

The Abdus Salam International Centre for Theoretical Physics

2037-6

Introduction to Optofluidics

1 - 5 June 2009

Application of SLMs and high-speed imaging in optical tweezers for microfluidics

M. Padgett University of Glasgow U.K.

Application of SLMs and high-speed imaging in optical tweezers for microfluidics

Miles Padgett Department of Physics and Astronomy

Part 3

- Applications of SLMs and High-speed Imaging
 - Optical pumps
 - Hydrodynamic coupling
 - Trap dynamics

Transfer of spin AM

Circular polarisation

No AM

Transfer of spin AM in tweezers

- Within optical tweezers
 - Circularly polarised trapping beam
 - 2µm dia. Calcite $\approx \lambda/4$
 - For $r < \lambda/4$ plate
 - torque α r
 - Viscous drag scales with r³
 - Small particles rotate faster

Friese, Nature 394, 348, 1998

Angular momentum

Spin angular momentum (SAM)

Orbital angular momentum (OAM)

Optical vortex =Helical phasefronts

Description of light - Intensity $(\theta, r), I \ge 0$ - Phase $(\theta, r), 2\pi \ge \phi \ge 0$ $\phi(\theta, r) = \omega t + kz + \ell \theta$ $\ell = 0$, plane wave $\ell = 1$, helical wave $\ell = 2$, (double) helical etc.

 $\ell =$ vortex charge

A vortex of what?

- Momentum flow perpendicular to phasefronts
- Helical phasefronts
 - > azimuthal momentum
 - orbital angular momentum
- A vortex of optical energy and momentum

Padgett et al. Phys Today 57, 35, 2004

Designing helical phase hologram

0

Software for driving SLMs

- Software for hologram design and drive of SLMs
 - <u>http://www.physics.gla.ac.uk/Optics/</u> projects/tweezers/slmcontrol/

Click Here!

SAM/OAM transfer to particle held in optical tweezers

SAM Particle spins on its own axis

OAM Particle orbits the beam axis

O'Neil et al. PRL 88, 053601, 2002

Measurement of fluid flow

- Use holographic tweezers to trap and position probe particle in flow
 - High speed video sync. to ≈40Hz modulation of trap

Generating flow in micro-fluidic channel

- Use scanning beam to move beads (Marr et al.)
- Use OAM to circulate beams (Grier et al.)
- Counter-rotating 5µm dia. vaterite beads driven by light's spin angular momentum
 - 15µm wide channel in PDMS
 - Flow μ m/s \approx plittre/sec

Lab on a Chip

Ninlaturisation for chemistry, biology & bioengineerin

Volume-6 | Number 5 | May 2006 | Pages 585-60

Optically driven pump

• Flow $\approx 200 \mu m^3/s$ (plittre/sec)

Leach et al. Lab Chip 6, 735, 2006

Control of optical SAM

Polarising beam splitter

Control of optical SAM

We can turn the angular momentum in the beam "on and off"

Preece et al. Opt. Express, 16, 15897, 2006

Power Spectra and Auto correlations

Fitting the power spectrum

Forces and Torques

*For unbounded Newtonian fluids at low Reynolds numbers

$$\gamma = 6\pi\eta a \qquad \qquad \beta = 8\pi\eta a^3$$

Bishop et al. Phys Rev. Lett. 92, 198104, 2004

Faxen's correction for translational & rotational motion

Leach et al. Phys. Rev. E 79, 026301,2009

Observing the (hydrodynamic) coupling

- Motion of one bead creates fluid flow which then exerts Stokes drag force on neighbouring beads
 - $F_2 \alpha V_1$

Meiners and Quake Phys Rev. Lett. 82, 2211, 1999

Observing the (hydrodynamic) coupling

Program. CMOS (collab. Love and Saunter, Durham)

- CMOS (480x640)
- 8-bit digitisation
- Frame-rate Typ. 2000Hz
- Multi point (16), real time tracking
- Particle Co-ordinates passed to logging computer (Firewire)

Mutli-Particle Correlation (collab. DiLeonardo, Rome)

 Eigenmode analysis of hydrodynamically coupled 8 particle ring

Di Leonardo et al. Phys. Rev. E, 76, 061402, 2007

Multipoint viscosity measurement

$$\eta = \frac{k_B T}{12\pi^2 a f_0 \left\langle x^2 \right\rangle}$$

viscosity of water at 25C = 0.89 mPa.S

How squishy is that droplet ?

Measuring compliance at DC AND AC

www.physics.gla.ac.uk/Optics

Some of my collaborators

Internal

Jonathan Leach Glasgow

Richard Bowman Glasgow

External

Roberto DiLeonardo Rome

Gordon Love Durham

Graham Gibson Glasgow

Daryl Preece Glasgow

Mervyn Miles Bristol

Jon Cooper Glasgow EE

Many Thanks

Come and visit us!

m.padgett@physics.gla.ac.uk

