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The two strands of the G

parental double helix unwind, i

and each speciFies a new daughter A )
strand by base-pairing rules G
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Zhong & Sternberg, Science 311, 1481 (2006)
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Data are presented in a matrix format:
each row represents a single gene, and
each column an experimental sample. In
each sample, the ratio of the abundance
of transcripts of each gene to the median
abundance of the gene's transcript
among all the cell lines (left panel), or to
its median abundance across all tissue
samples (right panel), is represented by
the colour of the corresponding cell in
the matrix.

Green squares, transcript levels below
the median; black squares, transcript
levels equal to the median; red squares,
transcript levels greater than the median;
grey squares, technically inadequate or
missing data.

Colour saturation reflects the magnitude
of the ratio relative to the median for
each set of samples.
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Are we returning to stamp
collection?



A
Different
Universe

rREINVENTING1
PHYSICS

l from the Bottom Down 1

Robert B. Laughlin

Laughlin, front page



It was a massive PowerPoint presentation in
which levels of six thousand types of
messenger RNA went up and down (or not)
over the cell cycle of yeast. This was, in
addition to interminable, thoroughly
exasperating, for although they are
supposedly a window on the cell’s basic
regulatory machinery, no one knows why
these measurements take on the values they
do, what the crude correlations of one signal
with the next imply, or indeed whether there
is any useful information in these
measurements at all.

Laughlin, 159



We also know that while a simple and
absolute law, such as hydrodynamics, can
evolve from the deeper laws underneath, it is
at the same time independent of them, in
that it would be the same even if the deeper
laws were changed.

Laughlin, 207



Much as | dislike the idea of ages, | think a good
case can be made that science has now moved
from an Age of Reductionism to an Age of
Emergence, a time when the search for ultimate
causes of things shifts from the behavior of
parts to the behavior of the collective.



Emergence means complex organizational
structure growing out of simple rules.
Emergence means stable inevitability in the
way certain things are. Emergence means
unpredictability, in the sense of small events
causing great and qualitative changes in
larger ones. Emergence means the
fundamental impossibility of control.
Emergence is a law of nature to which
humans are subservient.

Laughlin, 200



The messenger RNA experiment in yeast is
an especially important kind of bad
experiment, however, because it
demonstrates clearly that geneticists do not
know what they are doing. The screams of
outrage and other indignant responses to
this assertion will fall on deaf ears: | know a
terrible experiment when | see one. The
symptoms are always the same. The
measurements do not reproduce, they do
not lend themselves to commonsense
analysis, and they cannot be quantified.

Laughlin, 162



One might subtitle this thesis the end of
reductionism (the belief that things will
necessarily be clarified when they are
divided into smaller and smaller component
parts), but that would not be quite accurate.
All physicists are reductionists at heart,
myself included. | do not wish to impugn
reductionism so much as establish its
proper place in the grand scheme of things.

Laughlin, xv



This is not to say that microscopic law
IS wrong or has no purpose, but only
that it is rendered irrelevant in many
circumstances by its children and its

children’s children, the higher
organizational laws of the world.

Laughlin, 221



as-yet-undiscovered organizing principles
might be at work at the mesoscopic scale,
intermediate between atomic and
macroscopic dimensions

Laughlin, Pines, Schmalian, Stojkovic and
Wolynes, 2000; Proc. Natl. Acad. Sci., 97,32
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With relativity and quantum mechanics, physics
moved from this accessible common sense
world into a far more abstract one, much more
difficult for the human mind to imagine and
conceive. Perhaps a proper understanding of
the complex regulatory networks making up
cellular systems like the cell cycle will require a
similar shift from common sense thinking. We
might need to move into a strange more
abstract world, more readily analyzable In
terms of mathematics than our present
iImaginings of cells operating as a microcosm of
our everyday world.

Paul Nurse, 2000; Cell, 100, 71



. HFSP Journal

! Frontiers of Interdisciplinary
‘Q\!r" Research in the Life Sciences
The HFSP Journal aims to publish high quality, innovative
interdisciplinary basic research at the frontier of biology over
a wide range of organizational levels (from the molecular
level to population biology) using principles strategies or
technologies from the more quantitative disciplines (e.qg.
physics, chemistry, mathematics, engineering, or
informatics).

The goal of the HFSP Journal is to foster communication
between the different disciplines of research, thus furthering
the mission of the Human Frontier Science Program.



Human DNA Replication Origins
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Protein-DNA interactions at S. cerevisiae
ARS during the cell cycle
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Abdurashidova G. et al., Science Vol 287, 17 March 2000



What is the minimal size
sufficient for origin
function?

Can we identify other
members of the replicative
complexes?



What is the minimal size sufficient for
origin function?
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OBRmin - Replication activity
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The minimum OBR displays a replicative activity comparable to Delta-CpG
mutant.

129 bp containing the start sites and the sites of
binding of the proteins of the replicative

complexes are sufficient to confer origin
function.
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Conclusions

1) DNA topology and related chromatin
structure are important for origin function

2) Topoisomerases play essential roles

3) Topoisomerase ll is probably involved in
assembly of pre-replication complex

4) Topoisomerase | probably contributes to
origin selection and is essential for origin

firing



One-Hybrid assay

——

74 bp

Analyses of the specificity of binding in vitro by EMSA assay
and in vivo by CAT assay

- Hox proteins are transcriptional factors assigning
positional identities in the embryonic body

- Hox proteins are characterized by a conserved

homeoDomain



Does HOXC13 interact with
members of the
replicative complexes?



HoxC13 vs. replication foci
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FLIM

Fluorescence Lifetime Imaging Microscopy
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FLIM analysis of orc2-HoxC13 interaction

— Orc2 alone

10 ‘ —gtrol - Donor

APHblock

Acceptor

BL6rE2

.2.65 270 275 280 28 290 295 300 305 310 315

Mean Lifetime (ns) Donor Lifetime Map

n=>50 nuclei

orc2 alone: 3.04 - 0.004 NS
neg control: 2.99 - 0.007 ns

e mansl D QO e e
ajor peak 2.90 = 0.006 NS

C 4

2 Pa V- 1"do Kb 0 N4/ p
HJOr péakK Z£.64Z +0.014 I

& 2.65ns

Scale bar 5um



FLIM analysis of orc2-HoxC13 interaction
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Is HOXC13 bound to the
lamin B2 origin in vivo?
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Binding sites of different proteins around
the origin sites

0 " 12 13 14

f910 7920 FQSO f940 T950 1960 ﬁ970 3r80 f990 000

TTTTTTTTTT CCAATGATTT GTAATATACA TTTTATGACT GGAAACTTTT TTGTACAACA CTCCAATAAA CATTTTGATT TTAGGTTCTG CCTCTGAGTT
AAAAAAAAAA GGTTACTAAA CATTATATGT AAAATACTGA TCCTTTGAAAA AACATGRTGT GAGGTTATTT GTAAAACTAA AATCCAAGAC GGAGACTCAA

Topo Il T Topo | T T A A
ORC2 ORC2 ORC1 . 6DCe
(S phase) (G1 phase) (G1 phase) (G1 phase) . .
in vivo
I N HoxC13
3910 3930 3070 10 containing

complex



Conclusions -3
HOXC13 colocalizes with early S replication foci

HOXC13 interacts with orc2 in living cells, with a maximum of interaction before
S phase progression

HOXC13 colocalizes and interacts with cdc6 (probably through its
homeodomain) before this is cytoplasm-exported in S phase

HOXC13 is bound in vivo at the lamin B2 origin at the G1/S border in the area of
the replicative complex

HOXC13 is bound in vivo at the TOP1 and MCM4 replication origins

Disruption of origin chromatin structure and topology affects origin function
and binding of Cdc6, topoisomerases and HOXC13

HOXC13 is a new member of the replicative complexes



In vitro complex assembly

First incubation with: '

« Hela nuclear extract;

« Competitor DNA (100 X
molar excess over origin
DNA).

Then incubation with

biotinylated origin DNA *

@ bio wash
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Members of the replicative
complexes and oncogenesis

Translocations of the gene for topoisomerase | to the
gene for nucleoporin (Nup98) cause AML. (lwase et al.,
Genes Chromosomes Cancer 38, 102-105, 2003).

Translocations of the gene for topoisomerase Il to the
gene for nucleoporin (Nup98) cause AML. (Nebral et al.,
Clin. Cancer Res., 11, 6489-6494, 2005).

Translocations of the gene for HOXC13 to the gene for
nucleoporin (Nup98) cause AML. La Starza et al., Genes
Chromosomes Cancer 36, 420-423, 2003)

The c-myc protein is bound in vivo to the lamin B2
origin (our data and Dominguez-Sola et al., Nature, 448,
445-451, 2007)

The c-fos protein is bound at the lamin b2 origin in vitro
and in vivo



Overall conclusions

A 129 bp sequence containing the start site and the sites
of binding of the proteins of the replicative complexes is
sufficient to confer origin function

DNA topoisomerases play an essential dynamic role for
origin function

Homeotic proteins participate in DNA replication
regulation, perhaps coordinating it with the
differentiation programme

A specific multi-protein complex can be assembled in
vitro on the lamin B2 origin, resembling the pre-
replicative complex of G1, containing ORC2, ORC4,
CDCG6, Topo Il, C-fos,and c-jun

Regulation of origin activity involves at least five
oncoproteins
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