational tangles, then tangle surgery corresponds to
replacing VP with VR in the double branch cover, and thus corresponds to different
Dehn fillings of Õk. In the special case of N(Ok + P ) = b(1, 1) (the unknot) where
dbc(b(1, 1)) = S3, the tangle surgery corresponds to Dehn surgery on the knot
complement (Õk) in S3. Note by the preceding section the knot is trivial iff Ok is
rational.

Ernst and Sumners proved that, given the above equations for a generic inte-
grase, P and R are rational for both direct and inverted repeats [34]. More recently
in [9], Buck and Verjovsky give a different proof for the rationality of R for direct
and inverted repeats. So the tangle surgery of replacing P with R corresponds to
Dehn surgery in the double branch covers.
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Thus the strategy is to use restrictions on the type of Dehn surgeries of S3 =
dbc(b(1, 1)) that yield lens spaces. This in turn restricts the possible tangle surg-
eries, which in turn restricts the exact tangle solutions.

In [9, 10], Buck and Verjovsky consider the tangle model for a generic member
of the tyrosine recombinase family without any a priori assumptions on the con-
stituent tangles. They gave a complete classification of all possible solutions for Ok

f ,
Oc, P and R to the systems of equations arising from both the direct and inverted
cases.

The proofs utilize a fair amount of three-manifold machinery. In particu-
lar, they utilize the cyclic surgery theorem, recent work of Kronheimer, Mrowka,
Ozsváth and Szabó [57], and work of Ernst [31, 32].

The results in [9, 10] helped illuminate some of the biochemical steps of site-
specific recombination. In particular, the elucidation of the tangle Oc helped de-
termine that Flp aligned the sites in an antiparallel alignment [42].

9. Conclusion and future directions

There has been dramatic progress in understanding site-specific recombination
through topological probing. For a generic tyrosine recombinase, the tangle solu-
tions are completely classified [9, 10]. For a number of serine recombinases, the
tangle solutions are also known, e.g. [34].

While the tangle model has been successful in illuminating some of the steps
involved, there are many site-specific recombinases whose precise product knot or
link type is still uncharacterized and so the tangle model cannot be harnessed. A
powerful new strategy combines a predictive model, such as in [8, 7], together with
the tangle model to probe the recombinase mechanism further.

New avenues in related directions include looking at 3-string tangles, for pro-
teins that use additional sequences in addition to the crossover sites [26], and
developing a 3-dimensional version of the tangle model [94].

By now, the reader is hopefully convinced that DNA Topology has deep bio-
logical consequences, e.g. for replication and recombination. In particular, DNA
knots and links can be dangerous (e.g. linked daughter chromosomes) or helpful
(e.g. as probes for understanding recombination).

We have discussed that it is not (yet) easily possible to understand fully DNA
topology via purely biological techniques. For example, electrophoretic migration
does not yield the precise knot type, and electron microscopy becomes increasingly
difficult as the number of crossings increases. Additionally, the mechanism of type II
topoisomerases, whose primary function is to change DNA knot or link type, is still
not precisely understood. Thus, mathematicians can help predict DNA topology,
for example by restricting the possibilities for recombination products as described
in Section 7.4. This in turn can illuminate the biological processes involved.

There are a variety of future research trajectories for both mathematicians and
biologists at this rich interface. In addition to the trajectories mentioned earlier,
we note that we are only beginning to understand how other DNA-rearranging
proteins, such as transposases, form DNA knots and links. Hopefully this article
has stimulated the reader to explore—and contribute to!—some of these areas.
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