

The Abdus Salam International Centre for Theoretical Physics

2040-10

Workshop: Eternal Inflation

8 - 12 June 2009

Predictions from Star Formation in the Multiverse

S. Leichenauer and R. Bousso University of California at Berkeley U.S.A.

Predictions from Star Formation in the Multiverse

Stefan Leichenauer Center for Theoretical Physics University of California, Berkeley

arXiv:0810.3044 [astro-ph], Raphael Bousso and S.L.; In preparation, Raphael Bousso and S.L.

Motivation

Developing a star formation model

Calculating probabilities

Solving the Measure Problem

We use the scientific method when addressing the measure problem:

Propose a measure
 Compute its predictions
 Compare to experiment

Solving the Measure Problem

□ The multiverse poses a challenge here:

 Only statistical predictions possible
 Only one measurement can be made, so there is no way to really test the statistics

Solving the Measure Problem

- We can still make progress: if a measure predicts T_{CMB} >2.7 K with 99.99...99% confidence, then that measure is ruled out with the same level of confidence
- Detailed models are not necessary for making such arguments

Making Real Predictions

- To make precise predictions, or to decide between two alternative viable measures, more comprehensive tools are needed
- Here we present a model for star formation which is unprecedented in its level of detail and broad applicability in the landscape

Making Real Predictions

- Cline, Frey, Holder (2007) and Bozek, Albrecht, Phillips (2009) use the star formation model of Hernquist & Springel (2003)
- That model is not applicable over a wide range of landscape parameters; it has unphysical features which give false conclusions

Star formation is a tool

- After a measure regulates the infinities, the star formation model helps us quantify how many observers there are and the time at which they exist
- We must also choose a way to go from stars to observers

The Star Formation Rate

- The SFR is the mass per unit comoving volume per unit time which is forming stars, as a function of time
- $\hfill We explore a three dimensional region of the landscape parametrized by <math display="inline">\Lambda, Q,$ and ΔN
- Straightforward generalization to more parameters is possible

The Star Formation Rate

Λ is the cosmological constant

- Known to be amenable to anthropic arguments
- Can be positive or negative
- $\Box \sim +10^{-123}$ in our universe
- For star formation, important because it halts structure growth

ΔN parametrizes curvature

- $\hfill N$ is the number of efolds of inflation, and ΔN is the difference between N and N $_{_0}$
- Affects structure growth
- 1/N⁴ prior probability means inflation is suppressed in the landscape (Freivogel, Kleban, Martinez, Susskind (2005))

Q is the perturbation strength

- Q = δρ/ρ is the amplitude of primordial density perturbations
 ~10⁻⁵ in our universe, these small
 - perturbations become galaxies
- Changing Q changes how long it takes to form structure
- □ We assume a prior flat in Log Q

Some things we don't vary

Microscopic physics is held fixed
 Matter-radiation ratio fixed (start calculations at matter-radiation equality)
 Dark matter fixed

Structure Formation Overview

- Initial perturbations are set by inflation, grow, and eventually collapse
- Collapse time determines the density of the resulting halo
- Halo mass distribution is determined by PS formalism

Each mass scale has a Gaussian

□ The perturbation amplitude is the width

Primordial Perturbations

- Shape as a function of mass set by inflation and radiation era
- We vary the overall amplitude

 $\sigma(M,t) = Qs(M)G(t)$

Gravitation causes growth

- For small perturbations, a linear approximation suffices
- Linear growth rate G(t) slowed by Λ, curvature
- Perturbations which reach a certain amplitude in the linear theory are said to have collapsed.

Tail area is collapsed fraction

Press-Schechter formalism

Typical mass collapsing at t

Collapse time determines density

 Controls the gravitational timescale
 All gravitational processes (like star formation) in the halo proceed on this timescale

$$t_{\rm grav} = \rho_{\rm vir}^{-1/2}$$

Cooling

- Newly collapsed halos are very hot (virial theorem) and baryons need to cool before collapsing further
- Bremsstrahlung, line cooling, Compton cooling
- Need ionized gas

Lower limit on mass

 Masses below
 10⁴ K won't cool (efficiently)

Log M

Log t (Gyr)

Cooling timescale

- The cooling efficiency defines a cooling timescale t_{cool} ~ Energy/(Energy Loss Rate)
- □ This timescale increases for large temperature
- □ Setting $t_{grav} = t_{cool}$ gives a maximum mass

Upper limit on mass

A window of opportunity for cooling

Cooling by Compton scattering

- □ Scatter with the CMB photons, lose energy
- As long as a gas is ionized (10⁴ K), Compton cooling depends only on the CMB temperature
- □ Effective early on, before CMB gets too cold
- Unimportant in our universe

$$t_{comp} = \frac{45m_e}{4\pi^2 \sigma_T (T_{CMB})^4}$$

Upper limit on mass

A window of opportunity for cooling

Star formation is very nonlinear

- Detailed physics is hard to understand (unsolved problem)
- The only timescale comes from the density, so we say stars form on that timescale
- We also stipulate that only a certain fraction (about one third) of the gas of an individual halo is processed before an unknown feedback mechanism halts star formation

The Whole Picture

- Perturbations grow and collapse
- Ordinary matter cools (if it can)
- Cooled matter will form stars according to the graviational timescale of the halo
- Now just average over everything (EPS formalism helps you here)

The Whole Picture

It also matches observation

The Causal Diamond Measure

Regulate by counting observations in a causally connected region of spacetime
 Pathology-free

The Causal Diamond Measure

Observer model

- Star formation is not the same as observer formation
- One choice is to shift the star formation rate by an evolutionary delay time

Observer model

- Another possibility is to use entropy production
- Entropy production is well-defined
- Stars are the main source of entropy (at least in our universe)
- Entropy production requires knowledge of interstellar dust temperature
- Bousso, Harnik, Kribs, Perez (2007)
Changing Λ

Changing Λ

The Causal Diamond selects Λ

 \Box *t*_{delay} shifts the center of the distribution

Changing Curvature

Changing Curvature

Changing Curvature

Log (t $q^{3/2}$) (Gyr)

Delay model has growth in LogQ

Entropy is complicated

Multiple parameters

Λ <0 with negative curvature

$$ds^{2} = -dt^{2} + a^{2}(t) dX^{2} + a^{2}(t) \sinh^{2}(X) d\Omega_{2}^{2}$$

$$a(t) = t_{\Lambda} \sin(t/t_{\Lambda})$$

$$\chi(t_{obs}) = \int_{t_{obs}}^{t_{crunch}} a^{-1}(t) dt$$

$$\chi(t_{obs}) > \int_{\epsilon}^{t_{crunch}-\epsilon} t_{\Lambda}^{-1} \sin(t/t_{\Lambda})^{-1} dt$$

$$\chi(t_{obs}) \sim 2\log(t_{\Lambda}/\epsilon)$$

$$V_{c}(t_{obs}) \sim \exp(2\chi(t_{obs})) \sim t_{\Lambda}^{4} \sim \Lambda^{-2}$$

Multiple parameters

 $1/\Lambda$ pressure toward small Λ in the causal patch measure

Future

This tool should be used for more measures

Extending to other parameters is straightforward in principle