

The Abdus Salam International Centre for Theoretical Physics

2040-6

Workshop: Eternal Inflation

8 - 12 June 2009

Dynamical compactification from higher dimensional de Sitter space

M. Johnson S. Carroll L. Randall California Institute of Technology U.S.A.

Dynamical compactification from higher dimensional de Sitter space

Matthew C. Johnson Caltech

In collaboration with: Sean Carroll Lisa Randall

0904.3115

Dynamical Compactification

$$S = \frac{M_D^{D-2}}{2} \int d^D x \sqrt{-\tilde{g}^{(D)}} \left(\tilde{\mathcal{R}}^{(D)} - 2\Lambda - \frac{1}{2q!}\tilde{F}_q^2\right)$$

 We will find non-singular black brane solutions that interpolate across event horizons between a D dimensional de Sitter space and a D-q dimensional open FRW universe with a stabilized q-sphere.

- These solutions can be nucleated out of D-dimensional dS space, explaining how extra dimensions became compact.
- Many types of lower-dimensional vacua exist and can be populated.

Previous work

- S. B. Giddings and R. C. Myers, Phys. Rev. **D70**, 046005 (2004), hep-th/0404220.
- F. Larsen and F. Wilczek, Phys. Rev. **D55**, 4591 (1997), hep-th/9610252.
- R. Bousso, Phys. Rev. **D60**, 063503 (1999), hep-th/9902183.
- R. Bousso, O. DeWolfe, and R. C. Myers, Found. Phys. 33, 297 (2003), hep-th/0205080.
- G. W. Gibbons, G. T. Horowitz, and P. K. Townsend, Class. Quant. Grav. 12, 297 (1995), hep-th/9410073.

G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B287, 717 (1987), hep-th/0109093.
H. Lu, S. Mukherji, and C. N. Pope, Int. J. Mod. Phys. A14, 4121 (1999), hep-th/9612224.
K. Behrndt and S. Forste, Nucl. Phys. B430, 441 (1994), hep-th/9403179.
E. A. Bergshoeff, A. Collinucci, D. Roest, J. G. Russo, and P. K. Townsend, Class. Quant. Grav. 22, 4763 (2005), hep-th/0507143.

Cosmology inside a black hole

Each element of this picture can be understood from completely vanilla black holes in 4 dimensions.

Cosmology inside a black hole

Can continue across the horizon by taking au
ightarrow i au , R is spacelike.

- Event horizon separates 2D big-crunch cosmology from asymptotically flat 4D space.
- Can study in more detail.....

Dimensional reduction

- R evolves in the potential $V_{eff} = \frac{1}{2} \log R$ $\square R'' + \frac{R'^2}{2R} = -\frac{dV_{eff}}{dR}$
- Event horizon where a = R' = 0 \square specify solution by R at the horizon

Going outside the horizon

• Continuing across the horizon:

 This method of dimensionally reducing to a "radion" R living in lower dimensions (the open FRW) can be used to classify a wide variety of solutions.

• Add a 2-form: charge the black hole.

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2}$$

$$V_{eff}$$

• Now, we can stabilize R: $AdS_2 \times S^2$ is a solution.

• Add a 2-form: charge the black hole.

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2}$$

- Now, we can stabilize R: $AdS_2 \times S^2$ is a solution.
- There is a "landscape" of vacua, one for each Q.

• Add a 2-form: charge the black hole.

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2} \qquad \qquad \begin{array}{c} V_{eff} \\ \mathbf{r} \\ \mathbf$$

- Now, we can stabilize R: $AdS_2 \times S^2$ is a solution.
- There is a "landscape" of vacua, one for each Q.
- The black hole solutions can have multiple horizons.

• Add a cosmological constant

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2} - \frac{\Lambda}{4}R^2$$

• There are new "compactification" solutions.

• Add a cosmological constant

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2} - \frac{\Lambda}{4}R^2$$

• Q is bounded.

Add a cosmological constant

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2} - \frac{\Lambda}{4}R^2 \qquad \bigvee_{eff} \qquad \checkmark$$

• Can have up to three horizons: 2 BH and 1 cosmological

-R

Add a cosmological constant

$$V_{eff} = \frac{1}{2}\log R + \frac{Q^2}{4R^2} - \frac{\Lambda}{4}R^2 \qquad \bigvee_{eff} \qquad \checkmark$$

• Can have up to three horizons: 2 BH and 1 cosmological

-R

Add a cosmological constant

• Can have up to three horizons: 2 BH and 1 cosmological

-R

Add a cosmological constant

- Can have up to three horizons: 2 BH and 1 cosmological
- Charged black holes in de Sitter are "interpolating solutions."
- The thermal properties of de Sitter space add interesting dynamics.....

Black hole nucleation

 de Sitter space is semi-classically unstable to the nucleation of charged black holes.

$$\Gamma = A \exp\left[-(S_{inst} - S_{dS})\right]$$

- The 2D region inside of each black hole is spontaneously nucleated -An example of "Dynamical Compactification."
- Globally, an infinite number of black holes are nucleated, populating all possible 2D crunching universes.
- Future infinity of the dS space is split into many disconnected regions.

What if the lower dimensional FRW was 4D and didn't end in a crunch? Now enters the magic of higher dimensional GR....

A very simple theory

$$S = \frac{M_D^{D-2}}{2} \int d^D x \sqrt{-\tilde{g}^{(D)}} \left(\tilde{\mathcal{R}}^{(D)} - 2\Lambda - \frac{1}{2q!}\tilde{F}_q^2\right)$$

Dimensional reduction

Assume q-dimensional spherical symmetry (D=q+p+2):

$$d\tilde{s}^2 = \tilde{g}^{p+2}_{\mu\nu}(\mathbf{x})dx^{\mu}dx^{\nu} + R^2(\mathbf{x})d\Omega_q^2$$

• For magnetic flux, Maxwell equations satisfied for:

$$F_q = Q \sin^{q-1} \theta_1 \dots \sin \theta_{q-1} d\theta_1 \dots \wedge d\theta_q$$

 Can integrate over the angular coordinates on the q-sphere and go to the Einstein frame of a p+2-dimensional theory:

$$S = \int d^{p+2}x\sqrt{-g} \left[\frac{M_{p+2}^p}{2}\mathcal{R} - \frac{M_{p+2}^{p-2}}{2}g^{\mu\nu}(\partial_\mu\phi)(\partial_\nu\phi) - V(\phi) \right]$$

 $M_{p+2} \equiv M_D \left(\operatorname{Vol}(S^q) \right)^{1/p} \qquad M_D R = \exp\left[\sqrt{\frac{p}{q(p+q)}} \frac{\phi}{M_{p+2}} \right]$

A landscape of lower-dimensional vacua

• The potential is given by:

$$V(\phi) = \frac{M_{p+2}^{p}M_{D}^{2}}{2} \left[-q(q-1)\exp\left(-2\sqrt{\frac{p+q}{pq}}\frac{\phi}{M_{p+2}}\right) + \frac{2\Lambda}{M_{D}^{2}}\exp\left(-2\sqrt{\frac{q}{p(p+q)}}\frac{\phi}{M_{p+2}}\right) + \frac{2\Lambda}{M_{D}^{2}}\exp\left(-2\sqrt{\frac{q}{p(p+q)}}\frac{\phi}{M_{p+2}}\right) \right].$$

$$flux$$

$$\Lambda = 0$$

$$V$$

$$increasing Q$$

$$\phi$$

$$increasing Q$$

$$\phi$$

A landscape of lower-dimensional vacua

- Can have lower dimensional vacua with positive, negative, or zero vacuum energy - our landscape.
- Possible to have 4D vacua (if q = D-4) with a small vacuum energy.
- The radius of the stabilized sphere is always less than $R \sim \Lambda^{-1/2}$
- The sphere can be small, so this is a true compactification.
- If there are multiple q-forms, there can be vacua with various numbers of compact and non-compact dimensions.

$$\frac{F_q^2}{2q!} \to \sum_{i=2}^{D-2} \frac{F_{q_i}^2}{2q_i!}$$

Solutions with a dynamical radion.

$$S = \int d^{p+2}x \sqrt{-g} \left[\frac{M_{p+2}^p}{2} \mathcal{R} - \frac{M_{p+2}^{p-2}}{2} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi) - V(\phi) \right]$$

• We need to begin with an ansatz for the p+2 dimensional metric:

Solutions with a dynamical radion.

$$ds^{2} = -d\tau^{2} + a(\tau)^{2} \left[d\chi^{2} + S_{k}^{2}(\chi) d\Omega_{p}^{2} \right] \qquad S_{k}^{2} = \{\chi, \sinh \chi\}$$

• Field and Friedmann equations:

$$\ddot{\phi} + (p+1)\frac{\dot{a}}{a}\dot{\phi} = \mp M_{p+2}^{2-p}V' \qquad \left(\frac{\dot{a}}{a}\right)^2 = \frac{2}{M_{p+2}^2p(p+1)}\left(\frac{\dot{\phi}^2}{2} \pm M_{p+2}^{2-p}V(\phi)\right) - \frac{k}{a^2}$$

Non-singular big-bang and big-crunch

• What about big-bang and big-crunch singularities (where a=0)?

$$\mathcal{R} = -\frac{\dot{\phi}^2}{M_{p+2}^2} + \frac{2(p+2)}{p} \frac{V(\phi)}{M_{p+2}^p}$$

• a=0 is a coordinate singularity if the field energy is finite. This requires $\dot{\phi} \to 0 \text{ as } a \to 0 \qquad \text{from} \qquad \ddot{\phi} + (p+1)\frac{\dot{a}}{a}\dot{\phi} = \mp M_{p+2}^{2-p}V'$

• Possible for the open and flat cases. Scale factor has universal behavior:

open flat

$$a = \tau \text{ as } \tau \to 0$$
 $a \propto e^{H\tau} \text{ as } \tau \to -\infty$
 $\left(\frac{\dot{a}}{a}\right)^2 \to \frac{1}{a^2}$ $\left(\frac{\dot{a}}{a}\right)^2 \to \pm \frac{2}{M_{p+2}^p p(p+1)} V(\phi)$

Non-singular big-bang and big-crunch

• What about big-bang and big-crunch singularities (where a=0)?

$$\mathcal{R} = -\frac{\dot{\phi}^2}{M_{p+2}^2} + \frac{2(p+2)}{p} \frac{V(\phi)}{M_{p+2}^p}$$

• a=0 is a coordinate singularity if the field energy is finite. This requires

$$\dot{\phi} \to 0 \text{ as } a \to 0$$
 from $\ddot{\phi} + (p+1)\frac{a}{a}\dot{\phi} = \mp M_{p+2}^{2-p}V'$

• Possible for the open and flat cases. Scale factor has universal behavior:

Non-singular big-bang and big-crunch

• What about big-bang and big-crunch singularities (where a=0)?

$$\mathcal{R} = -\frac{\dot{\phi}^2}{M_{p+2}^2} + \frac{2(p+2)}{p} \frac{V(\phi)}{M_{p+2}^p}$$

- a=0 is a coordinate singularity if the field energy is finite. This requires $\dot{\phi} \to 0 \text{ as } a \to 0 \qquad \text{from} \qquad \ddot{\phi} + (p+1)\frac{\dot{a}}{a}\dot{\phi} = \mp M_{p+2}^{2-p}V'$
- Possible for the open and flat cases. Scale factor has universal behavior:

open flat

$$a = \tau \text{ as } \tau \to 0$$
 $a \propto e^{H\tau} \text{ as } \tau \to -\infty$

 Surface is always null, can be identified with an event horizon in Ddimensional geometry.

- Construct solutions by first specifying the radion potential (fix Λ and Q)
- Choose an open or flat metric ansatz.

- Construct solutions by first specifying the radion potential (fix Λ and Q)
- Choose an open or flat metric ansatz.
- Match segments of timelike and spacelike au across non-singular a=0 surfaces.

- Construct solutions by first specifying the radion potential (fix Λ and Q)
- Choose an open or flat metric ansatz.
- Match segments of timelike and spacelike au across non-singular a=0 surfaces.

- Construct solutions by first specifying the radion potential (fix Λ and Q)
- Choose an open or flat metric ansatz.
- Match segments of timelike and spacelike au across non-singular a=0 surfaces.

• At large ϕ the dominant term in the potential is

Timelike au

$$V \simeq M_{p+2}^p \Lambda \exp\left(-2\sqrt{\frac{q}{p(p+q)}}\frac{\phi}{M_{p+2}}\right)$$

- Exponential potentials admit attractor solutions.
- The metric describes the approach to D-dimensional de Sitter space as the radius of the q-sphere goes to infinity.

• There are two non-singular a=0 endpoints, and so two event horizons.

Timelike au

 For a negative minimum, there is always a spacelike singularity as perturbations are refocused.

 For a zero or positive minimum, the field settles into the vacuum. There is no singularity.

 In this region there is a D-q dimensional open FRW universe that evolves at late times to de Sitter: This could be how our universe began!

Interpolating solutions: open FRW ansatz

Many other solutions can be generated from other choices of the metric ansatz.

0904.3115

An aside: embedding Inflation

• Add a scalar:

$$S = \frac{M_D^{q+2}}{2} \int d^{q+4}x \sqrt{-\tilde{g}^{(q+4)}} \left(f(\psi)\tilde{\mathcal{R}}^{(q+4)} - 2\Lambda - \frac{h(\psi)}{2q!}\tilde{F}_q^2 \right) + \int d^{q+4}x \sqrt{-\tilde{g}^{(q+4)}} \left(-M_{\psi}^q k(\psi)\tilde{g}^{\mu\nu}\partial_{\mu}\psi\partial_{\nu}\psi - V(\psi) \right)$$

• The coupling to curvature and flux induces a negative mass squared for the scalar inside an event horizon:

• This can drive an epoch of inflation.

Dynamical Compactification

• Two solutions that contain a non-singular p+2 dimensional region:

Dynamical Compactification

• Two solutions that contain a non-singular p+2 dimensional region:

- These solutions are analogous to the charged dS black hole and compactification solution discussed earlier.
- Empty de Sitter space is unstable to the nucleation of these objects.
- We have answered our original question:

What if the lower dimensional FRW was 4D and didn't end in a crunch?

Dynamical compactification

• Interpolating solution:

• Compactification solution:

Dynamical compactification: rates

- Rates are suppressed by the de Sitter action.
- The rate for the interpolating solutions is higher when it exists.
- The rate is highest for small Q = lowest vacuum energy.

Dynamical compactification: rates

- No large disparity between different numbers of compactified dimensions.
- Unclear what to compare.....

Decompactification transitions (Giddings, Giddings+Myers)

 The p+2 dimensional de Sitter vacua decay back to D dimensional de Sitter space by the same instanton:

• The rate into a vacuum is always larger than the rate out

$$\frac{\Gamma_{in}}{\Gamma_{out}} = \exp\left[|S_{dS}^{(p+2)}| - |S_{dS}^{(D)}|\right] \qquad |S_{dS}^{(p+2)}| > |S_{dS}^{(D)}|$$

Minkowski vacua are completely stable.

Global structure of the multiverse

- Future infinity is fractally distributed among vacua with different vacuum energy and numbers of non-compact dimensions.
- Transitions occur back and forth between p+2 and D dimensions.
- Higher-dimensional eternal inflation!
- Connecting to predictions is a very difficult measure issue.

Summary

p+2

p+2

D

D

 $S = \frac{M_D^{D-2}}{2} \int d^D x \sqrt{-\tilde{g}^{(D)}} \left(\tilde{\mathcal{R}}^{(D)} - 2\Lambda - \frac{1}{2q!} \tilde{F}_q^2 \right) \longrightarrow \text{Landscape of vacua.}$

Solutions interpolate between D-dimensional dS and p+2 dimensional FRW across event horizons.

These solutions are nucleated from dS -Dynamical compactification.

Transitions back and forth populate the landscape of vacua.

- Stability analysis.
 - For p+2 = 4, the compactification solutions have instabilities when q > 4 (Bousso, de Wolfe, Myers).
 - The endpoint of the instability may still be a compact manifold (warped sphere according to Kinoshita and Mukohyama).
 - What about the stability of the interpolating solutions?
 - What about thermodynamical stability? Can universes evaporate?

- Stability analysis.
- Inhomogeneities.
 - Inevitably "collisions" between interpolating solutions will occur.
 - Field outside of brane will cause stimulated emission of small-charge branes (similar to Schwinger pair production).
 - These are multi-centered black brane solutions.
 - This changes the geometry what happens to the homogeneity of the p+2 dimensional FRW inside the horizon?
 - Are there potentially observable effects?

- Stability analysis.
- Inhomogeneities.
- Pre-big bang effects.
 - On the other side of the non-singular big-bang surface, extra dimensions become "large".
 - Does this lead to any interesting effects?

- Stability analysis.
- Inhomogeneities.
- Pre-big bang effects.
- Measure issues.
 - We have a catalog of nucleation rates. They have rather simple (and suggestive) properties.
 - Is it possible to go from this to statistical predictions for various fundamental parameters?
 - Requires an understanding of the measure similar to eternal inflation.

- Stability analysis.
- Inhomogeneities.
- Pre-big bang effects.
- Measure issues.
- What about standard 4D eternal inflation?
 - Membrane nucleation can occur inside of the locally 4D region, leading to the standard picture of 4D eternal inflation.
 - Subtleties due to interaction of flux d.o.f. with radion.

- Stability analysis.
- Inhomogeneities.
- Pre-big bang effects.
- Measure issues.
- What about standard 4D eternal inflation?
- Other solutions?
 - Homogenous but anisotropic metric ansatz will generate different solutions.
 - A flat metric ansatz generates non-extremal black branes.
 - What about the other Bianchi types?
 - Bent branes?

The End.

Thanks!

Membrane nucleation inside of black branes.

