

2038-5

Conference: From DNA-Inspired Physics to Physics-Inspired Biology

1 - 5 June 2009

Dynamics of supercoiled DNA: some recent insights from single-molecule experiments

Aurelien CRUT LASIM, Universite Lyon 1, 46 Bd. du 11 Novembre 1918, Villeurbanne 69622 cedex FRANCE Dynamics of supercoiled DNA: some recent insights from single-molecule experiments

Aurélien Crut

Delft University of Technology

Outline

DNA topology in a nutshell

\Rightarrow DNA topology needs to be strongly regulated !

- Cellular processes generate supercoiling.

- Supercoiling is dissipated by both "physical" and enzymatic processes.

Example: transcription

DNA supercoiling during transcription

Supercoil waves are relaxed by two processes in kinetic competition:

- by **propagation and merging** (no change in Lk)
- by action of **topoisomerases** (permanent change in Lk)

A quantitative description of the dynamics of these processes is required !

a) Force-induced supercoil removal

Results: quasistatic dynamics

Conclusion

No need to include a friction term associated to plectoneme removal

 \Rightarrow Supercoil removal is "fast" !

Experiments set an upper bound on rotational drag.

A. Crut, D.A. Koster, R. Seidel, C. Wiggins & N.H. Dekker, PNAS 104 (2007).

b) Nick-induced supercoil removal

Possible scenarios:

1) Dynamics limited by DNA stretching

Immediate supercoil removal followed by stretching of torsionally relaxed DNA

2) Dynamics limited by supercoil removal

Results

Conclusion

- Supercoil removal occurs within ~10 ms or less
- Consistent with the conclusions drawn from force-induced supercoil removal experiments!

a) Previous work: supercoil removal by topoisomerase IB

D.A. Koster et al., Nature **434** (2005)

How general are these results??

b) Chlorella Virus Ligase: structure & reaction scheme

Structure of CVLig

CVLig has a topoisomerase-like activity on supercoiled DNA in the presence of AMP.

Relaxation of a single DNA molecule by CVLig

A. Crut, P. Nair, D.A. Koster, S. Shuman & N.H. Dekker, PNAS 105 (2008).

Step size distribution: bimodal distribution

Two distinct populations?

 \Rightarrow Separate analysis of intermediate and final steps

Intermediate steps: analysis of step sizes

Similar to TopIB

(cf Koster et al., Nature 434 (2005))

Interpretation: diffusion in an energy landscape biased by force

Average step size vs force

CVLig does not cause observable enzymatic friction

Interpretation: Accurate description of dynamics by the quasistatic model used for bare DNA: CVLig does not induce a significant enzymatic friction. Difference with TopIB!

This result also implies that DNA ligation occurs at high rates ($k_{lig} \ge 400 \text{ s}^{-1}$)

Evidence for an occasional dissociation of ligase

Conclusions: overview of time scales

- Single-molecule techniques provide access to the dynamics of DNA and DNA-protein interactions in real-time
- Time scales associated to various processes involving supercoil dynamics:

- Interesting points still to be addressed:

- . Dynamics of DNA in the presence of bound proteins
- . Friction by other enzymes
- . Correlation with DNA imaging...

Acknowledgments

TU Delft (Nynke Dekker's lab)

Daniel Koster Ralf Seidel Armin Rasidovic Xiaomin Hao Susanne Hage Ya-Hui Chien Nynke Dekker

FOM

External Collaborators

nano

ned

Theory Chris Wiggins (Columbia) Ligase Pravin Nair Stewart Shuman (SKI, New York)

Dynamics of torsionally relaxed DNA

Quasistatic model

so that DNA is constantly at equilibrium

Experiments with supercoiled DNA

DNA stretching converts plectonemes into twist

Equilibrium force-extension curve **Stretching experiments** (with +100 turns) 7 10-F=0.63942*exp(z/3.50781) 6 +1.1911E-15*exp(z/0.18568) 5 Force (pN) z (microns) nN 4 2.2 pN 3 1 0.0 0.0 0.1 0.3 0.2 6 2 3 4 5 z (microns) 0 5 t (s) $F_{mag} = \zeta_{bead} (z) dz/dt + F_{DNA} (z)$ Quasistatic model

DNA relaxation by CVLig: bulk experiments

WT CVLig: step size distributions

Study of two CVLig mutants

- &larger dissociation probability