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Landscapes and extra dimensions

• Extra dimensions = Landscapes of lower dimensional vacua.

t

• Eternal inflation - transitions within 4D EFT 

between vacua.

? Why are some dimensions small and others large ?

? What about the extra dimensions ?

• Do extra dimensions play a direct role in dynamics, or just provide the 

possibility of different 4D physics?



Dynamical Compactification
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• We will find non-singular black brane solutions that interpolate across event 

horizons between a D dimensional de Sitter space and a D-q dimensional 

open FRW universe with a stabilized q-sphere.

S =
MD−2
D

2
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dDx
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2q!
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q

)

• These solutions can be nucleated out of D-dimensional dS space, 

explaining how extra dimensions became compact.

• Many types of lower-dimensional vacua exist and can be populated.



S. B. Giddings and R. C. Myers, Phys. Rev. D70, 046005 (2004), hep-th/0404220.

F. Larsen and F. Wilczek, Phys. Rev. D55, 4591 (1997), hep-th/9610252.

R. Bousso, Phys. Rev. D60, 063503 (1999), hep-th/9902183.
, y , ( ), g q /

R. Bousso, O. DeWolfe, and R. C. Myers, Found. Phys. 33, 297 (2003), hep-th/0205080.

G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B287, 717 (1987), hep-th/0109093.
H. Lu, S. Mukherji, and C. N. Pope, Int. J. Mod. Phys. A14, 4121 (1999), hep-th/9612224.
K. Behrndt and S. Forste, Nucl. Phys. B430, 441 (1994), hep-th/9403179.
E. A. Bergshoeff, A. Collinucci, D. Roest, J. G. Russo, and P. K. Townsend, Class. Quant. Grav. 22, 4763 (2005), hep-
th/0507143.

Previous work

( ) /
G. W. Gibbons, G. T. Horowitz, and P. K. Townsend, Class. Quant. Grav. 12, 297 (1995), hep-th/9410073.



Each element of this picture can be understood from completely 

vanilla black holes in 4 dimensions.

Cosmology inside a black hole
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Cosmology inside a black hole

τ = 0 2D “Big-bang” is non-singular - just the event horizon.

2D open FRW “compactified”
2-sphere

ds2 = −dτ2 + τ2dx2 + 4M2dΩ2
2x =

t

4M
, τ =

√
16M2 − 8MR

Near the horizon:



τ → iτ
ds2 = −τ2dx2 + dτ2 + 4M2dΩ2

2

Cosmology inside a black hole

Can continue across the horizon by taking                 ,  R is spacelike. 
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R > 2M

• Event horizon separates 2D big-crunch cosmology from asymptotically 

flat 4D space.

• Can study in more detail.....



ds2 = −dτ2 + a2(τ)dx2 +R2(τ)dΩ2
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Dimensional reduction

Einstein’s equations

Veff =
1
2

logR R′′ +
R′2

2R
= −dVeff

dR
• R evolves in the potential

a = R′ = 0 specify solution by R at the horizon• Event horizon where 



Veff → −Veff
τ → iτ

Going outside the horizon
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• Continuing across the horizon:

• This method of dimensionally reducing to a “radion” R living in 

lower dimensions (the open FRW) can be used to classify a wide 

variety of solutions.



Veff =
1
2

logR+
Q2

4R2

Adding matter

• Add a 2-form: charge the black hole.
Veff

R

• Now, we can stabilize R:                     is a solution.AdS2 × S2
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• There is a “landscape” of vacua, one for each Q.



Veff =
1
2

logR+
Q2

4R2

Adding matter

• Add a 2-form: charge the black hole.
Veff

R

• Now, we can stabilize R:                     is a solution.AdS2 × S2

• There is a “landscape” of vacua, one for each Q.

• The black hole solutions can have multiple horizons.
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“Big bang surface”

“Big crunch surface”



Veff =
1
2

logR+
Q2

4R2
− Λ

4
R2

Adding matter

R

Veff

• Add a cosmological constant

dS2 × S2

AdS2 × S2

• There are new “compactification” solutions.



Veff =
1
2

logR+
Q2

4R2
− Λ

4
R2 M2 × S2

Q =
1

2
√

Λ

Adding matter

• Add a cosmological constant
Veff

R

• Q is bounded.



Veff =
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logR+
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4
R2

Adding matter

• Add a cosmological constant

R

Veff

• Can have up to three horizons: 2 BH and 1 cosmological

This region interpolates between:



4D dS and 2D FRW
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4D dS and 2D FRW



Veff =
1
2

logR+
Q2

4R2
− Λ

4
R2

Adding matter

• Add a cosmological constant

R

Veff

• Can have up to three horizons: 2 BH and 1 cosmological

• Charged black holes in de Sitter are “interpolating solutions.”

• The thermal properties of de Sitter space add interesting dynamics......



Black hole nucleation

• de Sitter space is semi-classically unstable to the nucleation of charged 

black holes.

Γ = A exp [−(Sinst − SdS)]

• The 2D region inside of each black hole is spontaneously nucleated -              

An example of “Dynamical Compactification.”

• Globally, an infinite number of black holes are nucleated, populating all 

possible 2D crunching universes.

• Future infinity of the dS space is split into many disconnected regions.

What if the lower dimensional FRW was 4D and didn’t end in a crunch?

Now enters the magic of higher dimensional GR....



A very simple theory
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Dimensional reduction

ds̃2 = g̃p+2
μν (x)dxμdxν +R2(x)dΩ2

q

• Assume q-dimensional spherical symmetry (D=q+p+2):

Fq = Q sinq−1 θ1 . . . sin θq−1dθ1 . . . ∧ dθq
• For magnetic flux, Maxwell equations satisfied for:

S =
∫
dp+2x

√−g
[
Mp
p+2

2
R− Mp−2

p+2

2
gμν(∂μφ)(∂νφ)− V (φ)

]

Mp+2 ≡MD (Vol(Sq))1/p MDR = exp
[√

p

q(p+ q)
φ

Mp+2

]

• Can integrate over the angular coordinates on the q-sphere and go to the 

Einstein frame of a p+2-dimensional theory:



V (φ) =
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p+2M

2
D

2
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pq
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)
+
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q
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)

+
Q2

2
exp
(
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√
q

p(p+ q)
φ
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)]
.

A landscape of lower-dimensional vacua

• The potential is given by:

curvature cosmological constant

flux

Φ

V
��0

Φ

V
��0

increasing Qincreasing Q



A landscape of lower-dimensional vacua

• Can have lower dimensional vacua with positive, negative, or zero 

vacuum energy - our landscape.

F 2
q

2q!
→

D−2∑
i=2

F 2
qi

2qi!

• If there are multiple q-forms, there can be vacua with various 

numbers of compact and non-compact dimensions.                             

• Possible to have 4D vacua (if q = D-4) with a small vacuum energy.

• The radius of the stabilized sphere is always less than R ∼ Λ−1/2

• The sphere can be small, so this is a true compactification.



Solutions with a dynamical radion.

• spacelike

negative curvature (open)

no curvature (flat)

positive curvature (closed)

• Homogenous + isotropic = p+2 dimensional FRW with scalar field.

• We need to begin with an ansatz for the p+2 dimensional metric:

S =
∫
dp+2x

√−g
[
Mp
p+2

2
R− Mp−2

p+2

2
gμν(∂μφ)(∂νφ)− V (φ)

]

• timelike
analytic continuation

X



ds2 = −dτ2 + a(τ)2
[
dχ2 + S2

k(χ)dΩ2
p

]

Φ

V

Φ

V

τ timelike τ spacelike

S2
k = {χ, sinhχ}

Solutions with a dynamical radion.

φ̈+ (p+ 1)
ȧ

a
φ̇ = ∓M2−p

p+2V
′

(
ȧ

a

)2

=
2

M2
p+2p(p+ 1)

(
φ̇2

2
±M2−p

p+2V (φ)

)
− k

a2

• Field and Friedmann equations:



Non-singular big-bang and big-crunch

• What about big-bang and big-crunch singularities (where a=0)?

• Possible for the open and flat cases. Scale factor has universal behavior:

(
ȧ

a

)2

→ 1
a2

a = τ as τ → 0
open

(
ȧ

a

)2

→ ± 2
Mp
p+2p(p+ 1)

V (φ)

a ∝ eHτ as τ → −∞
flat

R = − φ̇2

M2
p+2

+
2(p+ 2)

p

V (φ)
Mp
p+2

• a=0 is a coordinate singularity if the field energy is finite. This requires

φ̇→ 0 as a→ 0 φ̈+ (p+ 1)
ȧ

a
φ̇ = ∓M2−p

p+2V
′from



Non-singular big-bang and big-crunch

• What about big-bang and big-crunch singularities (where a=0)?

• Possible for the open and flat cases. Scale factor has universal behavior:

a = τ as τ → 0 a ∝ eHτ as τ → −∞
open flat

R = − φ̇2

M2
p+2

+
2(p+ 2)

p

V (φ)
Mp
p+2

• a=0 is a coordinate singularity if the field energy is finite. This requires

φ̇→ 0 as a→ 0 φ̈+ (p+ 1)
ȧ

a
φ̇ = ∓M2−p

p+2V
′from

de Sitter:



Non-singular big-bang and big-crunch

• What about big-bang and big-crunch singularities (where a=0)?

• Possible for the open and flat cases. Scale factor has universal behavior:

a = τ as τ → 0 a ∝ eHτ as τ → −∞
open flat

R = − φ̇2

M2
p+2

+
2(p+ 2)

p

V (φ)
Mp
p+2

• a=0 is a coordinate singularity if the field energy is finite. This requires

φ̇→ 0 as a→ 0 φ̈+ (p+ 1)
ȧ

a
φ̇ = ∓M2−p

p+2V
′from

• Surface is always null, can be identified with an event horizon in D-

dimensional geometry.
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Classifying solutions

• Construct solutions by first specifying the radion potential (fix    and Q)Λ

• Choose an open or flat metric ansatz.

open FRW:
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Classifying solutions

• Construct solutions by first specifying the radion potential (fix    and Q)Λ

• Match segments of timelike and spacelike    across non-singular a=0 

surfaces. 

τ
• Choose an open or flat metric ansatz.

open FRW:



Classifying solutions
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τ timelike

• Construct solutions by first specifying the radion potential (fix    and Q)Λ

• Match segments of timelike and spacelike    across non-singular a=0 

surfaces. 

τ
• Choose an open or flat metric ansatz.

open FRW:



Classifying solutions

V
�

τ spacelike

• Construct solutions by first specifying the radion potential (fix    and Q)Λ

• Match segments of timelike and spacelike    across non-singular a=0 

surfaces. 

τ
• Choose an open or flat metric ansatz.

open FRW:



Timelike τ

V �Mp
p+2Λ exp

(
−2
√

q

p(p+ q)
φ

Mp+2

)• At large     the dominant term in the potential isφ

• Exponential potentials admit attractor solutions.

1
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• The metric describes the approach to D-dimensional de Sitter space as 

the radius of the q-sphere goes to infinity.



ä

a
= − 1

M2
p+2p(p+ 1)

(
pφ̇2 + 2M2−p

p+2V
)

Spacelike 

• Scale factor is bounded. Generic choices of initial conditions lead to a 

singularity:

τ 2
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Φ

φ̈+ (p+ 1)
ȧ

a
φ̇ = ∓M2−p

p+2V
′

Δτφ ∼
M

p/2−1
p+2√|V ′′(φmax)|

Δτa ∼
M

p/2
p+2√|V (φmax)|

• Need to match the period of the scale factor to the barrier crossing time:

V
�

τ spacelike



Spacelike τ 2

• For small enough Q, the periods can be adjusted by moving the endpoints. 

For each potential there can exist one set of non-singular endpoints:g

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Τ
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• There are two non-singular a=0 endpoints, and so two event horizons.
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• The metric interpolates between the two event horizons.

Spacelike τ 2

V
�

τ spacelike



Timelike τ 3

xV

�

• For a negative minimum, there is always a 

spacelike singularity as perturbations are re-

focused.

�

V

• For a zero or positive minimum,the field settles 

into the vacuum. There is no singularity.



Timelike τ 3
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• In this region there is a D-q dimensional open FRW universe that 

evolves at late times to de Sitter: This could be how our universe 

began!
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Interpolating solutions: open FRW ansatz
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Classifying solutions

Many other solutions can be generated from other 
choices of the metric ansatz.
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S =
Mq+2
D

2

∫
dq+4x

√
−g̃(q+4)

(
f(ψ)R̃(q+4) − 2Λ− h(ψ)

2q!
F̃ 2
q

)
+
∫
dq+4x

√
−g̃(q+4)

(
−Mq

ψk(ψ)g̃μν∂μψ∂νψ − V (ψ)
)

ψ stable

ψ unstable

An aside: embedding Inflation
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• The coupling to curvature and flux induces a negative mass squared for the

scalar inside an event horizon:

ψ stable

• Add a scalar:

• This can drive an epoch of inflation.
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Dynamical Compactification

• Two solutions that contain a non-singular p+2 dimensional region:

Interpolating Compactification



Coleman de Luccia Hawking Moss
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Dynamical Compactification

• Two solutions that contain a non-singular p+2 dimensional region:

What if the lower dimensional FRW was 4D and didn’t end in a crunch?

• We have answered our original question:

• These solutions are analogous to the charged dS black hole and 

compactification solution discussed earlier.

• Empty de Sitter space is unstable to the nucleation of these objects.



D

Dp+2

nucleation surface

�+

D

nucleation surface

p+2 D
��
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Dynamical compactification

• Interpolating solution:

• Compactification solution:



Γ = A exp
[
S

(D)
ds (1− α)

]

Dynamical compactification: rates

� � � �
�

�

� �
�
�
�

�

�

�

�

�

�

�
�
�

�
�

���
��
�
�

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Q

0.6

0.7

0.8

0.9

1.0
Α {p = 2, q = 2,Λ = .1M2

D}
interpolating

compactification

• Rates are suppressed by the de Sitter action.

• The rate for the interpolating solutions is higher when it exists.

• The rate is highest for small Q = lowest vacuum energy.

Vmin > 0

no interpolating solution
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Dynamical compactification: rates

D = 8
P + 2 = 3
P + 2 = 4
P + 2 = 5
P + 2 = 6

F 2
q

2q!
→

D−2∑
i=2

F 2
qi

2qi!
We can compare rates to vacua with different dimensionality:

• No large disparity between different numbers of compactified dimensions.

• Unclear what to compare.....



Decompactification transitions

p+2

Dp+2

nucleation surface

Γ = A exp
[
−(Sinst − S

(p+2)
dS )

]
• The p+2 dimensional de Sitter vacua decay back to D dimensional de Sitter 

space by the same instanton:

�

V

Γin
Γout

= exp
[
|S(p+2)
dS | − |S(D)

dS |
]

|S(p+2)
dS | > |S(D)

dS |
• The rate into a vacuum is always larger than the rate out

• Minkowski vacua are completely stable.

(Giddings, Giddings+Myers)



Global structure of the multiverse
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T=

T=

• Future infinity is fractally distributed among vacua with different vacuum 

energy and numbers of non-compact dimensions.

• Transitions occur back and forth between p+2 and D dimensions.

• Higher-dimensional eternal inflation!

• Connecting to predictions is a very difficult measure issue.



Summary

Φ

V

S =
MD−2
D

2

∫
dDx
√
−g̃(D)

(
R̃(D) − 2Λ− 1

2q!
F̃ 2
q

)
Landscape of vacua.

D

D

p+2

p+2

Solutions interpolate between D-dimensional dS and p+2 

dimensional FRW across event horizons.

D

Dp+2

nucleation surface

These solutions are nucleated from dS - 

Dynamical compactification.
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T=

T=

Transitions back and forth populate the 

landscape of vacua.



Future directions

• Stability analysis.

• For p+2 = 4, the compactification solutions have instabilities 

when q > 4 (Bousso, de Wolfe, Myers).

• The endpoint of the instability may still be a compact manifold 

(warped sphere according to Kinoshita and Mukohyama).

• What about the stability of the interpolating solutions?

• What about thermodynamical stability? Can universes 

evaporate?



Future directions

• Stability analysis.

• Inhomogeneities.

• Inevitably “collisions” between interpolating solutions will occur.

• Field outside of brane will cause stimulated emission of small-charge 

branes (similar to Schwinger pair production).

• These are multi-centered black brane solutions.

• This changes the geometry - what happens to the homogeneity of 

the p+2 dimensional FRW inside the horizon?

• Are there potentially observable effects?



Future directions

• Stability analysis.

• Inhomogeneities.

• Pre-big bang effects.

• On the other side of the non-singular big-bang surface, extra 

dimensions become “large”.

• Does this lead to any interesting effects?



Future directions

• Stability analysis.

• Inhomogeneities.

• Pre-big bang effects.

• Measure issues.

• We have a catalog of nucleation rates. They have rather simple (and 

suggestive) properties.

• Is it possible to go from this to statistical predictions for various 

fundamental parameters?

• Requires an understanding of the measure -  similar to eternal 

inflation.



Future directions

• Stability analysis.

• Inhomogeneities.

• Pre-big bang effects.

• Measure issues.

• What about standard 4D eternal inflation?

• Membrane nucleation can occur inside of the locally 4D region, 

leading to the standard picture of 4D eternal inflation.

• Subtleties due to interaction of flux d.o.f. with radion.



• What about standard 4D eternal inflation?

Future directions

• Stability analysis.

• Inhomogeneities.

• Pre-big bang effects.

• Measure issues.

• Other solutions?

• Homogenous but anisotropic metric ansatz will generate different 

solutions. 

• A flat metric ansatz generates non-extremal black branes.

• What about the other Bianchi types? 

• Bent branes?



The End.

Thanks!
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Internal discharge: Q to Q.

Q�e

+e�e
+Q

r+

Black hole discharge: Q to Q�e.

Q�e

Membrane nucleation inside of black branes.


