

The Abdus Salam International Centre for Theoretical Physics

2037-17

Introduction to Optofluidics

1 - 5 June 2009

Computer generated holograms: multi-point, interactive 3D optical traps

R. Di Leonardo University "La Sapienza" Roma Italy

Computer generated holograms: multi-point, interactive, 3D optical traps

ROBERTO DI LEONARDO CNR-INFM Dip. Fisica, Università di Roma "La Sapienza"

Plan of today lectures

Optofluidics 1. LIGHT TO MANIPULATE FLUIDS 2. FLUIDS TO MANIPULATE LIGHT 3. LIGHT TO UNDERSTAND FLUIDS

1st Part

HOLOGRAPHIC TRAPPING AS A TOOL FOR FLUID MANIPULATION

2nd Part

HOLOGRAPHIC TRAPPING AS A TOOL TO INVESTIGATE BASICS PHYSICS AT THE MICRON SCALE

Mesoscopic world

MICROSCOPIC

MACROSCOPIC

MESOSCOPIC

- inertialess dynamics
- noisy environment
- surface forces
- light pushes

OPTICS LETTERS / Vol. 11, No. 5 / May 1986 288

Observation of a single-beam gradient force optical trap for dielectric particles

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu

AT&T Bell Laboratories, Holmdel, New Jersey 07733

Received December 23, 1985; accepted March 4, 1986 s by a single-beam gradient force trap was demonstrated for the first reported egative light pressure due to the gradient force. Trapping was observed over 10 μ m to ~25 nm in water. Use of the new trap extends the size range of tical trapping and manipulation well into the Rayleigh size regime. Applica-1 trapping is considered.

Optical trapping of distectric particles time. This confirms the concept of n the entire range of particle size from macroscopic particles accessible to op tion of this trapping principle to aton

Multi-particle trapping

Why?

- physical interactions between colloids
- biochemical interactions between cells
- assembly of photonic/fluidic micro-devices

How?

Time sharing:

Acousto-Optic Deflectors (AOD), EOD, Galvanometric Mirrors

- fast (~100 kHz) 2D
- precise (Å) no phase control

Holography:

Spatial Light Modulators (SLM)

- 3D
- phase control aberration correction exotic beams, vortices, light bottles
- slow (~20 Hz) •complex algorithms

Computer generated holograms

Wavefront modulation in the Fourier plane

Wavefront modulation in the Fourier plane

Wavefront modulation in the Fourier plane

PHASE SHIFT DUE TO PROPAGATION BETWEEN Jth PIXEL AND Mth TRAP

Superposition (S)

SUPERIMPOSE AND NEGLECT AMPLITUDE

$$\phi_j = \arg\left[\sum_m e^{i\Delta_j^m}\right]$$

EFFICIENCY
$$e = \sum_{m} I_m \in [0, 1]$$

UNIFORMITY $u = 1 - \frac{\max[I_m] - \min[I_m]}{\max[I_m] + \min[I_m]} \in [0, 1]$

S

$$e = 0.01$$

 $u = 0.58$

Random Superposition (SR)

KINOFORM WITH PHASE RANDOMIZATION

$$\phi_j = \arg\left[\sum_m e^{i(\Delta_j^m + \theta_m))}\right]$$

 $heta_m$ randomly chosen phase

Gerchberg-Saxton (GS)

KINOFORM WITH OPTIMIZED IMAGINARY WEIGHTS

 $heta_m$

$$\phi_j = \arg\left[\sum_m e^{i(\Delta_j^m + \theta_m))}\right]$$

ITERATIVELY SEARCH FOR A BEST PHASE COEFFICIENT

GSW algorithm

DI LEONARDO et al., OPT. EXPRESS (2006)

iteration steps

GSW performance in 3D

algorithm	е	u	$\sigma(\%)$	K
RM	0.07	0.79	13	-
S	0.69	0.52	40	-
SR	0.72	0.57	28	-
GS	0.92	0.75	14	30
GAA	0.92	0.88	6	30
DS	0.67	1.00	0	$1.7 \ 10^5$
GSW	0.93	0.99	1	30

HOT setup

HOLOEYE LCR2500

- 1024x768
- 8 bit
- 75 Hz

HOT reviews

Optical tweezers: the next generation

Kishan Dholakia, Gabriel Spalding and Michael MacDonald

PHYSICS WORLD OCTOBER 2002

Chapter 6

Holographic Optical Tweezers

*Gabriel C. Spalding*¹, *Johannes Courtial*², *and Roberto Di Leonardo*³

¹Illinois Wesleyan University, Bloomington, IL, USA ²University of Glasgow, United Kingdom ³Università di Roma, Italy

3D SPINNING CUBE

S-O-F-T ANIMATED LOGO

Interactive holographic trapping using GPU

GPU Computing Power VISION4CE GeForce 8800 GigaFlops GeForce 7900 GeForce 7800 3.0GHz SPUCO GeForce Intel Core2 Duo GeForce 6800 GeForce 5900 **CPU** Computing Power 5800 2004 2005 2006 2007 2008 2003

Interactive holographic trapping using GPU

Full 3D manipulation of bacterial cells

light driven devices and sensors

µPIV: track tracer particles

PARK ET AL. EXP. FLUIDS (2004)

Blinking tweezers in fluid flow

$$v = \frac{\Delta s}{\Delta t}$$

direct velocity measurement

Holographic micro-velocimetry

R. DI LEONARDO et al. PRL (2006)

nature RESEARCH HIGHLIGHTS

Holographic micro-velocimetry

H. MUSHFIQUE et al. ANAL. CHEM. (2008)

3D FLOW MAP AROUND A PDMS CUBOID

2D FLOW MAP AROUND A CHO CELL

Optical torque

H. RUBINSZTEIN-DUNLOP, AIP (2006)

 $T = -\frac{dL}{dt} = 2\hbar \frac{P}{\hbar\omega} = \frac{1}{\pi} \frac{P}{c} \lambda \sim \text{pN } \mu\text{m}$ **MAX TORQUE PHOTON** FLUX

MICRON SIZED $\Omega = \frac{T}{8\pi\eta a^3} \sim kHz$

BISHOP et al. PRL (2004)

An optical driven pump

Summary

Phase only modulation is enough to efficiently split a laser beam into a 3D array of optical traps.

Optimized holograms can be generated by a PC at an high enough framerate to allow interactive micro-manipulation.

The ability to grab and move matter at the micron scale can be used to drive sensors and devices for microfluidics