

The Abdus Salam International Centre for Theoretical Physics

2040-8

Workshop: Eternal Inflation

8 - 12 June 2009

The Lifetime of Stringy dS

M. Lippert Israel Institute of Technology Israel

B. Freivogel University of California At Berkeley U.S.A.

The Lifetime of Stringy dS

with Ben Freivogel arXiv:0807.1104

What is the maximum lifetime of dS?

No eternal dS

Observables (Banks & Fischler, Witten, etc.) Boltzmann Brains (DKS, etc.) No string theory examples

Poincaré Recurrence Time: $t_r \sim e^{\mathbf{S}_{dS}} = e^{\frac{24\pi^2}{G_4^2 V_{dS}}}$

Upper bound: $t_d \leq t_r \sim e^{M_p^2/H^2}$ (Susskind, Giddings, etc)

Can we do better?

Boltzmann Brains

What are BBs?

observers formed by fluctuations violation of 2nd law not "ordinary" observers

Estimate BB entropy S_{BB} (rough) $S_{BB} \sim \text{minimum } S$ for observer estimate: # of dof ~ # of particles $S_{BB} > 10^{15}$ bacterium $S_{BB} < 10^{50}$ earth

Time to nucleate a BB $t_{BB} \gtrsim H^{-1}e^{\mathbf{S}_{BB}}$ $t_{BB} \approx H^{-1}e^{10^{40\pm 20}}$

Imprecise, but $t_{BB} \ll t_r$

Boltzmann

Boltzmann Brain Bound

How many BB in a causal patch? $N_{BB} \sim \frac{t_d}{t_{BB}}$

BB problem: don't want to be swamped by BBs precise statement depends on measure

Want $t_d < t_{BB}$ to avoid conflict with observation nontrivial bound because $t_{BB} \ll t_r$

Is BB bound obeyed in string landscape?

Naively, easy to make $t_d \approx t_r$ Depends on potential, which can be anything

In string theory

CDGKL estimate $t_d \sim e^{M_p^2/m_{3/2}^2}$

We find: this is an overestimate

False Vacuum Decay

CdL Formalism

- Scalar coupled to gravity
- Euclidean instanton for tunneling from ϕ_F to ϕ_T

• Decay rate:
$$t_d = \Gamma^{-1} \sim e^B$$

where
$$B = S_{CdL} - S_F$$

Lorentzian dynamics expanding bubble of true vacuum $\begin{cases} V_T > 0 \rightarrow dS \\ V_T = 0 \rightarrow open \ FRW \\ V_T < 0 \rightarrow big \ crunch \end{cases}$

Thin-wall Limit

Transition from V_F to $V_T \approx$ Domain Wall

Bubble radius

$$\rho = \frac{\rho_0}{\sqrt{1 + 2xy + x^2}}$$
 where $\rho_0 = \frac{3\tau}{\delta V}$ QFT result

Metastable dS decay

Decay Time bounded

$$B = S_{CdL} - S_F \le -S_F = \frac{24\pi^2}{G_4^2 V_{dS}} \qquad t_d \le t_r$$

Limits

Instanton

KKLT de Sitter Vacua

Flux Compactification

F theory compactified on elliptically fibered CY 4-fold

IIB compactified on 6d Orientifold \mathcal{M} w/ D7's

Turn on ISD flux $G_3 = F_3 - \tau H_3$ on 3-cycles of \mathcal{M}

 $ds^{2} = h^{-1/2}g_{\mu\nu}(x)dx^{\mu}ds^{\nu} + h^{1/2}e^{2u}dy^{m}dy^{n}$

M near Conifold point ~ Warped Deformed Conifold (KS throat)

Brane/Flux Annihilation (KPV)

KPV decay - QFT approx

Instanton (thin-wall) = NS5 wrapped on S^3 , bubble in spacetime

4d tension
$$\tau = \tau_{NS5} V_{S^3} h_{tip}^{-3/4} = \frac{M^{3/2}}{16\pi^3 g_s^{1/2} l_s^3} h_{tip}^{-3/4}$$

Energy
difference $\delta V \approx |V_{AdS}| = \frac{2N_{\overline{D3}}}{8\pi^3 g_s l_s^4} h_{tip}^{-1}$
 $B_{KPV}^0 = 3 \cdot 10^{-3} \frac{g_s M^6}{(N_{\overline{D3}})^3}$

Why doesn't this depend on h_{tip} ? everything localized at tip measure relative to bulk $\longrightarrow h_{tip}$ factors use proper quantities \longrightarrow independent of h_{tip}

How big can this be?

Largest known $\chi_{CY_4} \sim 10^6$

Gravity Corrections

So far ignored gravity

Ok if $x \ll 1$ \longleftrightarrow $\rho \ll R_{dS}, R_{AdS}$ $x = \frac{3\pi^4 g_s^2 M^3}{2e^{6u} N_{\overline{D}3}} h_{tip}^{-1/2}$

Can x ever be > 1?

CY > throat
$$e^{4u} > 3\pi^3 g_s M K$$

KS throat $K > g_s M > 1$ $x < 10^4 h_{tip}^{-1/2}$

$$h_{tip} \begin{cases} > 10^8 & \text{long throat} & \longrightarrow & \text{QFT result ok} \\ < 10^8 & \text{short throat} & \longrightarrow & t_{KPV} \approx t_r \end{cases}$$

Bulk Flux Decay

KPV vs flux decay

$$\begin{split} B_{CDGKL} \sim \frac{1}{G_4^2 V_{AdS}} \sim R_{AdS}^4 V_{AdS} & \text{use } R_{AdS} = G_4 V_{AdS} \\ \sim \frac{R_{AdS}^4}{\rho_0^4} V_{AdS} \rho_0^4 \\ x^{-2} B_{KPV}^0 \end{split}$$

For long throat $x < 1 \implies B = B_{KPV}^0$ KPV For short throat $x > 1 \implies B = B_{KPV}^0/x^2$ Bulk flux $I \implies B < B_{KPV}^0 \forall x$

Bound on KKLT lifetime

$$B_{KPV}^{0} < 4 \cdot 10^{-10} \chi_{CY_{4}}^{5}$$

$$\int t_{d} < H^{-1} e^{4 \cdot 10^{-10} \chi_{CY_{4}}^{5}} < H^{-1} e^{10^{22}}$$

Compare with BB time

 $t_{BB} \approx H^{-1} e^{10^{40 \pm 20}}$

What's not to like?

- Not airtight bound e.g. CDGKL estimate
- Depends sensitively on bound on χ_{CY_4}
- Only one tiny corner of landscape Is this a general feature of string landscape?

Slogans

Nearly SUSY \longrightarrow Nearly stable Here, t_d independent of $m_{3/2}$ (for small $m_{3/2}$)

String vacua make V_{dS} small by accident need ingredients at scales other than V_{dS} t_d set by these scales

Conjecture: $t_d < t_{BB}$ for all string vacua long-lived string vacua hard to make HW: find counter-example