

2040-3

Workshop: Eternal Inflation

8 - 12 June 2009

Global/Local Duality in the Measure Problem

I-S. Yang R. Bousso B. Freivogel University of California, Berkeley U.S.A.

Global/Local Duality in the Measure Problem

I-Sheng Yang

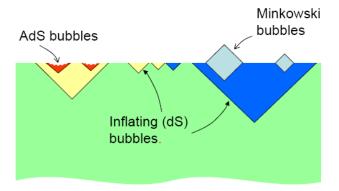
Center of Theoretical Physics University of California, Berkeley

0904.2386 with Raphael Bousso 0808.3770 with Raphael Bousso and Ben Freivogel

Workshop on Eternal Inflation, ICTP, Trieste, 2009

Outline

- 1 The Measure Problem
 - Global Measures
 - Local Measures
- 2 The Duality
 - Scale factor and fat geodesics
 - Lightcone time cut-off and the causal patch measure
 - It does not always work.
- 3 Discussion
 - Holography
 - The most stable vacuum

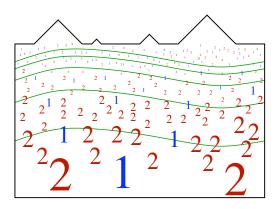

Infinite Occurence

Result of an observation: 1 or 2.

$$\frac{P_1}{P_2} = \frac{\langle N_1 \rangle}{\langle N_2 \rangle} = \frac{\infty}{\infty} \quad ???$$

How about an open FRW universe with standard big bang theory ?

No large scale homogeneity


The Measure Problem

- Infinite Occurence
- No large scale homogeneity

Geometric cut-off.

- Global measure
 Specify a homogeneous state.
- Local measure
 Restrict to a finite region.

Geometric Cut-off

$$\frac{P_1}{P_2} = \lim_{t \to \infty} \frac{\langle N_1 \rangle_{\Sigma_t}}{\langle N_2 \rangle_{\Sigma_t}}$$

Proper time measure (Linde, 1986)

expansion out-flow in-flow
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{dV_i}{dt} = (3H_i - \sum_j \tilde{\Gamma}_{ji})V_i + \sum_j \tilde{\Gamma}_{ij}V_j$$

Dominated by the fastest expanding vacuum.

$$H_* = Max\{H_i\} , \quad \frac{P_1}{P_2} = \frac{e^{-3H_*t_1}}{e^{-3H_*t_2}} \frac{\Gamma_{1*}}{\Gamma_{2*}} .$$

 Youngness Paradox. (Linde 1996, Guth 2004, Tegmark 2004, BFY 2007)

Alternatives?

expansion out-flow in-flow
$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\frac{dV_i}{dt} = (3H_i - \sum_j \tilde{\Gamma}_{ji})V_i + \sum_j \tilde{\Gamma}_{ij}V_j$$

$$\frac{dV_i}{d\eta} = (3 - \sum_j \Gamma_{ji})V_i + \sum_j \Gamma_{ij}V_j$$

$$\eta = \frac{1}{3}\log(\frac{V}{V_{\rm init}})$$

The Measure Problem

Global Measures

Scale factor time (Garriga, Schwartz-Perlov, Vilenkin, Winitzki, 2005)

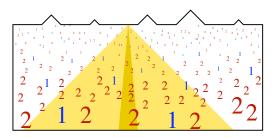
$$\frac{dV_i}{dt} = (3 - \sum_j \Gamma_{ji})V_i + \sum_j \Gamma_{ij}V_j$$

Dominated by the most stable vacuum.

$$\sum_{j} \Gamma_{j*} = Min\{\sum_{j} \Gamma_{ji}\} , \quad \frac{P_1}{P_2} = \frac{\Gamma_{1*}}{\Gamma_{2*}} .$$

- Subtleties for non-expanding regions.
- No obvious contradictions.
- Motivated by holography.
 (J. Garriga and A. Vilenkin, 2008-2009)

One Geodesic


Which one?

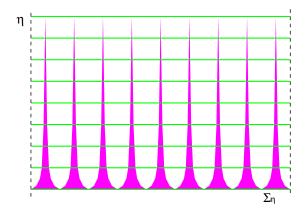
- A geodesic ends up in a special place. In a $\Lambda=0$ region, the census taker. (L. Susskind, 2007) In an eternally inflating region. (V. Vanchurin and V. Vilenkin, 2006)
- A geodesic starts with specific initial conditions.
 (R. Bousso, 2006)
 Already finite.
 An Ensemble of histories.

An Ensemble of histories.

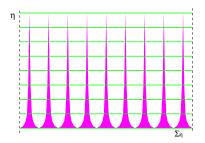
Predictions depend on initial conditions.

Counting Observers

- Causal patch measure. (R. Bousso, 2006)
- Fat geodesics measure. (BFY, 2008)


Scale factor and fat geodesics

Scale factor and fat geodesics


Global/Local Duality

Fat geodesics measure + the most stable vacuum

= Scale factor measure. (BFY 2008)

Scale factor and fat geodesics (cont)

Local: $\tilde{N}_i = |\tilde{S}_i|$

Global: $N_i(\eta) = |S_i(\eta)|$

$$|dS_i(\eta)| = \frac{dN_i}{d\eta} = e^{3\eta}$$

$$\frac{|dS_i(\eta)\cap \tilde{S}_i|}{|dS_i(\eta)|}=e^{-3\eta}$$

$$\frac{\tilde{N}_i}{\tilde{N}_j} = \lim_{\eta \to \infty} \frac{N_i(\eta)}{N_j(\eta)}$$

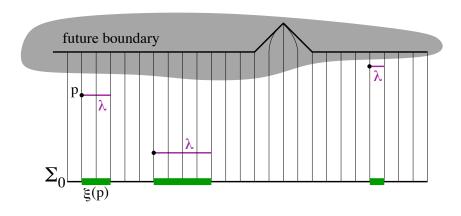
Comparison

Global/Local Duality

Fat geodesics measure + the most stable vacuum

= Scale factor measure. (BFY 2008)

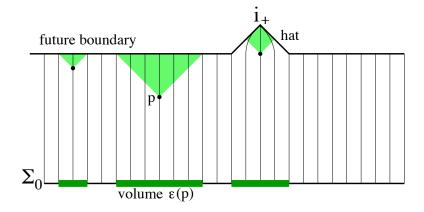
Fat geodesics measure

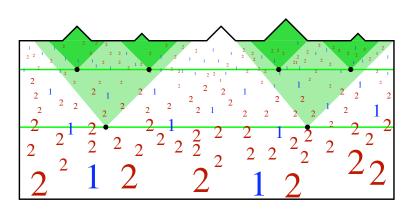

- Local
- Everywhere well-defined
- A redundant scale

Scale factor time measure

- Global
- Expanding regions
- Motivated by holography

Holography Motivated Scale Factor Cut-off

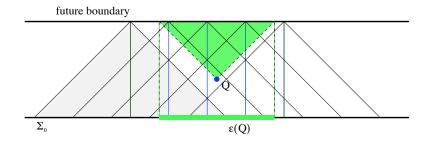

$$\eta = \frac{1}{3}\log(\frac{V}{V_{\mathrm{init}}})$$


$$\eta = -\log(\text{number of geodesics in }\lambda)$$

Can we eliminate the redundant scale?

 $\tau = -\log(\text{number of geodesics in the future lightcone})$

Lightcone time


Lightcone time cut-off and the causal patch measure

Lightcone time and the causal patch measure

Global/Local Duality

Causal patch measure + the most stable vacuum

= Lightcone time measure. (BY 2009)

Lightcone time cut-off and the causal patch measure

Lightcone time and the causal patch measure

(Number of lightcones that include event Q)= $Exp(-3\tau_Q)$.

$$ilde{N}_i = \int rac{dN_i(au)}{d au} e^{-3 au} d au \propto N_i(au)$$

Lightcone time and the causal patch measure (cont)

Global/Local Duality

Causal patch measure + the most stable vacuum = Lightcone time measure.

- Exactly the same prediction.
- Divergent in $\Lambda = 0$ vacuum.
- Prefer $\Lambda < 0$. (M. Salem 2009)
- Motivated by holography. (BFY 2006, Bousso 2009)

Does it always work?

Duality.

Fat geodesics measure + the most stable vacuum

= Scale factor time measure.

Duality again!

Causal patch measure + the most stable vacuum

= Lightcone time measure.

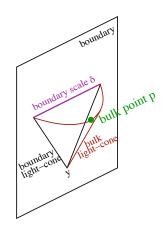
Does this work?

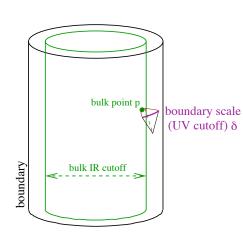
 $Proper\ time\ measure =$

the fastest expanding vacuum + some local measure?

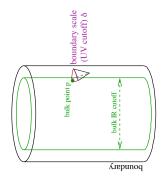
It does not always work.

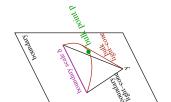
No.

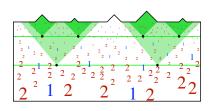

No.


Proper time measure \neq the fastest expanding vacuum + some local measure.

The later gives no problematic predictions. (BY 2007, BFY 2008)


- Good predictions.
- The most stable vacuum.
- Holography.


AdS/CFT



CFT on the future boundary?

- Bousso 2009
- Garriga and Vilenkin 2008-2009
- Freivogel and Kleban 2009

The most stable vacuum

Future directions

- How to find it ? (Denef and Douglas 2006)
- Geometry of upward tunnelings.
- Other effects on recurrence time scale.

Thank you.

The graphs came from the following 3 papers.

- 0809.4257, J. Garriga and A. Vilenkin.
- 0901.4806, R. Bousso.
- 0904.2386, R. Bousso and I. Yang.