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The String Landscape

String Theory probably contains at least 10hundreds long-lived
metastable vacua with three large spatial dimensions. At low
energies (less than the compactification scale), these vacua
have different effective laws of physics: different particles,
forces, density perturbations,...



Eternal Inflation

Many vacua have positive vacuum energy and so expand
exponentially, like de Sitter space. Even if the universe starts
out in just one of these vacua, other vacua will be produced, at
a fixed rate, by Coleman tunneling: a bubble forms and
expands almost at the speed of light. Because of the causal
structure of de Sitter space, the bubble will not fully consume its
parent vacuum. Thus, the global exponential expansion of
spacetime continues eternally.



The Multiverse

In this way, all the vacua in the string landscape are produced,
over and over, as bubbles (or “pockets”) in different regions of
spacetime. Each bubble contains an infinite open FRW
universe, separated from other regions by an expanding
membrane or domain wall. The whole spacetime is called the
Multiverse of string theory.



Probabilities

The probability for observing a certain value of x is proportional
to the number of times this value is observed in the multiverse.

p1

p2
=
〈N1〉
〈N2〉

,

where 〈NI〉 is the expected number of times this outcome is
measured by someone in the multiverse.

Estimating 〈NI〉 requires understanding
! the vacuum structure of the string landscape,

! cosmological dynamics and the distribution of observers,

! and the solution of the measure problem.
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The measure problem

! Finite universe
! + at least one false vacuum with Λ > 0
! + QFT + gravity
! = Infinite universe [Guth & Weinberg]
! Infinitely many bubbles (pocket universes)
! Each contains infinitely many observers (if any)



The measure problem

! Everything that can happen will happen, infinitely many
times

! Can’t do statistics on infinities → crisis of predictivity
! Robust problem; precedes landscape

[Linde et al., Vilenkin et al., ... 1990s]
! E.g., should we expect to live in a collision region?
! With multiple vacua, which low energy properties should

we find?
! Need a cutoff or regularization procedure



Two approaches

! Phenomenological
! Fundamental



Phenomenological approach

! Treat this as any other scientific problem
! Build quantitative models subject to usual criteria:

! simple
! well-defined
! predictive
! not in conflict with observation

! Proceed by elimination



Really bad contradiction, example 1: Too hot

Σ0

Σt

Boltzmann Babies

! Proper time cutoff; take ratios as t →∞.
! Most observations made prior to t are made in recently

formed bubbles.
! Nearly all observers live earlier than we do (“Youngness

Paradox”) [Garcı́a-Bellido; Guth; Linde; Mezhlumian;
Tegmark; RB, Freivogel & Yang]

! p(TCMB ≤ 3 K) = exp(−1060) → Ruled out



Really bad contradiction, example 2: Too cold

! Cutoff: observers-per-comoving-volume (or per baryon, ...)
! Infinitely many observers arise per comoving volume, from

thermal fluctuations at late times, in empty de Sitter space
! “Oldness Paradox”, or Boltzmann brain problem

[Dyson, Kleban & Susskind 2002; Page 2006; RB &
Freivogel 2006; RB, Freivogel & Yang 2008; DeSimone et
al. 2008, . . .]

! p(TCMB ≥ 2 K) ≈ 0 → Ruled out



These examples show that certain measure proposals can be
ruled out

! at high level of confidence (> 1060σ)
! even though we have just one data point
! and without knowing much about cosmological dynamics

and vacuum statistics of the landscape



Two approaches

! Phenomenological
! Fundamental [→ Yang’s talk]

Recently, some tentative signs of convergence:
! There is a small class of closely related measures for

which no “really bad” problems are known1, and which
appear to give reasonable predictions for cosmological and
particle physics parameters. (There is no argument for
uniqueness however.)

! This class includes two measures that are, in different
ways, motivated by holography:
The causal patch cut-off [RB 2006], and
the light-cone time cut-off; [Garriga & Vilenkin ’08; RB ’09]

1. . . if the lifetimes of de Sitter vacua in the landscape satisfy a certain
interesting constraint [Freivogel and Lippert 2008; Lippert’s talk]



Two types of geometric cut-offs

! Global time cut-off:
keep spacetime prior to time t
E.g., light-cone time, scale factor time

! Local cut-off:
keep spacetime region near some worldline
E.g., Causal patch, fat geodesic

Recently, some exact global-local dualities were discovered
which imply the equivalence of certain pairs of measures. [RB,
Freivogel & Yang, 2008]

In particular, the causal patch cut-off is equivalent to the
light-cone time cut-off. RB & Yang, 2009; Yang’s talk



Outlook

It would be nice to have a fundamental derivation of the correct
measure. Approaches include

! Giving a preferred status to the census taker or Λ = 0
regions; D − 2 dimensional theory on the rim of the hat
[Freivogel & Susskind 2004; Freivogel et al. 2006;
Freivogel & Kleban 2009]

! Dual theory living on the future boundary (or on the fractal
subset formed by the endpoints of eternal geodesics)
[Garriga & Vilenkin 2008, 2009]

Also: → talks by Kleban, Senatore, Villadoro, . . .



Meanwhile . . .

. . . we can hope to make some progress by making predictions
from the surviving measures and comparing to observation.

This means we need to overcome or get around our limited
understanding of

! Vacuum structure
! Observer distribution
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Vacuum structure

For many parameters of interest, we do not know their
statistical distribution in the landscape: ∆Ne (curvature), Q
(density perturbations), me, α, . . .

An important exception is Λ. For dp
d log Λ from different viable

measures and various models for observers, see, e.g.,
[RB, Harnik, Kribs & Perez 2007;
Cline, Frey & Holder 2007;
De Simone, Salem, Guth & Vilenkin 2008;
RB, Freivogel & Yang 2008;
Salem 2009 → talk;
RB & Leichenauer 2009]



Vacuum structure
Approaches include:

! Estimate or derive a distribution (e.g., [Freivogel, Kleban,
Martinez & Susskind])

! Make predictions that have little sensitivity to the landscape
distribution. A beautiful recent example is Freivogel’s 2008
explanation for the O(1) ratio of axion dark matter to
baryonic matter. The trick is that this depends only on the
axion vev, which can be understood dynamically.

! Identify catastrophic boundaries and posit a “landscape
force” that drives us towards them [Hall & Nomura 2007;
RB, Hall & Numura 2009]. This can explain unnatural
coincidences—see below.

! Make a best-case assumption. If predictions contradict
observation, then the problem is with the measure.



Conditional probabilities

It would be nice to have a general definition of “observer”, but it
is not essential. We are allowed to ask conditional questions.
For example, we can ask what values of the cosmological
constant are measured by observers “like us”, where “like us”
can be defined, e.g., as the observers who live near stars like
ours, in multiverse regions that have the same low energy
particle physics and the same initial conditions in the early
universe (aside from the value of Λ).



Catastrophic boundaries

Computing the distribution even of these special observers in
different vacua can be difficult.

One approach is to identify catastrophic boundaries, across
which observers like us cannot exist (e.g., failure of structure
formation). If there is a landscape force or a dynamical force
towards such boundaries, then we should find ourselves near
them.



The Weinberg prediction

Classic example: Weinberg’s prediction of a nonzero
cosmological constant [1987]: Λ ∼ t−2

vir . The relevant
catastrophic boundary was the disruption of large scale
structure formation for Λ * t−2

vir .

This prediction could have been falsified. But it was basically
successful [SN collaborations, 1998].



Catastrophic boundaries vs. the measure

Catastrophic boundaries are never completely sharp. An
exponential drop-off can be overrun by super-exponentially
large pressures.

An example are the “really bad” measures which predict
Boltzmann brains or Boltzmann babies. In both cases, the
prediction becomes Λ * Λ0.



Catastrophic boundaries from the measure

Conversely, catastrophic boundaries can also arise from the
measure. This was perhaps not appreciated until recently.

The causal patch measure and the fat geodesic measure count
observers in a certain physical volume. If Λ dominates before
tobs then their number will be exponentially suppressed by
de Sitter expansion, even if galaxies form.

→ Predict Λ ∼ 1/t2
obs. This solves the coincidence problem

directly. [RB, Harnik, Kribs & Perez 2007; DeSimone et al.
2008; RB, Freivogel, Yang 2009]



The technique of catastrophic boundaries can be used to
explain multiple coincidences [RB, Nomura & Hall 2009]: If

pρ̄ + pΛ −
1
2

pobs −
1
2

pQ = −
[
0.19 +0.31

−0.14(1σ) +0.84
−0.18(2σ)

]
,

−pΛ +
1
2

pobs = −
[
0.141 +0.233

−0.106(1σ) +0.626
−0.136(2σ)

]
,

−1
2

pobs = −
[
0.76 +1.25

−0.57(1σ) +3.37
−0.73(2σ)

]
,

−1
2

pQ = −
[
0.12 +0.20

−0.09(1σ) +0.53
−0.11(2σ)

]
.

then

tobs ∼ tΛ ∼ tvir ∼ tcomp ∼ tcool ∼
α2

GNm2
emp



Observer distribution 2.0

Assume observers arise near stars with O(Gyr) time delay.

Model the star formation rate as a function of time, in a
three-parameter multiverse (Λ,∆Ne, Q)
[RB & Leichenauer 2008].

With standard assumptions for prior distributions, compute
probability distributions over these parameters, for various
measures and observer models
[RB & Leichenauer to appear].



The entropic principle

Assume that entropy production traces observers, at least on
average:

Nobs ∝ ∆S ,

where ∆S is the matter entropy produced inside the causal
diamond since reheating.

In our universe, the peak entropy production time is at about
tpeak ∼ 3 Gyr. Thus, ∆S is a successful predictor of the
observed value of Λ ∼ t−2

peak ∼ 10−123

[RB, Harnik, Kribs & Perez 2007]

Generalized to predict multiple parameters (Λ,∆Ne, Q) [Cline,
Frey & Holder 2007; Bozek, Albrecht & Phillips 2009;
RB & Leichenauer 2009]



The entropic principle

In our universe, ∆S is dominated by the infrared radiation
emitted by dust heated by starlight. Thus, ∆S be much smaller
in a vacuum that fails to contain

! heavy elements
! stars
! galaxies

Such vacua will be suppressed if we weight by ∆S.

∆S appears to “know” about anthropic criteria; yet, it remains
well-defined in much less familiar vacua, whose observer
content would be hard to guess.



Beyond vacua “mostly like ours”

[RB & Harnik to appear]

∆S ∼ M
T

where M is the free energy inside the causal diamond at the
time tpeak when most entropy is produced, and
T is the energy of a typical radiation particle (in our universe,
photons emitted by dust)

In this formula it is irrelevant how the entropy is produced and
what particles carry it. It can be applied to all vacua in the
landscape.

Naively, the entropic principle predicts that the temperature
should be as low as possible.



Predicting the temperature of dust

However, if T < t−1/2
peak then the radiation cannot be thermal; the

photons cannot be a dilute gas. Then the above formula breaks
down; the entropy production is maximal for T ∼ t−1/2

peak .

Thus, weighting by ∆S predicts that the temperature should not
be much larger than

Tmin ∼ t−1/2
peak ∼ Λ1/4 .



Predicting the temperature of dust

This general prediction does hold in our universe: With tpeak ∼ 3
Gyr, Tmin ∼ 30 K; the temperature of galactic dust is around
200 K.

At the limiting value, the free energy is converted into thermal
radiation that fills up the whole universe. Thus, the same
prediction explains why galaxies nearly fill up the sky, and why
the infrared radiation from galaxies appears nearly as a uniform
background.



Predicting the temperature of background radiation

Assume a landscape pressure towards large values of TCMB.

But T cannot be smaller than the background temperature.
Therefore we expect TCMB to be near the catastrophic
boundary TCMB ∼ T .

In our universe, this prediction holds up: TCMB ∼ 8 K at the time
tpeak.



Predictions in the Multiverse

To summarize, the entropic principle predicts the triple
coincidence

TCMB ∼ T ∼ t−1/2
peak ∼ Λ1/4

in the full multiverse, independently of the nature of the
observers.



Bonus question

We have learned to explain correlations between scales. To get
numbers out, we need at least one input parameter. Can we be
more ambitious?

What is the ultimate origin of scales like Λ ∼ 10123—the
“ur-hierarchy”?

Anthropic/entropic pressure + Discretuum limit?




