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• Aim: microfluidics system with total optical control

• Full photonic drive of microfluidic functions

(pumping, steering, etc.) may not be optimal

(not enough power)

Control flow by light, but drive electrically

Concept for optical control of fluidics

Electro-osmosis controlled by light
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The voltage dependence of the contact angle,

�(V),
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Electro-osmosis
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The mechanism

Electro osmotic flow Pressure driven flow

Electro-osmosis
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„Plug flow” (in the absence of back pressure)



Boltzmann distribution i, ci : 
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The relation of the net charge density and the local potential

(Poisson equation):
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Combine these equations

for the plane case:
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Electro-osmosis basics

Ci: concentration of ith ion, �: local potential, y: distance from wall, 

Z: valence of ion, F: Faraday number

�: net charge density, �: permittivity



With symmetric monovalent electrolyte this becomes:
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If kT>>ze� (Debye-Hückel limit)
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For 10 mM concentration �~ few nanometers

Electro-osmosis basics



Electro osmotic flow

Applied electric field introduces a Lorentz body force: Eb E�� =

The equation of motion for steady flow in the channel: Eup E�μ +	=	 2

Substitute the Poisson equation (1):
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This equation is linear, so electric field and pressure driven flow can be separated
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Electro-osmosis basics



Electro osmotic flow

Reasonable case: long, straight channel with uniform electric field
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Electro-osmosis basics



Photo electro-osmosis

•Parameters that determine flow:

–Zeta potential

–Electric field

•Modify Zeta potential, or

•Modify electric field by light

Modify flow



Basic experiment
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Photosensitive materials tested

• Change of surface charge

– TiO2

– Bacteriorhodopsin

– BSO

• Photoresistor

– Amorphous Si

– CdS Experiments with CdS are shown



CdS layer on glass

electrode

PDMS

microchannel

Sizes:
microchannel 200 �m x 100 �m x 10 mm 

reservoirs 3 mm x 3 mm x 3 mm

CdS layer 200 nm

The sample



Experimental layout

L3

L2 L1M F1

S1

S

S2

B

F2

C

U

V

O

L3

L2 L1M

S

U

V

O

S: microfluidic sample, S1: mercury lamp, S2: LED, F1,F2: optical filters, L1,L2,L3: lenses, M: 

photomask, B: beam-splitter, O: objective, C: camera, V: video recorder, U: voltage source



The experiment

Oroszi et al. , Appl. Phys. Lett. (2006)



Characterize fluid flow



Results
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Modelling the experiments

• Simulation is done with FEMLAB (Comsol)

• Fluid is treated with the Navier-Stokes equation

• The electric field is calculated by electrostatics of 

conductive materials

• The effect of light is the decrease of the ohmic

resistance upon illumination of one surface

• Electro-osmotic driving is treated with the Helmholz-

Smoluchowski relation



Modelling the experiments

1. The structure of the electric field
The Maxwell equation in the absence of electric charges 

and external current:

0=		� V�
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V is the potential and � is the conductivity as defined by



Modelling the experiments

1. The structure of the electric field

The channel has three insulator and one conductive walls.

The conductivity values used were determined from

experiments (for the conductive wall in dark and light)



Modelling the experiments

2. Modelling fluid flow

The Navier-Stokes equations for our stationary case:
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where � is the velocity field of the fluid,  � is the density,  � is the dynamic

viscosity, p is the pressure, and F is a volume force field



Modelling the experiments

3. Modelling osmotic flow

At the wall the velocity components perpendicular to the wall are set to zero, 

the two in-plane components are set according to the Helmholtz-

Smoluchowski equation:

Ev w

�

�� 0=

where E is the electric field, � is the zeta-potential at the wall and � is the fluid’s

absolute permittivity

Realistic values were given to the Zeta potential: 

PDMS: -100 mV, CdS: -5 mV



Simulation of electro-osmotic switching

Dark

Light



Simulation of electro-osmotic switching



Fluid switch



Fluid switch



Y-branch

excitation
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Y-branch – evaluation



Y-branch – simulation

Oroszi et al., 2006, Appl.Phys.Lett.



Manipulation of flow pattern in an electro-osmotic system



Manipulation of flow pattern in an electro-osmotic system

The driving field is patterned with patterned electrodes



Generate complex flow pattern by light

CdS

CdS

GLASS

Surface of glass support



Helical modulation of fluid flow–sample and experiment



Visualization of flow
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Helical modulation of fluid flow - evaluation



Simulation



Simulation



Simulation

Oroszi et al., 2008, Nanofluidics, Microfluidics



Change flow pattern by projecting image on 

the photoconductor



Change flow pattern by projecting image on 

the photoconductor



Conclusions

• Optoelectroosmosis has promise in

manipulationg local flows (mixing in

reactors, etc.). 
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