

2038-16

Conference: From DNA-Inspired Physics to Physics-Inspired Biology

1 - 5 June 2009

Counterion Mediated DNA-DNA Interactions

Brian A. TODD

Department of Physics, Purdue University 525 Northwestern Ave. West Lafayette IN 47907-0706 USA

DNA Interactions are Mediated by Counterions

Kurtz, 2008

Multivalent Ions Cause Attractions

Precipitation of DNA by Multivalent Cations

$$d \triangle G = - \triangle n_{3+} d\mu_{3+}$$

Pelta et al, Biophys. J., 1997; Raspaud et al., Biophys. J., 1998

Resolubilization of DNA by Multivalent Cations

$$d \triangle G = - \triangle n_{3+} d\mu_{3+}$$

Pelta et al, Biophys. J., 1997; Raspaud et al., Biophys. J., 1998

Resolubilization of DNA by Multivalent Cations

$$d \triangle G = - \triangle n_{3+} d\mu_{3+}$$

Pelta et al, Biophys. J., 1997; Raspaud et al., Biophys. J., 1998

Magnetic Tweezing of Condensed DNA

Compaction Against a Force

Compaction Against a Force

Force ~ Free Energy/Length

Bulk (Arrows) vs. Single-molecule

Bulk (Arrows) vs. Single-molecule

Modeling Concentration Dependence

Condensate Neutralized by +3

Soluble Phase Modeled by Mean-field Theory

$$d \triangle G = - \triangle n_{3^+} d\mu_{3^+}$$

Mean-field Prediction vs. Experiment

Theories for Resolubilization

Besteman and Lemay, 2007 Shklovskii, PRL, 1999

Counterion correlations, Wigner Crystals, Overcharging

Golenstanian et al, PRL, 1999

Counterion fluctuations, Debye screening

Olvera de la Cruz, 1995 Debye screening

The anion determines resolubilization

Yang and Rau, Biophys. J., 2005

Trivalent lons Not Ideal >1 mM

$$0^{3+}$$
 CI^{-} 0 CI^{2+}

$$K_{d} \sim 10-100 \text{ mM}$$

Treat Bjerrum Pair as 2⁺ Species

$$K_{d} \sim 10-100 \text{ mM}$$

$$d \triangle G = - \triangle n_{3^+} d\mu_{3^+}$$

$$d \triangle G = -\triangle n_{3+} d\mu_{3+} - \triangle n_{2+} d\mu_{2+}$$

Precipitation of DNA by Nonideal Multivalent Cations

Mean-field Prediction vs. Experiment

Todd and Rau, Nuc. Acids Res., 2008

Modeling Previously Measured Phase Diagrams

$$d \triangle G = -\triangle n_{3+} d\mu_{3+} - \triangle n_{2+} d\mu_{2+} - \triangle n_{1+} d\mu_{1+}$$

$$0 = -\triangle n_{3+} d\mu_{3+} - \triangle n_{2+} d\mu_{2+} - \triangle n_{1+} d\mu_{1+}$$

Mean-field Prediction of Phase Diagram

Part I - Conclusion

Resolubilization of DNA is caused by Bjerrum pairing.

The effect can be described quantitatively using traditional mean-field polyelectrolyte models (e.g. Manning condensation).

What are the interactions that drive condensation?

$$\Delta G(C) = \Delta G_0 + \Delta G_{ion-binding}(C)$$

	$\Delta G_{\!0}, k_{b}T/bp$
Co(NH ₃) ₆ Cl ₃	-0.21 ± 0.02
Spermidine	$\textbf{-}0.20\pm0.02$
Spermine	-0.33 ± 0.03
sp^{6+}	-0.38 ± 0.04

X-ray diffraction

Osmotic Stress

Osmotic Stress

Common 2.3 Å exponential repulsion

Common 2.3 Å exponential repulsion

So, for these polycations ...

... we introduced two constraints on possible theories.

$$\lambda_{rep} \approx 2.3 \text{ Å} \qquad \frac{\Delta G_{att}}{\Delta G_{rep}} \approx 2$$

Todd, Rau, Parsegian et al., Biophys. J., 2008

If we assume exponential attractions ...

$$\frac{\Delta G_{att}}{\Delta G_{rep}} = \frac{\int\limits_{\infty}^{D_{eq}} \Pi_{att} dD}{\int\limits_{D_{eq}}^{D_{eq}} \Lambda e^{-D/\lambda_{att}} dD} = \frac{\int\limits_{\infty}^{D_{eq}} A e^{-D/\lambda_{att}} dD}{\int\limits_{D_{eq}}^{D_{eq}} \Pi_{rep} dD} = \frac{\prod_{att} \lambda_{att}}{\prod_{rep} \lambda_{rep}} = \frac{\lambda_{att}}{\lambda_{rep}}$$

$$\lambda_{att} = \frac{\Delta G_{att}}{\Delta G_{rep}} \lambda_{rep}$$

$$=4.8\pm0.5 \text{ Å}$$

... we get a characteristic length-scale for attractions.

Characteristic Length

Mean-field picture

Structured

Guoy-Chapman (1910), Debye-Huckel (1923), Onsager-Manning-Oosawa (1969), Poisson-Boltzmann

Counterion correlations

ion valence	$\lambda_{\it att}$, Å
+3	2.8
+4	3.2
+6	4.0

Shklovskii, PRL, 1999, Rouzina, Biophys. J. 1996, Grosberg, et al, Rev. Mod. Phys., 2004

Helical Interactions

Hydration Forces

Parsegian, Rand, Rau, Chemica Scripta, 1985; Rau and Parsegian, Biophys. J, 1992.

Part II - Conclusions

2.3 Å characteristic length-scale for counterion-mediated repulsions.

Repulsive magnitude depends only on the chemical composition and not the valence of the counterion.

4.8 Å characteristic length-scale for counterion-mediated attractions.

Acknowledgments

Laboratory of Physical and Structural Biology, NIH

V. Adrian Parsegian Donald C. Rau

Sergey Leikin Rudi Podgornik

Sergey Bezrukov Daniel Harries

Christopher Stanley Nina Sidorova

Jason Derouchey Horia Petrache

T.J. Thomas at Robert Wood Johnson School of Medicine, Rutgers

This research was supported by the Intramural Program of National Institute of Child Health and Human Development at the National Institutes of Health.

Integrate over distance to get reversible work

