
2040-1

Workshop: Eternal Inflation

S. Winitzki

8 - 12 June 2009

Ludwig-Maximilians University
Germany

A new measure for eternal inflation



A new measure for eternal inflation

Sergei Winitzki
Ludwig-Maximilians University, Munich

Trieste 08.06.2009



Probability measure in multiverse cosmology

• Motivation: “constants of nature”
• Inflation and “self-reproducing” space-time
– Random-walk type (scalar field)
– Tunneling type (landscape)
– A toy model: de Sitter bubbles

• Predictions and the “measure problem”
– Stochastic description of spacetime
– Measure problem
– Comparison of cutoff prescriptions

• New measure proposal: restrict in probability
space to finite future
– Proposal for scalar-field models
– Proposal for landscape models
– First results

• Summary



Are “constants of nature” environmental?

• Cosmology: “entire” history of the “entire” universe

• Explained today’s cosmological data! (abundances of light elements,
density fluctuations, CMB, homogeneity, ...)
... assuming inflation + DM + DE

• Inflationary perturbations and/or landscape lead to eternal inflation

• Are fine-tuned “constants of nature” fundamental or environmental?
(masses of elementary particles; cosmological constantΛ ∼ 10−120M4

Pl;
coupling constants for EM, weak, strong interactions)



Cosmological inflation

Models with one scalar field φ in Friedmann-
Robertson-Walker (FRW) spacetime:
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Exponential expansion: H (t) ≈ const ⇒ a (t) ∼ exp (Ht)

Reheating near φ = φ∗ followed by “standard cosmology”



Inflation as a random walk

• Quantum fluctuations of φ generate “jumps”
on top of the “slow roll”

[Linde 1983, Vilenkin 1983]

• Langevin equation for coarse-grained field φ:

[Starobinsky 1986]
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[Winitzki, Vilenkin 1999]
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Evolution of field values

Surfaces φ = const:

t

horizon-size region

Inhomogeneities develop on scales � H−1 in both space and time



Fractal structure of the inflating domain

• Fractal dimension can be computed [Winitzki 2002]



Distribution of observable parameters

Models with several scalar fields (hybrid inflation, Brans-Dicke, etc.)

χ

φ

φ = φ∗

Have a distribution of χ along the reheating surface φ = φ∗
(parameter χ may be continuous or discrete)



Tunneling models: “recycling universe”
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Each bubble contains an infinite number of other bubbles

(though “anti-de Sitter” states such as “3” collapse to singularity)



Tunneling models: landscape of string theory

Λ domination

reheating

wall wall

nucleation

Λ

X

0

Each pocket universe is a “bubble” of FRW spacetime

Huge number of vacua (10500 or 101000)
[Lerche, Lüst, Schellekens 1987]

Transition rates between vacua are known — in principle



Eternal inflation: qualitative features

t

x
y

Random walk inflation:
• independent domains of size

� H−1 on timescales � H−1
• Reheating at φ = φ∗ followed by
standard cosmology

• Inhomogeneous metric:
ds2 = dt2 − a2 (x, t) dx2

Tunneling-type inflation:
• independent domains of size

� H−1
a on timescales � Γ−1a→b

• Reheating within each bubble
• Evolution ends at “sinks”
• “Piecewise de Sitter” metric

• Inflation lasts arbitrarily long at some places – “eternal self-reproduction”



Eternal inflation in a box

Discrete spacetime simulation in 2+1 dimensions:

inflating H-regions

reheated H-regions

• Imitates bubble nucleation in de Sitter spacetime

• “Eternal inflation” = white squares multiply



Simulation with several bubble types



Predictions in eternal inflation

• Would like to obtain probability distribution for observables,
— hoping to find that “constants of nature” are not fine-tuned

• Inflation generates an infinite 3-volume from a finite initial patch
(where are we in the universe?)

• Cannot do statistics directly on an infinite set!
(compare infinitely many apples to infinitely many oranges?)



The “measure problem”

• General approach:

– Describe the evolution of the universe as a stochastic process

– Introduce a cutoff to reduce an infinite 3-volume to finite

– Compute the limit distribution as the cutoff is removed

• Results depend on the way the cutoff is introduced!



Stochastic description of random-walk inflation

Langevin equation:

φ(t+ δt) = φ(t) + v(φ)δt+ ξ
√
2D(φ)δt

Fokker-Planck equation for volume-weighted distribution PV (φ, t):

∂PV

∂t
= ∂φ

[
∂φ (D(φ)PV )− v(φ)PV

]
+3HPV

Boundary conditions:

PV (φPlanck) = 0, ∂φ (DPV )φ=φ∗ = 0

Late-time asymptotic distribution:

PV (φ, t) ≈ f(φ)eγt

• Value of γ depends on choice of time coordinate t

• Eternal inflation is present if γ > 0, independent of the choice of t
[Winitzki 2002]



Simulation of random-walk inflation

• Model: two fields, χ fluctuates along the reheating surface φ = φ∗

[Vanchurin, Vilenkin, Winitzki 1998]

• Infinite portions of reheating surface generated near “spikes”

• Thermalized domains may be topologically disconnected [Winitzki 2004]



Stochastic description of tunneling-type inflation

Tunneling rate:

Γa→b = O(1)H−4
a exp

[
−SI(a→b) −

π

H2
a

]

Volume distribution Va(t):

∂Va

∂t
=

∑
b

(−Γa→bVa +Γb→aVb) + 3HaVa

Late-time asymptotic:

Va(t) ≈ faeγt

• Values of γ and fa depend on choice of time coordinate t



Stochastic description + measure proposal = predictions

Gravitational constant in Brans-Dicke scenarios [Garcia-Bellido, Linde 1994]

Cosmological constant [Garriga, Vilenkin, et al. 1998-2008; Tegmark et al. 2003]

Amplitude of density fluctuations

[Garriga et al. 2005; Feldstein, Hall, Watari 2005]

Particle masses [Tegmark et al. 2003, 2005; Hall, Watari, Yanagida 2006]

Landscape probability distribution

[Vilenkin 2005-2008, Linde 2006-2008, Scherrer et al. 2007]



Measure proposals

Volume-based: Probability is proportional to 3-volume of reheating surface

[Linde 1994; Vilenkin 1995, 1998]

• Independent of initial conditions

• Need to specify a volume cutoff!

• Results depend sensitively on cutoff!

Worldline-based: Probability distribution along a single worldline

[Bousso et al. 2006-2008]

• Does not consider infinite reheated volume - no cutoff needed!

• Depends on initial conditions!



Volume cutoff proposals

• Equal-time cutoff: compute the volume thermalized before t = tmax,
then set tmax →∞ [Linde et al. 1993]

− Results depend sensitively on time slicing! (“gauge-dependent”)

− Youngness paradox, except when using scale factor t = ln a

• “Spherical cutoff”: take a sphere of radius R within the reheating sur-
face, then set R →∞ [Vilenkin 1998; Vanchurin, Vilenkin, Winitzki 1999]

− Gauge-independent, but difficult to implement calculations (need simulations of
inflating spacetime through many e-folds!)

• “Stationary measure”: Cutoff at time tε when volume distribution be-
comes stationary [Linde 2006]

− Possible small dependence on time slicing; cannot use e-folding time!

− Youngness paradox is avoided
[Bousso et al. 2008; Linde, Vanchurin, Winitzki 2008]



Problems with equal-time cutoff

Equal-time cutoff with proper time has “youngness paradox”
[Linde 1995, Tegmark 2004]

A delay in reheating is exponentially rewarded! (But the CMB temperature is not 100◦C!)

There is no “correct” time slicing [Winitzki 2005]

Time t = ln a has advantages [Linde, Vilenkin, et al. 2008]



A new volume-based measure proposal

Need to cut the infinite volume of the reheating surface R, but without
introducing any geometric bias

There is a small probability that R has a finite volume V

Proposal: Reheating Volume (RV) cutoff [Winitzki 2008]

• Consider the ensemble conditioned in probability on finite V

• Compute the volume-weighted distribution of cosmological parameters
Q throughout V , e.g. 〈Q〉 =

∫
R QdV

V or more generally p(Q|V )

• RV cutoff defines p(Q) = limV→∞ p(Q|V ) if the limit exists

RV measure is applicable to any scenario where inflation ends globally with
nonzero probability — need specific implementation in calculations



RV measure for random-walk inflation

Consider only events with finite reheating surface with final 3-volume V

• Distribution of observables is computed within finite volume V

• As V →∞, the limit distribution is independent of the initial state



RV measure for random-walk inflation: computations

Generating function for finite reheating volume (φ now denotes all fields):

g(z;φ) ≡
〈
e−zV

〉
V <∞ ≡

∫ ∞
0

e−zV Prob(V ;φ)dV

Can be found by solving the nonlinear FP equation, [Winitzki 2008]

Dg,φφ + vg,φ +3Hg ln g = 0, g(z;φ∗) = e−zH−3(φ∗)

The distribution Prob(V ;φ) is found as inverse Laplace transform of g,

Prob(V ;φ) =
1

2πi

∫ +i∞
−i∞

ezV g(z;φ)dz

⇒ Can compute distributions of observables at finite V , then set V →∞:
Prob(χ = χ1)

Prob(χ = χ2)
≡ lim

V→∞
Prob(V ;φ = φ∗, χ = χ1)

Prob(V ;φ = φ∗, χ = χ2)

Result : obtain RV-regulated distribution of χ at reheating



RV measure for landscape

Vacua of types j = 1,2, ..., N and transition probabilities Γi→j
Condition on finite total number of bubbles (ntot ≡ n1 + n2 + ...)
Generating function for ni, starting with bubble k:

g(z, q1, q2, ...; k) ≡
∑

n1,n2,...<∞
P(n1, n2, ...; k)z

ntotq
n1
1 q

n2
2 ...

Function g(z, q1, q2, ...; k) satisfies the equation

g1/ν(...; k) =
∑
j

Γk→jzqjg(...; j) + Γk→kg(...; k)

Note: g(...; k) = 1 for terminal bubbles k

Implement RV cutoff: Compute
〈n1〉ntot=n

〈n2〉ntot=n
conditioned on fixed ntot < ∞,

〈n1〉ntot=n

〈n2〉ntot=n

=
∂n

z ∂q1g(z, qi; k)

∂n
z ∂q2g(z, qi; k)

∣∣∣∣∣
z=0,qi=1

Then take the limit of the above as n →∞.
• The limit exists, is independent of the initial bubble k [Winitzki 2008]



RV measure: examples

• Toy model of random-walk inflation: [Winitzki 2008]

φ

V

φ(1)∗ φ(2)∗φ1 φ2

Probability ratio for exit at φ(1)∗ vs. φ(2)∗ (slow-roll expansion a1, a2):

P(2)

P(1)
≈ O(1)

H−3(φ(2)∗ )

H−3(φ(1)∗ )

a32
a31
exp [3N12] , whereN12 ≡

π2 (φ2 − φ1)
2

√
2H2

0

.

• Toy model of landscape: one “top” vacuum (j = 1), many (j = 2, ..., Nr)
“low” vacua, known transition rates κi→j, transitions to “terminal” vacua
κi→T . Assuming κ1→i 
 κj→k.

p(j)

p(k)
≈ κ1→j

κ1→k

(
κj→T

κk→T

)ν

, j, k = 2, ..., Nr,



Features of the RV measure

Does not suffer from problems found with previous measures:

• No dependence on time slicing (use only intrinsic 3-volume of reheating 3-
surface)

• No dependence on initial conditions (ensemble is dominated by long evolution
in high-H regime)

• No youngness paradox (delay in reheating is suppressed in probability)

• No “Boltzmann brains” (explicit calculations made) [Winitzki 2008]

Calculations can be implemented through PDEs (slow-roll inflation) or al-
gebraic equations (landscape)



Summary

Eternal inflation is generic in most inflationary scenarios (but not in braneworld)

A complicated structure of spacetime on very large scales

Physical considerations needed to choose between volume-based and worldline-
based prescriptions

New volume-based measure proposal, broadly applicable, with good prop-
erties

Specific calculations can be implemented

First results encoraging; need further work to apply to various models and
compare predictions


