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Landscapes and extra dimensions

o Extra dimensions = Landscapes of lower dimensional vacua.

? Why are some dimensions small and others large ?

t A

o Eternal inflation - transitions within 4D EFT
between vacua.

? What about the extra dimensions ?

® Do extra dimensions play a direct role in dynamics, or just provide the
possibility of different 4D physics?




Dynamical Compactification

ME~? - 1 -
5= M2 [Py =g (RO -2 - F2)
We will find non-singular black brane solutions that interpolate across event
horizons between a D dimensional de Sitter space and a D-g dimensional
open FRW universe with a stabilized g-sphere.

D-q dimensions D dimensions

These solutions can be nucleated out of D-dimensional dS space,
explaining how extra dimensions became compact.

Many types of lower-dimensional vacua exist and can be populated.
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Cosmology inside a black hole

Each element of this picture can be understood from completely
vanilla black holes in 4 dimensions.




Cosmology inside a black hole

dR? 2M
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Near the horizon:
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2D open FRW  “compactified”
2-sphere
7 =0 2D “Big-bang” is non-singular - just the event horizon.




Cosmology inside a black hole

Can continue across the horizon by taking 7 — 27, R s spacelike.

ds® = —12dx? + dr* + 4M?dQ3

Event horizon separates 2D big-crunch cosmology from asymptotically
flat 4D space.
Can study in more detail.....




Dimensional reduction

ds* = —dr* + a*(7)dz* + R?*(7)d)3

@ Einstein’s equations @

R"* 1
°R 2R

R +

1
R evolves in the potential Verr = 5 log R :{> R’ + 5F = " ap

Event horizon where a = R’ =0 IZ{> specify solution by R at the horizon




Going outside the horizon

Continuing across the horizon:

This method of dimensionally reducing to a “radion” R living in
lower dimensions (the open FRW) can be used to classify a wide
variety of solutions.




Adding matter

Add a 2-form: charge the black hole.

1
Verr = 510gR+

2

4 R?
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Now, we can stabilize R:  AdS, x S? is a solution.

R




Adding matter

Add a 2-form: charge the black hole.
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Now, we can stabilize R:  AdS, x S? is a solution.
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Adding matter

Add a 2-form: charge the black hole.

Vers
2

1
Veff — 510gR+ 4—R2

Now, we can stabilize R:  AdS, x S? is a solution.
There is a “landscape” of vacua, one for each Q.

The black hole solutions can have multiple horizons.

“Big crunch surface”

“Big bang surface”




Adding matter

Add a cosmological constant

2 Vers dSQ X 52

1 A
Vers = glog R+ =5 = —R2

AdtSQ X S2

There are new “compactification” solutions.




Adding matter

Add a cosmological constant

2

1 A
Vers = glog R+ =5 = —R2

Q is bounded.

~2vA
MQXS2




Adding matter

Add a cosmological constant

1 2 A
Vers = 5 log R+ 105 — —R2

4R2 < < —>

R

Can have up to three horizons: 2 BH and 1 cosmological

This region interpolates between:
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Adding matter

Add a cosmological constant

1 2 A
Vers = 5log R+ 105 — —R2

4R2 < < —>

R

Can have up to three horizons: 2 BH and 1 cosmological

Charged black holes in de Sitter are “interpolating solutions.”

The thermal properties of de Sitter space add interesting dynamics......




Black hole nucleation

de Sitter space is semi-classically unstable to the nucleation of charged
black holes.

I'=Aexp |—(Sinst — Sqs)]

The 2D region inside of each black hole is spontaneously nucleated -
An example of “Dynamical Compactification.”

Globally, an infinite number of black holes are nucleated, populating all
possible 2D crunching universes.
Future infinity of the dS space is split into many disconnected regions.

s \
What if the lower dimensional FRW was 4D and didn’t end in a crunch?

Now enters the magic of higher dimensional GR....




A very simple theory




Dimensional reduction

Assume g-dimensional spherical symmetry (D=g+p+2):
ds* = gf[,fQ( ydxHdx” + R2(X)dﬂg
For magnetic flux, Maxwell equations satisfied for:
F,=Qsin" '0;,...sin0,_1db; ... Adb,

Can integrate over the angular coordinates on the g-sphere and go to the
Einstein frame of a p+2-dimensional theory:

2y Myis
= [y R o -vio
M,+2 = Mp (Vol(87))*/ Mph = exp [\/q(pi q) Mfw]




A landscape of lower-dimensional vacua

The potential is given by:

curvature cosmological constant
MP . M? Tq o 2A o)
Vie) — —pt2D [_ _q (_2 p+q >+_ (_2 q >
) 2 dg—Dew pa Myo) MET p(p+q) Mpyo
Q’ ( q ¢ >]
+ —2(p+ 1 .
T p(p+ q) Mpyo
flux
A=0 A>0
\' \Y
) increasing Q ) increasing Q
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A landscape of lower-dimensional vacua

Can have lower dimensional vacua with positive, negative, or zero
vacuum energy - our landscape.

Possible to have 4D vacua (if g = D-4) with a small vacuum energy.

The radius of the stabilized sphere is always less than R ~ A~%/2

The sphere can be small, so this is a true compactification.

If there are multiple g-forms, there can be vacua with various

numbers of compact and non-compact dimensions.
q qi

2 2 g

1=2




Solutions with a dynamical radion.

p—2

s= | er[ e T e (0,0)(0,0) — V(6)

We need to begin with an ansatz for the p+2 dimensional metric:

[ Homogenous + isotropic = p+2 dimensional FRW with scalar field.

, analytic continuation , ,
spacelike > o timelike

~___~  negative curvature (open)

no curvature (flat)

@ positive curvature (closed)




Solutions with a dynamical radion.

ds® = —dr? + a(7)? [d)(2 + S;%(X)dQZ] S7 = {x, sinh x}

Field and Friedmann equations:

; . 1\ 2 b2 . k
b+prio=mazpv (1) - M 5p(p + 1) (Gé iMéé’vw)) -

\Y% A\

w T spacelike
¢ /\/ ¢




Non-singular big-bang and big-crunch

What about big-bang and big-crunch singularities (where a=0)?

¢? L 2p+2) V(9)

oAs2 p
Mp+2 p Mp+2

R —

a=0 is a coordinate singularity if the field energy is finite. This requires

q5—>0asa—>0 from q}5+(p+1)gq3:¢M§;§V/

Possible for the open and flat cases. Scale factor has universal behavior:

open flat
a=TasT—0 axe' as T — —00

AR (Q)Li © V(o)
(E) Bz a M7 p(p + 1)




Non-singular big-bang and big-crunch

What about big-bang and big-crunch singularities (where a=0)?

¢? L 2p+2) V(9)

R=—
M1y p My,

a=0 is a coordinate singularity if the field energy is finite. This requires

q5—>0asa—>0 from q}5+(p+1)gq3:¢M§;§V/

Possible for the open and flat cases. Scale factor has universal behavior:

open flat

a=T1as T — 0 aox el as T — —o0

de Sitter: /




Non-singular big-bang and big-crunch

What about big-bang and big-crunch singularities (where a=0)?

¢? L 2p+2) V(9)

oAs2 p
Mp+2 p Mp+2

R —

a=0 is a coordinate singularity if the field energy is finite. This requires

q5—>0asa—>0 from q}5+(p+1)gq3:¢M§;§V/

Possible for the open and flat cases. Scale factor has universal behavior:

open flat

a=T1as T — 0 aox el as T — —o0

Surface is always null, can be identified with an event horizon in D-
dimensional geometry.




Classifying solutions

Construct solutions by first specifying the radion potential (fix A and Q)

Choose an open or flat metric ansatz.

open FRW:
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Classifying solutions

Construct solutions by first specifying the radion potential (fix A and Q)

Choose an open or flat metric ansatz.

Match segments of timelike and spacelike 7T across non-singular a=0
surfaces.

open FRW:

7 timelike

\»




Classifying solutions

Construct solutions by first specifying the radion potential (fix A and Q)

Choose an open or flat metric ansatz.

Match segments of timelike and spacelike 7T across non-singular a=0
surfaces.

open FRW:

T spacelik,e/




Timelke T @ k

At large qb the dominant term in the potential is

¢
V ~ MP ,Aexp (—2 d
P2 p(p+ q) Mpio

Exponential potentials admit attractor solutions.

¢

The metric describes the approach to D-dimensional de Sitter space as
the radius of the g-sphere goes to infinity.

D-q dimensions D dimensions




. Tspacelik’e/
Spacelke T @

a 1 ( ‘o 9
== pé? +2MEV )
a MZ, op(p+1) P

Scale factor is bounded. Generic choices of initial conditions lead to a

singularity: . G -
o+ (p+1)-6 = FM RV

: A

0.4 sol

0.3 28

0.2 26/

24/

0.1 22l

02 04 06 08 10 12  © 02 04 06 08 10 12

Need to match the period of the scale factor to the barrier crossing time:

2—1 2
ATs ~ Mg‘{‘z AT ~ Mg-i/-Q
OV (Gman) V (mas)




T spacelik’e/

Spacelke T @

For small enough Q, the periods can be adjusted by moving the endpoints.
For each potential there can exist one set of non-singular endpoints:

a ¢
3.21
3.0¢
0.3+ 2.81
2.6¢
2.4

2.2¢

041

0.2F

0.1}

02 04 06 08 1.0 12 14° 02 04 06 08 1.0 12 14"

There are two non-singular a=0 endpoints, and so two event horizons.




Spacelke T @

The metric interpolates between the two event horizons.

D-q dimensions

D dimensions
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Timelike T @

\K /\ For a negative minimum, there is always a
/r .

spacelike singularity as perturbations are re-
<@ focused.

For a zero or positive minimum,the field settles
W - . < o sinaular
into the vacuum. There is no singularity.

— ¢

\Y%
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Timelike T @

/\
— i

(

In this region there is a D-g dimensional open FRW universe that
evolves at late times to de Sitter: This could be how our universe

began!
W D dimensions
0 5‘9 '?g;;s
oS AN
ol N
A3 %




Interpolating solutions: open FRW ansatz
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Classifying solutions

Many other solutions can lbe generated from other
choices of the metric ansatz.

0904.3115




An aside: embedding Inflation
Add a scalar:

+2
g Mp~ / 14/ —gla+d) ( FyR g~ M) Zf) + / g/ —glatd) (—Mik(w)é“”é’w@m - V(¢))

2 2q!

The coupling to curvature and flux induces a negative mass squared for the
scalar inside an event horizon:

D-q dimensions D dimensions
1) uns ~. 1 stable
':'(;90 é}»
,Q';o‘\ %1;9
& 1) stable 2N
=3 %"

This can drive an epoch of inflation.




Dynamical Compactification

Two solutions that contain a non-singular p+2 dimensional region:

\Y%

N

¢

Interpolating

\Y%
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¢

Compactification




Dynamical Compactification

Two solutions that contain a non-singular p+2 dimensional region:

v v

VN VAN

Coleman de Luccia Hawking Moss

These solutions are analogous to the charged dS black hole and
compactification solution discussed earlier.

Empty de Sitter space is unstable to the nucleation of these objects.

We have answered our original question:

[What if the lower dimensional FRW was 4D and didn’t end in a Crunoh’?j




Dynamical compactification

Interpolating solution: p+2 D

nucleation surface

D

Compactification solution:
p+2 D

¢ ¢~

nucleation surface

D




Dynamical compactification: rates

a {(p=2,q=2,A=.1M3}

Hr B interpolating
09 . N .
ol ] @ compactification

, . T~
0.6 T .-T\me -°

0 no interpolating solution

05 10 15 20 25 30 35
['=Aexp {Sc(if)(l — oz)]
Rates are suppressed by the de Sitter action.

The rate for the interpolating solutions is higher when it exists.
The rate is highest for small Q = lowest vacuum energy.




Dynamical compactification: rates

F2 D—2 F2.

2—;! - ; 2;;! We can compare rates to vacua with different dimensionality:

o D — 8

L0 ®P+2-3

0.9 mP+2=4

0.8 P+2=5

N AP+2=6

0.7}

0.6 ® Viin=0
: Q

1 0 Qmax

No large disparity between different numbers of compactified dimensions.

Unclear what to compare.....




Decompactification transitions  (Giddings, Giddings+Myers)

The p+2 dimensional de Sitter vacua decay back to D dimensional de Sitter

space by the same instanton:

' = Aexp {_(Sinst — Sc(z{)ngQ))}

Ve

The rate into a vacuum is always larger than the rate out

p+2 D

P p+2

Fin
= oxp |5 1553 ST > 155

Minkowski vacua are completely stable.




Global structure of the multiverse

n=0 n=mn

Future infinity is fractally distributed among vacua with different vacuum
energy and numbers of non-compact dimensions.

Transitions occur back and forth between p+2 and D dimensions.
Higher-dimensional eternal inflation!

Connecting to predictions is a very difficult measure issue.




Summary

\\é_\ o M“ dazm@m o - Q,F;) —> Landscape of vacua.
¢

v

\%

Solutions interpolate between D-dimensional dS and p+2

dimensional FRW across event horizons.

These solutions are nucleated from dS -

T Dynamical compactification.

— Transitions back and forth populate the
landscape of vacua.




Future directions

Stability analysis.
For p+2 = 4, the compactification solutions have instabilities
when g > 4 (Bousso, de Wolfe, Myers).
The endpoint of the instability may still be a compact manifold
(warped sphere according to Kinoshita and Mukohyama).
What about the stability of the interpolating solutions?
What about thermodynamical stability? Can universes

evaporate?




Future directions

Stability analysis.
Inhomogeneities.
Inevitably “collisions” between interpolating solutions will occur.
Field outside of brane will cause stimulated emission of small-charge
branes (similar to Schwinger pair production).
These are multi-centered black brane solutions.
This changes the geometry - what happens to the homogeneity of
the p+2 dimensional FRW inside the horizon?
Are there potentially observable effects?




Future directions

Stability analysis.
Inhomogeneities.
Pre-big bang effects.
On the other side of the non-singular big-bang surface, extra

dimensions become “large”.
Does this lead to any interesting effects?




Future directions

Stability analysis.
Inhomogeneities.

Pre-big bang effects.
Measure issues.

We have a catalog of nucleation rates. They have rather simple (and
suggestive) properties.

Is it possible to go from this to statistical predictions for various
fundamental parameters?

Requires an understanding of the measure - similar to eternal
inflation.




Future directions

Stability analysis.
Inhomogeneities.
Pre-big bang effects.

Measure ISsues.
What about standard 4D eternal inflation?
Membrane nucleation can occur inside of the locally 4D region,

leading to the standard picture of 4D eternal inflation.
Subtleties due to interaction of flux d.o.f. with radion.




Future directions

Stability analysis.

Inhomogeneities.

Pre-big bang effects.

Measure issues.

What about standard 4D eternal inflation?

Other solutions?

Homogenous but anisotropic metric ansatz will generate different
solutions.

A flat metric ansatz generates non-extremal black branes.

What about the other Bianchi types?

Bent branes?




The End.

Thanks!




Membrane nucleation inside of black branes.

Black hole discharge: Q to Q—e. Internal discharge: Q to Q.




