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Outline

• DNA structure and base pairs
• Knowledge-based potentials for low-resolution modeling
• Sequence-dependent deformations and contacts
• Factors that enhance DNA cyclization/looping
• Structure-based predictions of nucleosome ‘positioning’
• Higher-levels of DNA organization (progress report)



DNA structure and base pairs



Simplified, color-coded representations of the nucleosome core particle, the fundamental
DNA packaging unit in eukaryotes (NDB_ID: pd0287; Davey et al., 2002), and

the�bacterial�histone-like heat-unstable HU protein (NDB_ID pd0426; Swinger et al 2003).

The organization of DNA in the cell is thought to determine the�parts
of�the genetic message that are expressed as RNA and protein.
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Treatment of the global organization of DNA
requires models that capture key sequence-

dependent features of the double helix, such as
the positioning of adjacent base pairs, yet allow

for easy generation of long polymer chains.

Base-pair step representation of DNA

Base-pair positioning is described in terms of six rigid-body parameters.
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The base-pair ‘step’ parameters capture the local sequence-
dependent structure and deformability of DNA.

Sequence-dependent variation of the three base-pair ‘step’ parameters, which
dominate the conformational variability in high-resolution  DNA structures.
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The pyrimidine-purine steps stand out as deformable and
the purine-pyrimidine steps as stiff. ‡

‡341 CA�TG and 418 AC�GT steps from 239 protein-DNA crystal complexes of 2.5 Å or better resolution
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Knowledge-based potentials for low-resolution modeling



DNA sequence-dependent features can be incorporated in a
coarse-grained, dimeric (base-pair step) model.
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The dimeric ‘force constants’ fij of individual XZ steps are derived
from the covariance of observed parameters in protein-bound DNA

structures.

Knowledge-based dimeric potentials Vn(XZ)

Dimeric rest states �i
0 are equated to the mean values of observed

parameters.
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The knowledge-based potentials reveal structural and
deformational codes in the DNA base-pair steps.

Roll and Twist are
anticorrelated
at�most steps.

R (purine):       A, G
Y (pyrimidine): C, T



The local sequence-dependent ‘rules’ can be incorporated in the construction
of�low-resolution models of deformable polymers.

Non-equilibrium forms, corresponding to deformations along the longest principal axis,  superimposed on the
intrinsic (average) dimer structures. Moves typical of those sampled with Gaussian random # generator.



Sequence-dependent deformations and contacts



The likely deformations are of the type that induce well-known
transitions of double-helical structure.
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The alternation of different helical forms introduces curvature
in DNA without disruption of base stacking.

B DNA
Roll � 0

Slide � 0

A DNA
Roll = 7.4°

Slide = –1.2 Å

C DNA
Roll = –7.4°

Slide = 1.2 Å

A5B5 repeat
150 bp/turn

C5B5 repeat
150 bp/turn

(Tilt, Twist, Shift, Slide, Rise) = (0°, 36°, 0�Å, 0�Å, 3.4�Å)



The alternation of different helical forms introduces curvature
in DNA without disruption of base stacking.

A DNA
Roll = 7.4°

Slide = –1.2 Å

C DNA
Roll = –7.4°

Slide = 1.2 Å

A5C5 repeat
75 bp/turn

(Tilt, Twist, Shift, Slide, Rise) = (0°, 36°, 0�Å, 0�Å, 3.4�Å)



The subtle distinctions in the three key rigid-body parameters
of A-, B-, and C-like base-pair steps are linked to sequence.

Base-pair ‘bricks’ drawn such that minor-groove edges are shaded.



The physical basis of these sequence-dependent deformational
propensities is also relevant to molecular recognition.
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Arg/Lys_N+
Asp/Glu_O–

The sequence-dependent, asymmetric build-up of ‘ions’ on the
surfaces of base pairs in well-resolved protein-DNA structures

mirror the observed deformational propensities.

A�T minor groove edge

G�C major groove edge



The asymmetric build-up of ‘cationic’ charge on one face of DNA in concert
with perturbation of double-helical state offers a structural rationale

for�the intrinsic curvature of specific sequences.



Factors that enhance DNA cyclization/looping



The ease of polymer cyclization is described in terms of the Jacobson-Stockmayer
J�factor, or cyclization constant, which is defined as the ratio of the equilibrium
constants for unimolecular cyclization vs. bimolecular ligation of a linear molecule.

DNAn�cDNAn

2DNAn�DNA2n

K1=[cDNAn]/[DNAn]

K2=[DNA2n]/[DNAn]2

J=K1/K2

The unexpected, spontaneous cyclization of short DNA molecules has renewed
interest in the intrinsic structure and deformability of double-helical DNA.



Monte-Carlo estimates of the dependence on chain length of the J�factor (cyclization propensity) of an ideal, inextensible
DNA with persistence length ~500 Å, 10.5 base pair/turn helical repeat, and torsional�modulus C�=�1.4 A (Czapla et al 2006).

Conventional models fit the observed chain-length dependent cyclization of
DNA to�the�properties of an�ideal naturally straight, inextensible elastic rod.
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Structural and deformational features within the DNA are subsumed in the parameters of
the model, i.e., the uniform bending and twisting moduli and the double-helical repeat.

Ideal DNA:



The likelihood of DNA cyclization, measured by the J factor, is estimated
from the number of simulated configurations of a linear molecule

with�terminal residues positioned so as to insure successful ligation.

The hypothetical
base pair N+1 must

overlap the first base
pair in a perfectly
closed DNA of N

base pairs.
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The computed dependence of J on chain length N of ideal DNA underestimates
the measured ease of cyclization for very short (89-105�bp) chains.

DNA naturally straight
Inextensible (f44=f55=f66>>0)

isotropic bending (f11=f22)
independent twisting (f13=f23=0)

10.5 bp/turn



ggccgggtcg TAgCAagctc TAgCAccgct TAaacgCAcg
TAcgcgcTGt cTAccgcgtt tTAaccgcCA aTAggatTAc
tTAcTAgtct cTAc

‘601TA-94’

Jobs = 1.07�10–9 ± 2.3�10–11

The DNA molecules found to close most easily into tight minicircles contain
a�well-known 'nucleosome-positioning' sequence,

with regularly spaced TA steps in phase with the double helical repeat
and AT-containing dimers that alternate at half helical turns with GC-containing steps.

Jideal_DNA = 2.7�10–12

Cloutier & Widom



The knowledge-based dimeric potentials account approximately
for the observed cyclization propensities of DNA.

The simulated distributions of the end-to-end distances of 94-bp sequences that are more easily
cyclized are shifted to smaller values than the corresponding distribution for mixed-sequence DNA.

complate
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The boundary delimiting the 10% shortest configurations, r0.1, is smaller for the
positioning sequences than the control sequences , and both limits are

substantially smaller than the r0.1 boundaries for mixed-sequence DNA.



Higher-levels of DNA organization (progress report)



The arrangements of realistically simulated nucleosomes in minichromosomes
can similarly be used to model the next level of DNA organization.

�1 (deg)

Simulated dinucleosomal
configurations

Model system: relative enhancement
of promoter-enhancer communication

on nucleosome-positioned vs. free DNA

Dinucleosome parameters


