The Abdus Salam
International Centre for Theoretical Physics

2040-1

Workshop: Eternal Inflation

8 - 12 June 2009

A new measure for eternal inflation

S. Winitzki

Ludwig-Maximilians University
Germany

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 I; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it



A new measure for eternal inflation

Sergei Winitzki
Ludwig-Maximilians University, Munich

Trieste 08.06.2009



Probability measure in multiverse cosmology

e Motivation: “constants of nature”
e Inflation and “self-reproducing” space-time
— Random-walk type (scalar field)
— Tunneling type (landscape)
— A toy model: de Sitter bubbles
e Predictions and the “measure problem”
— Stochastic description of spacetime
— Measure problem
— Comparison of cutoff prescriptions
e New measure proposal: restrict in probability
space to finite future
— Proposal for scalar-field models
— Proposal for landscape models i
— First results o
e Summary




Are “constants of nature” environmental?

e Cosmology: “entire” history of the “entire” universe

e Explained today’s cosmological data! (abundances of light elements,
density fluctuations, CMB, homogeneity, ...)
... assuming inflation + DM + DE

e Inflationary perturbations and/or landscape lead to eternal inflation

e Are fine-tuned “constants of nature” fundamental or environmental? .
. . S
(masses of elementary particles; cosmological constant A ~ 107129014
coupling constants for EM, weak, strong interactions) :



Cosmological inflation

Models with one scalar field ¢ in Friedmann-

Robertson-Walker (FRW) spacetime:
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ds® = dt® — a? (¢t) dx?

Evolution in the “slow roll” approximation:
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Exponential expansion: H (t) ~ const = a(t) ~exp(Ht) . .
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Reheating near ¢ = ¢« followed by “standard cosmology”



Inflation as a random walk

|4
_ . quantum jump
e Quantum fluctuations of ¢ generate “jumps”
on top of the “slow roll”
roy
[Linde 1983, Vilenkin 1983]
e Langevin equation for coarse-grained field ¢:

[Starobinsky 1986]

dp _H'(9)
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Correlation function of “noise’:

+e0n; (EGunE (k) m o 5 H (5 ¢)

[Winitzki,'-ViIenkin,,j 999]
(€, 1) € (K, 1) o [x —x/| 7% for Hx—x/|>1" *

(E(x,t) € (x,t)) xexp (—2H [t — t'|) for H [t — /| > 1‘ '



Evolution of field values

Surfaces ¢ = const:

At

e horizon-size region

Inhomogeneities develop on scales 2> H~1in both space and time



Fractal structure of the inflating domain

e Fractal dimension can be computed [Winitzki 2002]

L



Distribution of observable parameters

Models with several scalar fields (hybrid inflation, Brans-Dicke, etc.)

Have a distribution of x along the reheating surface ¢ = ¢+~
(parameter x may be continuous or discrete)



Tunneling models: “recycling universe”

V(o)

w
-

Each bubble contains an infinite number of other bubbles

(though “anti-de Sitter” states such as “3” collapse to singularity)



Tunneling models: landscape of string theory

/\ domination

nucleation
reheating _ \/ \/ g%
S

Each pocket universe is a “bubble” of FRW spacetime

gm,

Huge number of vacua (10290 or 101000) bl
[Lerche, Lust, Schellekens 1987]

Transition rates between vacua are known — in principle



Eternal inflation: qualitative features

h

Random walk inflation: Tunneling-type inflation:
e independent domains of size e independent domains of size
> H~1 on timescales > H~1 > Hy ! on timescales > ™1,
e Reheating at ¢ = ¢. followed by e Reheating within each bubble
standard cosmology e Evolution ends at “sinks”
e Inhomogeneous metric: e “Piecewise de Sitter’ metric

ds? = dt2 — g2 (x,1) dx2 -

e Inflation lasts arbitrarily long at some places — “eternal sél%—repr‘od.uction”



Eternal inflation in a box

Discrete spacetime simulation in 2+1 dimensions:

o m

D inflating H-regions

. reheated H-regions

o Imitates bubble nucleation in de Sitter spacetime e

o “Eternal inflation” = white squares multiply



Simulation with several bubble types
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Predictions in eternal inflation

e Would like to obtain probability distribution for observables,
— hoping to find that “constants of nature” are not fine-tuned

e Inflation generates an infinite 3-volume from a finite initial patch
(where are we in the universe?)

e Cannot do statistics directly on an infinite set!
(compare infinitely many apples to infinitely many oranges?)

.h. ": .



The “measure problem”

e General approach:
— Describe the evolution of the universe as a stochastic process
— Introduce a cutoff to reduce an infinite 3-volume to finite

— Compute the limit distribution as the cutoff is removed

e Results depend on the way the cutoff is introduced!



Stochastic description of random-walk inflation

Langevin equation:

3(t + 5t) = ¢(t) + v()5t + &/2D ()6t

Fokker-Planck equation for volume-weighted distribution Py, (¢, t):

2V = 0, [0 (D@)PV) — (@) Py] +3HPy

Boundary conditions:

Py (¢pianck) =0, 94 (DPV.)¢=¢* =0

Late-time asymptotic distribution:

Py (¢,t) = f(¢)er

e Value of v depends on choice of time coordinate ¢

.h. ": .

o Eternal inflation is present if v > 0, independent of the choice of ¢
[Winitzki 2002] 'S



Simulation of random-walk inflation

e Model: two fields, x fluctuates along the reheating surface ¢ = ¢«

A

[Vanchurin, Vilenkin, Winitzki 1998]

e Infinite portions of reheating surface generated near “spilgé_s” b '“
Sl

e Thermalized domains may be topologically disconnecte"cf [Winifzki— 2004]
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Stochastic description of tunneling-type inflation

Tunneling rate:

o 7T
b = O(l) il 4exp [_Sf(a—>b) ) I‘[2]
a

Volume distribution V(t):

oVy,
ot

b

Late-time asymptotic:

Va(t) ~ fajefyt

Values of v and f, depend on choice of time coordinate £+ *



Stochastic description + measure proposal = predictions

Gravitational constant in Brans-Dicke scenarios  [Garcia-Bellido, Linde 1994]

Cosmological constant  [Garriga, Vilenkin, et al. 1998-2008; Tegmark et al. 2003]

Amplitude of density fluctuations

[Garriga et al. 2005; Feldstein, Hall, Watari 2005]

Particle masses [Tegmark et al. 2003, 2005; Hall, Watari, Yanagida 2006]

Landscape probability distribution _ |
[Vilenkin 2005-2008, Linde 2006-2008, Scherrer et al. 2007]
§- 'F :



Measure proposals

Volume-based: Probability is proportional to 3-volume of reheating surface

[Linde 1994; Vilenkin 1995, 1998]
® Independent of initial conditions
® Need to specify a volume cutoff!
e Results depend sensitively on cutoff!
Worldline-based: Probability distribution along a single worldline
[Bousso et al. 2006-2008]
® Does not consider infinite reheated volume - no cutoff needed! *. sl

® Depends on initial conditions!



Volume cutoff proposals

o Equal-time cutoff: compute the volume thermalized before ¢ = tmax,
then set tmax — oo [Linde et al. 1993]

— Results depend sensitively on time slicing! (“gauge-dependent”)

— Youngness paradox, except when using scale factor t = In a

o “Spherical cutoff”. take a sphere of radius R within the reheating sur-
face, then set R — > [Vilenkin 1998; Vanchurin, Vilenkin, Winitzki 1999]

— Gauge-independent, but difficult to implement calculations (need simulations of
inflating spacetime through many e-folds!)

° “Stationary measure”: Cutoff at time ¢t when volume distribution be-
comes stationary ~ [Linde 2006]

— Possible small dependence on time slicing; cannot use e-folding time! 5
— Youngness paradox is avoided s
[Bousso et al. 2008; Linde, Vanchurin, Winitzki 2008]



Problems with equal-time cutoff

Equal-time cutoff with proper time has “youngness paradox”
[Linde 1995, Tegmark 2004]

A delay in reheating is exponentially rewarded! (But the CMB temperature is not 100°C!)
There is no “correct” time slicing [Winitzki 2005]

Time t = In a has advantages [Linde, Vilenkin, et al. 2008]

o,



A new volume-based measure proposal

Need to cut the infinite volume of the reheating surface R, but without
introducing any geometric bias

There is a small probability that R has a finite volume V/

Proposal: Reheating Volume (RV) cutoff [Winitzki 2008]
e Consider the ensemble conditioned in probability on finite V

e Compute the volume-weighted distribution of cosmological parameters
Q throughout V, e.g. (Q) = M or more generally p(Q|V)

e RV cutoff defines p(Q) = limy_,o p(Q[V) if the limit exists =

v &

RV measure is applicable to any scenario where inflation ends globally with
nonzero probability — need specific implementation in calculations



RV measure for random-walk inflation

4
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Consider only events with finite reheating surface with final 3-volume V

=,
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=

° Distribution of observables is computed within finite volume V :

.s. i

° As V' — oo, the limit distribution is independent of the initial state ..



RV measure for random-walk inflation: computations

Generating function for finite reheating volume (¢ now denotes all fields):

] el —zV _ [ v .
g(z;0) = <e >V<oo = /O e Prob(V'; ¢)dV
Can be found by solving the nonlinear FP equation, [Winitzki 2008]

M =8
Dg s+ 094+ 3Hging =0, g(z;ps) = e 1 7(9)
The distribution Prob(V; ¢) is found as inverse Laplace transform of g,
1 +ico  x,
Prob(V; ¢) = —/ e?V g(z; )dz
27l J—ico
= Can compute distributions of observables at finite V, then set V. — oo:
Prob(x =x1) _ . Prob(V; ¢ = ¢, x = x1)
Prob(x = x2) V—ooProb(Vie¢ = ¢, x =x2). .

B

Result: obtain RV-regulated distribution of x at reheating



RV measure for landscape

Vacua of types j = 1,2, ..., N and transition probabilities I';_, ;
Condition on finite total number of bubbles (niot = n1 + no + ...)
Generating function for n;, starting with bubble k:

9(z,q1,q92,-1k) = D P(n1,ng,...;k)z™Mtg g5,
wy,no,... K00
Function g(z, q1, g0, ...; k) satisfies the equation
g Y (k) = 3 T i2659(ni 5) + Tamskg(oni k)
Jj
Note: ¢(...; k) = 1 for terminal bubbles k

Implement RV cutoff: Compute ézlintot:” conditioned on fixed niot < oo,

2/ nygr=n
() ryp=n __ 020q,9(2, ¢;; k)

<n2>ntot:n B 8?8q2.g(z7 q?,f k) z:C),qz-:]_
Then take the limit of the above as n — ~o.

e The limit exists, is independent of the initial bubble & [Winitz_ki 2008]



RV measure: examples

e Toy model of random-walk inflation: [Wihitzki 2008]

¢
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Probability ratio for exit at q5§<1> VS. gb§2) (slow-roll expansion a1, a»):

PO) | oy @) a3 n2 (2 = $1)°
P(1) H—3(¢£1))a:1)’ \/EHCQ) .

exp [3N12] 5 Whére Nio =

e Toy model of landscape: one “top” vacuum (5 = 1), many (j = 2, ..., Ny)
“low” vacua, known ftransition rates x;_,;, transitions to "terminal” vacua
Ki—- ASSUMING K1 _,; > Kj_ k. :

": .

p(j) _ Ki-j (/ﬁj—@

1%
~ ) j,k:2,...,Nr,'b!
p(k) Ki1_g Fék—>T>



Features of the RV measure

Does not suffer from problems found with previous measures:

e No dependence on time slicing (use only intrinsic 3-volume of reheating 3-
surface)

e No dependence on initial conditions (ensemble is dominated by long evolution
in high-H regime)

e No youngness paradox (delay in reheating is suppressed in probability)

e No “Boltzmann brains” (explicit calculations made) {Winitzki_2008]

Calculations can be implemented through PDEs (slow-roll inflation) or al-
gebraic equations (landscape) '



Summary
Eternal inflation is generic in most inflationary scenarios (but not in braneworld)
A complicated structure of spacetime on very large scales

Physical considerations needed to choose between volume-based and worldline-
based prescriptions

New volume-based measure proposal, broadly épplicable, with good prop-
erties

Specific calculations can be implemented

gm,

First results encoraging; need further work to apply to various fhoc‘fle"ls.and
compare predictions



