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1. Lecture 1

In order to build an efficient numerical code for solving a PDE it is often useful to
establish simple qualitative properties of the equation.

Dichotomy 1: slow and fast variables. Consider a PDE

(1.1) ut = f(u)

on the space of 2π-periodic functions u(x). For a constant initial data

u(x, t)t=0 ≡ u0

the solution remains constant in x but not in time. Indeed, the problem reduces to
solving an ODE

u̇ = f(u), u(t = 0) = u0.

Moreover if the initial data is not a constant but a slow varying function of x then the
solution to (1.1) will not be a slow varying function in time:

ux = o(1) but ut = O(1).

We say that the unknown function u of eq. (1.1) is a fast variable.

In order to formalize the definition let ε > 0 be a small parameter. We say that
u(x) is a slow varying function if it changes by ε on the distances of order 1. Thus the
higher is the order of a spatial derivatives of a slow varying function the smaller it is:

(1.2) ux = O(ε), uxx = O(ε2), uxxx = O(ε3) etc.
1
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Slow varying functions of time are defined in a similar way.

More generally, consider a PDE of the form

(1.3) ut = f(u; ux, uxx, . . . , u
(m))

for some m > 0. Assume that the r.h.s. is analytic at the point

(1.4) (u = u0, ux = 0, uxx = 0, . . . ).

Then the time-dependence of the solution with a slow-varying initial data will not be
slow unless the value of the r.h.s. at the point (1.4) vanishes:

(1.5) f(u0, 0, 0, . . . ) = 0.

Let us now consider another example:

(1.6) ut = u ux.

It is easy to see that already at the moment t = 0 the time derivatives of the solution
with a slow varying initial data u(x, 0) = u0(x) decay with the number of the derivative
like in (1.2):

(1.7) ut|t=0 = u0(x)u0
x(x) = O(ε), utt|t=0 = (u0)

2
u0

xx + 2u0(u0
x)

2
= O

(
ε2
)

etc.

The above considerations extend without major changes to systems of PDEs

(1.8) ut = f(u;ux,uxx, . . . ,u
(m)), x ∈ R, u = (u1, . . . , un) ∈ B ⊂ R

n.

The r.h.s. will be assumed to be analytic in the derivatives at the points

ux = 0, uxx = 0, . . . for any u ∈ B.

The following rule of thumb helps to identify systems with slow dependent variables.
Rescale the independent variables

(1.9) x �→ ε x, t �→ ε t.

One has

(1.10) ut �→ εut, ux �→ εux, uxx �→ ε2uxx, etc.

So the system will rewrite

(1.11) εut = f(u; εux, ε
2uxx, . . . , ε

mu(m)).

After division by ε and expanding the r.h.s. in Taylor series in ε one obtains

(1.12) ut =
1

ε
f0(u) + A(u)ux + ε

(
B(u)uxx +

1

2
L(u) (ux,ux)

)
+ O(ε2)

where

f0(u) = f(u; 0, . . . , 0)

A(u) =
∂f

∂ux

(u; 0, . . . , 0)

B(u) =
∂f

∂uxx

(u; 0, . . . , 0),

the quadratic form L(u) (ux,ux) is given by the second derivatives of f in ux etc.
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In order to have all dependent variables in (1.8) slow varying in space and time one
has to impose the condition

f(u; 0, . . . , 0) = 0.

The r.h.s. of the system then represents in the form of a formal power series in ε that
we will now rewrite in the coordinate notations:

ui
t = Ai

j(u)uj
x + ε

[
Bi

j(u)uj
xx +

1

2
Li

jk(u)uj
xu

k
x

]
(1.13)

+ε2

[
Ci

j(u)uj
xxx + M i

jk(u)uj
xxu

k
x +

1

6
N i

jkm(u)uj
xu

k
xu

m
x

]
+ O

(
ε3
)
,

i = 1, . . . , n.

Summation over repeated indices will be assumed in sequel. The terms of order εk

are graded homogeneous polynomials in the derivatives of the total degree k + 1. The
degrees are assigned to the derivatives according to the following rule:

(1.14) deg u(m) = m, m = 1, 2, . . . .

The above heuristic arguments suggest to replace the original system by its leading
approximation

(1.15) ui
t = Ai

j(u)uj
x.

It is expected that for small times the solution to the truncated system (1.15) gives an
approximation to the solution to the full system with slow variables. In order to figure
out whether such an expectation looks reasonable we have to concentrate our attention
on some important properties of the first order quasilinear systems of the form (1.15).
Thus we arrive at the

Dichotomy 2. Hyperbolic and elliptic systems. We say that the quasilinear system
(1.15) is hyperbolic if the eigenvalues of the coefficient matrix

A(u) =
(
Ai

j(u)
)
1≤i,j≤n

are real and pairwise distinct for all u ∈ B.

It is known that the Cauchy problem for hyperbolic systems is well-posed for suffi-
ciently small times in many natural classes of initial data. On the contrary the Cauchy
problem with smooth initial data is ill-posed if the eigenvalues of the coefficient matrix
are not real. In particular for the n = 2 case the eigenvalues of the 2 × 2 coefficient
matrix are or both real (the hyperbolic case) or complex conjugate (elliptic systems).

The above considerations do not provide us with any feeling about the behaviour
of solutions for not necessarily small times. We attempt to get a more clear vision of
these properties by using

Dichotomy 3. Hamiltonian and dissipative systems. The following two examples
of solutions to Burgers equation

(1.16) ut + u ux = uxx
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(dissipative case) and Korteweg - de Vries (KdV) equation

(1.17) ut + u ux + uxxx = 0

(Hamiltonian case) suggest that the qualitative properties of solutions to Hamiltonian
and dissipative systems are different. The first impression is that adding derivatives of
even order to the quasilinear part yields dissipation while only odd derivatives added
are allowed in Hamiltonian PDEs. The following 2×2 system with constant coefficients

(1.18)
ut = a12ux + a22vx − uxx

vt = a11ux + a12vx + vxx

⎫⎬
⎭

gives an example of a Hamiltonian system with even highest derivatives.

Before proceeding with the study of Hamiltonian PDEs I will recall basics of finite
dimensional Hamiltonian formalism.

In classical mechanics a Hamiltonian system with n degrees of freedom is the follow-
ing system of 2n differential equations

q̇i =
∂H

∂pi

(1.19)

ṗi = −∂H

∂qi

i = 1, . . . , n. The function H = H(p, q) ∈ C∞(R2n) is called the Hamiltonian of the
system. The system can be written in a more symmetric way

q̇i = {qi, H}
(1.20)

ṗi = {pi, H}
by means of Poisson brackets

(1.21) {f, g} =
n∑

i=1

∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

defined for arbitrary two smooth functions on R
2n. Introducing collective notations for

the coordinates

x = (x1, . . . , x2n) = (q1, . . . , qn, p1, . . . , pn)

one can recast the system (1.20) into the form

(1.22) ẋi = {xi, H} = πij ∂H

∂xj
, i = 1, . . . , 2n.

Here

(1.23) πij = {xi, xj}
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is the 2n × 2n matrix of Poisson brackets of coordinate functions. In the canonical
coordinates x = (q1, . . . , qn, p1, . . . , pn) this matrix has a constant form

(1.24)
(
πij

)
=

(
0 1

−1 0

)
.

In terms of this matrix the operation of Poisson bracket can be rewritten as follows

(1.25) {f, g} = πij ∂f

∂xi

∂g

∂xj
.

It satisfies the following properties:

PB1. It is a bilinear antisymmetric map

C∞(R2n)× C∞(R2n) → C∞(R2n).

PB2. It satisfies Leibnitz rule

{f g, h} = f {g, h}+ g{f, h}

PB3. and Jacobi identity

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0.

Thus the Poisson bracket defines on C∞(R2n) a structure of a Lie algebra compatible
with the product structure via the Leibnitz identity.

A function F ∈ C∞(R2n) commuting with the Hamiltonian H

{F, H} = 0

will be a first integral of the Hamiltonian system (1.22):

Ḟ :=
∂F

∂xi
ẋi = 0.

Indeed, the r.h.s. is equal to the Poisson bracket {F, H}.
First integrals of a given Hamiltonian system define a Lie subalgebra in the Lie

algebra C∞(R2n). In particular the Hamiltonian itself is a first integral of (1.22).

A first integral F of the Hamiltonian system (1.22) generates a one-parameter group
of infinitesimal symmetries of the system (1.22). That means that the commutativity
{F, H} = 0 of the Hamiltonians implies commutativity

d

ds

dxi

dt
=

d

dt

dxi

ds

of the flows
dxi

dt
= {xi, H}, i = 1, . . . , 2n

and
dxi

ds
= {xi, F}, i = 1, . . . , 2n



6 B. DUBROVIN

Moreover these flows are infinitesimal canonical transformations of the phase space R
2n,

i.e., they preserve Poisson brackets. Finite canonical transformations close to identity
can be represented as the time-1 shift along trajectories of a Hamiltonian system:

(1.26) xi �→ xi + {xi, F}+
1

2
{{xi, F}, F}+ . . .

More general Poisson brackets on a smooth manifold M are defined as a Lie algebra
structure on C∞(M) satisfying the above properties PB1 – PB3. In local coordinates
x1, . . . , xN the Poisson bracket is defined by a skew symmetric matrix

(1.27) πij(x) = {xi, xj}.
All the formulae (1.22) and (3.22) remain valid also in this more general case. The
matrix can be degenerate, so the dimension N of the manifold need not to be even.
The skew symmetric matrix πij(x) cannot be arbitrary. It must satisfy the following
system of constraints imposed by the Jacobi identity

(1.28) {{xi, xj}, xk}+ {{xk, xi}, xj}+ {{xj, xk}, xi} = 0, i, j, k = 1, . . . , N.

The l.h.s. of this equation reads

(1.29)
∂πij

∂xs
πsk +

∂πki

∂xs
πsj +

∂πjk

∂xs
πsi =:

1

2
[π, π]ijk.

The notation [π, π] stands for the Schouten – Nijenhuis bracket of the bivector π with
itself. In particular the bracket [π, π] vanishes if the tensor πij has constant components
in the coordinates x1, . . . , xN . In this case we will say that the Poisson bracket is
constant (in the given coordinates x1, . . . , xN).

Let us do two remarks about perturbative techniques in the Hamiltonian formalism.
There are two types of perturbations of a given Hamiltonian system: 1) a perturbation
of the Hamiltonian and 2) a perturbation of the Poisson bracket. Let us first consider
a perturbation of the Hamiltonian

H = H0 + εH1 + ε2H2 + . . . .

We look for a canonical transformation

xi �→ xi + ε{xi, F}+
ε2

2
{{xi, F}, F}+ · · · =: x̃i

killing the perturbation. The Hamiltonian itself may depend on ε:

F = F0 + ε, F1 + ε2F2 + . . . .

For the first correction of order O(ε) one arrives at the homology equation

(1.30) {H0, F0} = H1.

If this equation has a solution then one can kill the first order perturbation and then
proceed to considering the next correction.

The second case of perturbations of the Poisson brackets will be considered for the
perturbations of a constant bracket

πij(x) = πij
0 + ε πij(x) + . . .
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where the matrix πij
0 has the canonical form (1.24). The classical Darboux lemma says

that any such perturbation can be eliminated by a suitable local change of coordinates.
We will sketch the proof of Darboux lemma in the following form. In the linear approx-
imation in ε the Jacobi identity implies vanishing of the Schouten – Nijenhuis bracket
of π0 and π1:

[π0, π1] = 0.

Explicitly this equation reads

πis
0

∂πjk
1

∂xs
+ πks

0

∂πij
1

∂xs
+ πjs

0

∂πki
1

∂xs
= 0.

This equation says that the first order perturbation is a 2-cocycle in the Poisson co-
homology π1 ∈ H2(M, π0). To locally kill the perturbation π1 one has to find an
infinitesimal change of coordinates

xi �→ xi + ε X i(x) + . . .

such that, after the change of coordinates

πij(x) �→ πij
0 + O(ε2).

For the vector field X i one obtains the following homology equation:

[π0, X] = π1

or, explicitly,

∂X i

∂xs
πsj

0 + πis
0

∂Xj

∂xs
= πij

1 .

The 2-cocycles representable in such a form are called 2-coboundaries. In order to
complete the proof of Darboux lemma it suffices to prove that any 2-cocycle is locally
a coboundary. Indeed, using nondegenerateness of π0 let us define a 2-form ω1 by
“lowering the indicies”

(ω1)ij = π−1
0 ikπ

−1
0 jlπ

kl
1 (x).

The cocycle condition [π0, π1] = 0 spells out as the closedness of the 2-form:

dω1 = 0 ⇔ ∂ω1ij

∂xk
+

∂ω1ki

∂xj
+

∂ω1jk

∂xi
= 0.

Locally applying Poincaré lemma one obtains a 1-form f = fi(x)dxi such that

ω1 = df.

The vector field

X i(x) = πik
0 fk(x)

realizes the needed change of coordinates.
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2. Lecture 2

.

The last reminder from the finite dimensional Hamiltonian formalism is about com-
pletely integrable Hamiltonian systems. The Hamiltonian system

ẋi = {xi, H}
is called completely integrable if the Hamiltonian H can be included into a complete
commutative Lie algebra of Hamiltonians

H1 = H, H2, H3, . . .

{Hi, Hj} = 0.

The condition of completeness requires a precise definition. In the simplest case of
a Hamiltonian system on a 2n-dimensional phase space with the canonical Poisson
bracket (1.24) one has to have n independent pairwise commuting first integrals of
the system. The Hamiltonian PDEs we are going to consider will be considered as
Hamiltonian systems with an infinite number of degrees of freedom. So the number of
commuting Hamiltonians of a completely integrable system will necessarily be infinite.
We will discuss later the precise definition of complete integrability in this case.

We will now proceed with the infinite dimensional generalization of Hamiltonian
formalism. We will deal with systems of PDEs of the form (1.8) assuming all dependent
variables to be slow (see Lecture 1 above). Let us start with considering a simple
example of a Poisson bracket on the space of smooth 2π-periodic functions u(x), x ∈ S1:

(2.1) {u(x), u(y)} = δ′(x− y).

Here δ(x) is the Dirac delta-function on the circle defined by the condition

(2.2)
1

2π

∫ 2π

0

f(y)δ(x− y) dy = f(x)

for any smooth function on the circle. The derivatives of delta-function are defined in
the usual way

(2.3)
1

2π

∫ 2π

0

f(y)δ′(x− y) dy = f ′(x)

etc.

Let us now explain how to compute Poisson bracket of two functionals F and G on
C∞(S1). We consider the particular case of local functionals

(2.4) F =
1

2π

∫ 2π

0

f(u; ux, . . . , u
(k)) dx, G =

1

2π

∫ 2π

0

g(u; ux, . . . , u
(l)) dx.

Proposition 2.1. The Poisson bracket of two local functionals is given by the formula

(2.5) {F, G} =
1

(2π)2

∫ 2π

0

∫ 2π

0

δF

δu(x)
{u(x), u(y)} δG

δu(y)
dx dy.



HAMILTONIAN PERTURBATIONS OF HYPERBOLIC PDES 9

Here the Frechêt derivative of a local functional is represented by the Euler – La-
grange operator

(2.6)
δF

δu(x)
=

∂f

∂u
− ∂x

∂f

∂ux

+ ∂2
x

∂f

∂uxx

− . . . ,

the operator of the total x-derivative reads

(2.7) ∂xh(u; ux, uxx, . . . ) =
∑
i≥0

u(i+1) ∂h

∂u(i)
.

This formula elucidates the meaning of the symbol {u(x), u(y)}: this is just the
kernel of the bilinear functional (2.5). Comparing with the expression (3.22) for the
finite dimensional Poisson bracket we see that the kernel {u(x), u(y)} is an infinite
dimensional analogue of the matrix of Poisson brackets of coordinates; the novelty is
that the “infinite-dimensional matrix” {u(x), u(y)} has continuous indices x and y.

The proof of the formula (2.5) uses bilinearity of the Poisson bracket and the Leibnitz
rule:

{F, G} =
1

(2π)2

∫ 2π

0

dx

∫ 2π

0

dy {f(u(x); ux, . . . ), g(u(y); uy, . . . )}

=
1

(2π)2

∫ 2π

0

dx

∫ 2π

0

dy

k∑
i=0

l∑
j=0

∂f

∂u(i)
(x){u(i)(x), u(j)(y)} ∂g

∂u(j)
(y)

=
1

(2π)2

∫ 2π

0

dx

∫ 2π

0

dy
k∑

i=0

l∑
j=0

∂f

∂u(i)
(x)∂i

x∂
j
y{u(x), u(y)} ∂g

∂u(j)
(y)

=
1

(2π)2

∫ 2π

0

dx

∫ 2π

0

dy
k∑

i=0

(−∂x)
i ∂f

∂u(i)
(x){u(x), u(y)}

l∑
j=0

(−∂y)
j ∂g

∂u(j)
(y)

where the integration by parts was used at the very last step. The formula (2.5) is
proved.

Corollary 2.2. The Poisson bracket (2.1) of two local functionals is again a local
functional given by the formula

(2.8) {F, G} =
1

2π

∫ 2π

0

δF

δu(x)

d

dx

δG

δu(x)
dx.

Proof This follows from (2.5) by applying the definition (2.3) of the derivative of
delta-function.

We did not explain why the formula (2.1) defines a Poisson bracket. This can be
done using the explicit formula (2.8). It is more instructive however to use the analogy
with the finite dimensional case. The matrix {u(x), u(y)} of the Poisson brackets of the
coordinate functions is skew symmetric and constant. Indeed, the Dirac delta-function
δ(x) is even, so the derivative δ′(x) is an odd function, hence

{u(y), u(x)} = δ′(y − x) = −δ′(x− y) = −{u(x), u(y)}.
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The r.h.s. of (2.1) does not depend on u, that is, this is an infinite dimensional example
of a constant Poisson bracket (see Lecture 1 for details). Therefore we have validity of
the Jacobi identity for free.

We now give one more equivalent representation of the Poisson bracket (2.1). The
Fourier coefficients

(2.9) u(x) =
∑
n∈Z

cne
inx

of the 2π-periodic function u(x) can be considered as a system of coordinates on the
functional space. We will use these coordinates in order to reduce the bracket (2.1) to
the Darboux form.

Proposition 2.3. The Poisson brackets of the Fourier coefficients are given by the
following formla

(2.10) {cn, cm} = i n δn+m,0.

Proof Using the expression

cn =
1

2π

∫ 2π

0

u(x)e−inxdx

for the Fourier coefficients we obtain

{cn, cm} =
1

(2π)2

∫ 2π

0

dx

∫ 2π

0

dy{u(x)e−inx, u(y)e−imy} =

=
1

(2π)2

∫ 2π

0

dx

∫ 2π

0

dye−inx−imyδ′(x− y) =

=
1

2π

∫ 2π

0

(−im)e−i(n+m)xdx = (−im) δn+m,0 = i n δn+m,0.

Corollary 2.4. The Poisson bracket (2.1) is degenerate. The symplectic leaves have
codimension one in the functional space, they are level surfaces of the functional

(2.11) c0 =
1

2π

∫ 2π

0

u(x) dx.

The canonical Darboux coordinates on the level surfaces are given by the functionals

qn = cn, n > 0

pn =
1

in
c−n, n > 0.

Observe that the mean value c0 is a Casimir of the Poisson bracket (2.1): it commutes
with any functional:

{c0, F} = 0.

This can also be easily derived from the formula (2.8).
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Let us now consider examples of Hamiltonian systems with the infinite-dimensional
Poisson bracket (2.1). By definition they have the form

(2.12) ut(x) = {u(x), H} = ∂x
δH

δu(x)

where the Hamiltonian

H =
1

2π

∫ 2π

0

h(u; ux, uxx, . . . , u
(m)) dx

is a local functional. We obtain an evolutionary PDE containing the spatial derivatives
up to the order 2m + 1.

Let us consider an example of such a Hamiltonian PDE taking the Hamiltonian in
the form

(2.13) H =
1

2π

∫ 2π

0

u3

6
dx.

Then the Hamiltonian system of the form (2.12) coincides with Hopf equation

(2.14) ut = {u(x), H} = ∂x
u2

2
= u ux.

The choice of the Hamiltonian in the form

(2.15) H =
1

2π

∫ 2π

0

[
1

6
u3 − 1

2
u2

x

]
dx

generates the KdV equation (1.17) (after the time reversion t �→ −t).

Remark 2.5. How one can check that an evolutionary PDE

(2.16) ut = f(u; ux, uxx, . . . , u
(m))

is a Hamiltonian system with respect to the Poisson bracket (2.1)? This can be done
by using the following two classical statements.

Theorem 2.6. If the differential polynomial f(u; ux, uxx, . . . , u
(m)) is a total x-derivative

of another differential polynomial,

(2.17) f(u; ux, uxx, . . . , u
(m)) = ∂xg(u; ux, uxx, . . . , u

(m−1))

then the Euler – Lagrange derivative of the functional

F =
1

2π

∫ 2π

0

f(u; ux, uxx, . . . , u
(m)) dx

identically vanishes:

(2.18)
m∑

i=0

(−∂x)
i ∂f

∂u(i)
= 0.

Locally this condition is also sufficient for the representation of f in the form (2.17).
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Theorem 2.7. If the differential polynomial g(u; ux, uxx, . . . , u
(m−1)) is represented as

the Euler – Lagrange derivative of some local functional,

(2.19) g(u; ux, uxx, . . . , u
(m−1)) =

∑
i≥0

(−∂x)
i ∂h

∂u(i)

then it satisfies the following system of equations

(2.20)
∂g

∂u(j)
=

∑
k≥j

(−1)k

(
k
j

)
∂k−j

x

∂g

∂u(k)

for any j = 0, 1, . . . , m − 1. Locally these conditions are also sufficient for the repre-
sentation of g in the form (2.19).

The last theorem gives a solution to the inverse problem of calculus of variations
found by Helmholtz (for m− 1 = 2).

Let us now consider a simple example of an infinite-dimensional integrable system.
Given a smooth function f(u) denote

(2.21) H0
f =

1

2π

∫ 2π

0

f(u) dx.

Proposition 2.8. The Hamiltonians of the form (2.21) commute pairwise with respect
to the Poisson bracket (2.1):

(2.22) {H0
f , H0

g} = 0

for an arbitrary pair of smooth functions f(u), g(u).

Proof The computation using the formula (2.8) yields

{H0
f , H0

g} =
1

2π

∫ 2π

0

f ′(u)g′′(u)ux dx.

One can find a smooth function Φ(u) such that

Φ′(u) = f ′(u)g′′(u).

Then the above bracket reduces to the integral over the period of the x-derivative of
the 2π-periodic function:

{H0
f , H0

g} =
1

2π

∫ 2π

0

∂xΦ(u) dx = 0.

For f = 1
6
u3 the Hamiltonian H0

f generates the Hopf equation (2.14). Thus the
Hamiltonian system (2.14) can be included into an infinite-dimensional family of pair-
wise commuting Hamiltonians. Restricting ourselves to analytic functions only we
obtain a basis in the space of commuting Hamiltonians

(2.23) Hk =
1

2π

∫ 2π

0

uk+2

(k + 2)!
dx, k ≥ −1.
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They generate an infinite family of pairwise commuting PDEs

(2.24)
∂u

∂tk
= {u(x), Hk} =

uk

k!

∂u

∂x
, k ≥ 0.

For k = 1 one obtains Hopf equation (2.14). The family of commuting flows (2.24) is
called the dispersionless KdV hierarchy. It is obtained from the classical KdV hierarchy
by the rescaling x �→ ε x, tk �→ ε tk and then setting ε to 0.

Actually the solution to the equations (2.24) can be written in a simple form. To be
more specific let us consider the Cauchy problem of the form

(2.25) u(x, t = 0) = x.

Here t is the infinite vector of times

t = (t0, t1, t2, . . . ).

This solution arises in the intersection theory of the so-called tautological classes on
the Deligne – Mumford moduli spaces M̄0,n.

Proposition 2.9. For sufficiently small times the solution to the Cauchy problem
(2.25) can be determined from the following implicit function equation

(2.26) u = x +
∑
k≥0

tk
uk

k!
.

Proof Differentiating equation (2.26) in x and tk yields

∂u

∂x
=

1

1−∑
k≥1 tk

uk−1

(k−1)!

,
∂u

∂tk
=

uk/k!

1−∑
k≥1 tk

uk−1

(k−1)!

.

This implies equation (2.24). It remains to observe that at t = 0 the equation (2.26)
reduces to the initial condition (2.25).

Other solutions sufficiently close to (2.26) can be obtained by shifts along times
t0, t1, . . . . It is clear that any analytic solution of this type can be obtained by a
suitable shift. This explains the meaning of completeness of the family of commuting
Hamiltonians (2.23).

Let us now generalize the example (2.1) of an infinite-dimensional Poisson bracket
to systems of PDEs. Let ηij be a symmetric n× n nondegenerate constant matrix

ηji = ηij, det
(
ηij

) 	= 0.

Introduce the following Poisson bracket on the space of 2π-periodic vector functions
u(x) = (u1(x), . . . , un(x)):

(2.27) {ui(x), uj(y)} = ηijδ′(x− y), i, j = 1, . . . , n.

Repeating the above arguments one obtains the following formula for the Poisson
bracket of two local functionals

(2.28) {F, G} =
1

2π

∫ 2π

0

δF

δui(x)
ηij d

dx

δG

δuj(x)
dx.
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The Hamiltonian system with a Hamiltonian H can be written in the form

(2.29) ui
t = ∂xη

ij δH

δuj(x)
, i = 1, . . . , n.

This a system of n evolutionary PDEs if the Hamiltonian is a local functional. In
particular if the density of the Hamiltonian does not depend on the derivatives

H =
1

2π

∫ 2π

0

h(u) dx

then (2.29) becomes a system of the first order quasilinear PDEs

ui
t = {ui(x), H} = Ai

j(u)uj
x, i = 1, . . . , n

Ai
j(u) = ηik ∂2h(u)

∂uk∂uj
(2.30)

Example 2.10. For n = 2 choose the matrix η in the form

η =

(
0 1
1 0

)
.

This gives the following Poisson bracket on the space of two-component functions
(u(x), v(x)):

{u(x), v(y)} = {v(x), u(y)} = δ′(x− y),

other Poisson brackets vanish. The Hamiltonian systems read

ut = ∂x
δH

δv(x)

vt = ∂x
δH

δu(x)
.

Choosing the Hamiltonian in the form

H =
1

2π

∫ 2π

0

[h(u, v) + u vx] dx

one obtains the Hamiltonian system of the form

ut = huvux + hvvvx − uxx

vt = huuux + huvvx + vxx.

In the particular case

h = a quadratic form

one obtains the system (1.18).

Remark 2.11. We do not consider here one even more “natural” class of infinite-
dimensional Poisson brackets producing Hamiltonian PDEs of the form

∂tqi(x) =
δH

δpi(x)

∂tpi(x) = − δH

δqi(x)
(2.31)
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i = 1, . . . , m. Here n = 2m, the nonzero brackets have the form

{qi(x), pj(y)} = δijδ(x− y), i, j = 1, . . . , m.

These brackets are not well adapted for describing the Hamiltonian structure of the first
order quasilinear PDEs of the form (2.30). The dependent variables in the Hamiltonian
systems (2.31) typically are not “slow-varying” (see Lecture 1 above).

The above Poisson brackets (2.1), (2.27) possess one important property: the Poisson
bracket of two local functionals is again a local functional. Therefore a structure of Lie
algebra on the space of local functionals is associated with any such bracket. For this
reason we call them local Poisson brackets. More general local Poisson brackets can be
written in the form of an infinite expansion

{ui(x), uj(y)} =
∑
k≥0

εk

k+1∑
m=0

Aij
k,m(u(x); ux, . . . , u

(m))δ(k−m+1)(x− y)(2.32)

deg Aij
k,m(u; ux, . . . , u

(m)) = m.

We emphasize that the coefficients of the bracket are polynomials in the derivatives.
In particular the leading coefficients Aij

k,0 must have degree zero for any k, so they do
not depend on the derivatives at all.

The class of local Poisson brackets is invariant with respect to the generalized Miura
transformations changing the dependent variables ui to

ũi = F i
0(u) +

∑
k≥1

εkF i
k(u; ux, . . . , u

(k))(2.33)

deg F i
k(u; ux, . . . , u

(k)) = k

det

(
∂F i

0(u)

∂uj

)
	= 0.

It is again assumed that all terms of the expansion are graded homogeneous polynomials
in the derivatives. It is easy to see that the transformations of the form (2.33) form a
group.

Definition 2.12. Two Poisson brackets of the form (2.32) are called equivalent if they
are related by a generalized Miura transformation.

Theorem 2.13. Under assumption

(2.34) det
(
Aij

0,0(u)
) 	= 0

any Poisson bracket of the form (2.32) is locally equivalent to the standard one (2.27).

Proof The leading order term in (2.32)

(2.35) {ui(x), uj(y)}[0] = Aij
0,0(u(x))δ′(x− y) + Aij

0,1(u(x); ux(x))δ(x− y)

is itself a Poisson bracket. Under the assumption (2.34) this is a so-called Poisson
bracket of hydrodynamic type. The general theory of Poisson brackets of hydrodynamic
type (B.Dubrovin, S.P.Novikov, 1983) says that the inverse to the matrix

(
Aij

0,0(u)
)
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defines a metric of zero curvature on the ball B. The coefficient Aij
0,1(u; ux) linearly

depending on ux is expressed in terms of the Levi-Civita connection for the metric.
Choosing flat coordinates for the metric we reduce the bracket (2.32) locally to the
form

{ui(x), uj(y)} = ηijδ′(x− y) + O(ε)

for some symmetric nondegenerate constant matrix ηij. At the second step of the
proof one has to kill the ε-perturbation of the standard Poisson bracket (2.27). This
can be done using the perturbative approach to proving the Darboux lemma explained
in Lecture 1 using triviality in positive degrees in ε of the Poisson cohomology of the
bracket (2.27) proved by E.Getzler, 2002 (see also L. Degiovanni, F.Magri, V. Sciacca,
2005).

At the end of this lecture let us give an example of reducing some less standard
Poisson brackets to the form (2.27). Consider the general Fermi – Pasta – Ulam (FPU)
system of an infinite number of particles on the line with a nonlinear interaction of
neighbors. Denote qn, n ∈ Z the coordinate of the n-th particle. The Hamiltonian of
the FPU system reads

(2.36) H =
∑ 1

2
p2

n + V (qn − qn−1).

Here V (q) is the potential of the interaction. The equations of motion

q̇n = pn

ṗn = V ′(qn+1 − qn)− V ′(qn − qn−1)

can be recast into the form

u̇n = vn+1 − vn(2.37)

v̇n = V ′(un)− V ′(un−1)

by the substitution

un = qn+1 − qn

vn = pn.

The new variables are not canonical, however:

(2.38) {un, vm} = δm,n+1 − δm,n.

We will now introduce interpolating functions u(x), v(x),

un = u(n ε), vn = v(n ε).

After rescaling t→ ε t the equations of motion will be written in the form of a system
of infinite order PDEs

ut =
v(x + ε)− v(x)

ε
= vx +

ε

2
vxx + . . .

(2.39)

vt =
V ′(u(x))− V ′(u(x− ε))

ε
= V ′′(u)ux − ε

2
∂x (V ′′(u)ux) + . . . .
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From (2.38) after division by ε one obtains the Poisson bracket

(2.40) {u(x), v(y)} =
δ(x− y + ε)− δ(x− y)

ε
= δ′(x− y) +

ε

2
δ′′(x− y) + . . .

representing (2.39) in the Hamiltonian form with the Hamiltonian

H =

∫ [
1

2
v2 + V (u)

]
dx.

The bracket (2.40) can be considered as a perturbation of the standard Poisson bracket
(2.27). Rewriting the formula (2.40) in the form

{u(x), v(y)} =
eε∂x − 1

ε∂x

δ′(x− y)

we immediately obtain the reducing transformation

ũ(x) =
ε∂x

eε∂x − 1
u(x) = u(x) +

∑
k≥1

Bk

k!
εku(k)

{ũ(x), v(y)} = δ′(x− y).

Here Bk are the Bernoulli numbers.

3. Lecture 3

.

Our starting point was in looking at the solutions to the system

ui
t = Ai

j(u)uj
x + ε

[
Bi

j(u)uj
xx +

1

2
Li

jk(u)uj
xu

k
x

]
(3.1)

+ε2

[
Ci

j(u)uj
xxx + M i

jk(u)uj
xxu

k
x +

1

6
N i

jkm(u)uj
xu

k
xu

m
x

]
+ O

(
ε3
)
,

i = 1, . . . , n.

considering it as a perturbation of the first order quasilinear part

(3.2) ui
t = Ai

j(u)uj
x.

The full system is assumed to be written in the Hamiltonian form

(3.3) ui
t = {ui(x), H} = ∂xη

ij δH

δuj(x)

with respect to the Poisson bracket (2.27) with the local Hamiltonian written in the
form of an expansion

(3.4) H = H0 + ε H1 + ε2H2 + . . . , Hk =

∫
hk(u; ux, . . . , u

(k)) dx

where every term hk in the expansion of the Hamiltonian density is a graded ho-
mogeneous differential polynomial of the degree k. In particular the Hamiltonian
density h0 = h0(u) gives the Hamiltonian formulation of the leading approximation
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(3.2). Moreover the leading order system (3.2) will be assumed to be hyperbolic for
u ∈ B ⊂ R

n.

The natural questions in the theory of such perturbations are:

• to classify perturbations (3.1) – (3.4) modulo canonical transformations

(3.5) ui �→ ũi = ui + ε{ui(x), K}+
ε2

2
{{ui(x), K}, K}+ . . .

(the time-ε shift) generated by local Hamiltonians K;

• assuming the leading order system (3.2) to be integrable to classify all integrable
perturbations of this system;

• to compare the properties of solutions to the perturbed and unperturbed systems.

Example 3.1. Arbitrary Hamiltonian perturbations of Hopf equation up to the order
O(ε4) are described by the Hamiltonians

(3.6) H =

∫ [
1

6
u3 − ε2

24
c(u)u2

x + ε4p(u)u2
xx

]
dx

depending on two arbitrary functions c = c(u) and p = p(u).

Remarkably all these perturbations remain integrable in this approximation! Namely,
extending the commuting Hamiltonians of the form H0

f (see (2.21) above) according to
the following formula

Hf = H0
f + ε2H2

f + ε4H4
f =

∫
hf (u; ux, uxx) dx

hf = f − ε2

24
c f ′′′u2

x + ε4

[(
p f ′′′ +

c2 f (4)

480

)
u2

xx(3.7)

−
(

c c′′ f (4)

1152
+

c c′ f (5)

1152
+

c2 f (6)

3456
+

p′ f (4)

6
+

p f (5)

6

)
u4

x

]

one obtains commutativity

(3.8) {Hf , Hg} = O(ε6)

for an arbitrary pair of functions f = f(u), g = g(u).

Open Problem. For arbitrary functional parameters c = c(u), p = p(u) prove
existence and uniqueness, modulo canonical transformations (3.5), of an extension of
the Hamiltonians (3.7) to all orders in ε preserving commutativity.

So far existence of such an extension is known ony for three particular cases:

1) c(u) = const, p(u) = 0 (KdV equation).

2) c(u) = const · u, p(u) = 0 (Camassa – Holm equation).

3) c(u) = const, p(u) = const (Volterra lattice equation).

Let us now proceed to studying the solutions to the perturbed system, beginning
with the case of small times. One can expect that for small times the solutions of the
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perturbed and unperturbed systems are sufficiently close. In order to write the per-
turbative solution to (3.1) one can use the following remarkable quasitriviality trans-
formation we are going to explain now.

First, the Hamiltonian perturbation (3.1) of (3.2) is called trivial if the two systems
are equivalent modulo canonical transformations of the form (3.5) generated by a local
Hamiltonian K polynomially depending on ux, uxx, etc. in every order in ε. Thus the
perturbed Hamiltonian can be represented in the form

(3.9) H = H0 + εH1 + ε2H2 + · · · = H0 + ε{H0, K}+ ε2{{H0, K}, K}+ . . .

The perturbation is called quasitrivial if the representation (3.9) exists but the density
of the generating Hamiltonian Kis not polynomial in the derivatives.

Example 3.2. The quasitriviality transformation for the perturbation (3.6) is gener-
ated by the Hamiltonian

(3.10) K =

∫ [
ε

24
c(u)ux log ux + ε3

(
c2(u)

5760

u3
xx

u3
x

− p(u)

4

u2
xx

ux

)]
dx.

This statement implies that the substitution

v �→ u = v +
ε2

24
∂x

(
c
vxx

vx

+ c′vx

)
+ ε4∂x

[
c2

(
v3

xx

360 v4
x

− 7 vxxvxxx

1920 v3
x

+
vxxxx

1152 v2
x

)
x

+c c′
(

47 vxx
3

5760 vx
3
− 37 vxx vxxx

2880 vx
2

+
5 vxxxx

1152 vx

)
+ c′2

(
vxxx

384
− vxx

2

5760 vx

)
+ c c′′

(
vxxx

144
− vxx

2

360 vx

)

(3.11)

+
1

1152

(
7 c′ c′′ vx vxx + c′′2 vx

3 + 6 c c′′′ vx vxx + c′ c′′′ vx
3 + c c(4) vx

3
)

+p

(
vxx

3

2 vx
3
− vxx vxxx

vx
2

+
vxxxx

2 vx

)
+ p′vxxx + p′′

vx vxx

2

]

generated by the Hamiltonian (3.10) transforms solutions v = v(x, t) of the Hopf
equation

vt = v vx

to the solutions of the perturbed equation

ut = ∂x
δH

δu(x)
, H =

∫ [
1

6
u3 − ε2

24
c(u)u2

x + ε4p(u)u2
xx

]
dx

Same transformation works also for solutions of the dispersionless hierarchy

vs = ∂xf
′(v)

transforming them to solutions of the perturbed hierarchy

us = ∂x
δHf

δu(x)
.

Open Problem. Find a construction of the Hamiltonian K generating the qua-
sitriviality transformation for the KdV hierarchy.
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Recall that the KdV hierarchy describes isospectral deformations of the Schroedinger
operator

L =
ε2

2
∂2

x + u(x).

The equations of the hierarchy can be represented in the Lax form

∂L

∂tk
= [Ak, L], Ak = ck

(
L

2k+1
2

)
+

.

Here ( )+ is the differential part of the pseudodifferential operator,

ck =
2

2k+1
2

(2k + 1)!!

a suitable normalization constant. The dispersionless limit ε → 0 of the KdV hierarchy
is described by the symbol

λ(p, x) =
1

2
p2 + v(x)

of the Lax operator replacing the commutators of the operators L, A by the Poisson
brackets of their symbols λ, α

[A, L] → {α, λ} =
∂α

∂p

∂λ

∂x
− ∂α

∂x

∂λ

∂p
.

In order to return back to the full KdV hierarchy one has to quantize the symbols. The
canonical quasitriviality transformation (3.11) does the same work in a different way.

We will now continue the comparative study of solution to the perturbed and non-
perturbed systems. Solutions to hyperbolic systems typically have a finite life span,
0 ≤ t < t0. As t→ t0 − 0 the solution u(x, t) tends to a finite limit but the derivatives
ux, ut blow up at some point x = x0. This phenomenon is called gradient catastrophe
of solutions to hyperbolic systems.

Our goal is to compare the solutions to perturbed and unperturbed systems near the
point of gradient catastrophe of the latter. Such a comparison will lead us to formula-
tion of an important universaity conjecture saying that, loosely speaking the shape of
the perturbed solution near the point of gradient catastrophe of the unperturbed one
essentially is independent of the choice of generic solution and, moreover of the choice
of generic perturbation.

Let us explain the main motivations and the precise formulation of the universality
conjecture on the simplest example of Hamiltonian perturbations (3.6) of Hopf equa-
tion. Let us first give more details about the behaviour of solutions to Hopf equation

vt + v vx = 0

near the point of gradient catastrophe.

Lemma 3.3. Near the point of catastrophe the solution to Hopf equation is approxi-
mately equal to the function v = v(x, t) determined by the cubic equation

x = v t− v3

6
,

up to shifts, rescalings and Galilean transformations.
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Proof Let (x0, t0) be the point of catastrophe, v0 = limt→t0−0 v(x0, t). We represent
the solution to Hopf equation in the implicit form using the method of characteristics

x = v t + f(v).

The imlicit function theorem is applicable as soon the v-derivative is different from 0
for all x:

t + f ′(v) 	= 0.

The first moment of time for which the above condition fails to be true is the moment
of gradient catastrophe. Thus at the point (x0, t0, v0) one must have

x0 = v0t0 + f(v0)

t0 + f ′(v0) = 0

f ′′(v0) = 0.

The last condition holds true since the graph of the solution has an inflection at the
point of catastrophe. Impose the genericity assumption saying that this inflection point
does not degenerate, i.e.,

f ′′′(v0) 	= 0.

Introduce shifted variables

x̄ = x− x0, t̄ = t− t0, v̄ = v − v0.

After the rescaling

x̄ �→ k x̄(3.12)

t̄ �→ k2/3t̄

v̄ �→ k1/3v̄

with k → 0 and a Galilean transformation

x̄ �→ x̄− v0t̄

the implicit function equation will read

x̄ = v̄ t̄ +
1

6
f ′′′(v0)v̄

3 + O(k1/3).

In the limit k → 0 one obtains a cubic equation for v̄.

In a similar manner one can describe the local structure of solution to a two-
component hyperbolic system near the point of catastrophe. Let r± = r ± (u, v)
be the Riemann invariants of a two-component system, x± the characteristic directions
at the point of catastrophy. Then, after shifts and rescalings a generic solution to a
hyperbolic system

ut = a11(u, v)ux + a12(u, v)vx

vt = a21(u, v)ux + a22(u, v)vx

is the following standard Whitney singularity:

x+ = r+

x− = r+r− − 1

6
r3
−.(3.13)
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The idea of the proof is similar to the above: at the generic point of catastrophe only
one of the Riemann invariants breaks down ((3.13) describes the catastrophe of the
invariant r−).

Open Problem. Describe the local structure near the point of gradient catastrophe
of generic solutions to a hyperbolic Hamiltonian system (3.2) with n ≥ 3 components.

Recall that for n ≥ 3 a generic hyperbolic system does not possess Riemann in-
variants, so the above arguments do not work. The Hamiltonian hyperbolic systems
possessing Riemann invariants are all integrable; the local structure near the critical
point in this case is similar to (3.13).

Let us return to solutions to the perturbed Hopf equation. In order to describe the
local structure near the point of gradient catastrophe (also called critical point) let
us introduce an appropriate special function. This function is determined from the
following ordinary differential equation

(3.14) X = T U −
[
1

6
U3 +

1

24
(U ′2 + 2 U U ′′) +

1

240
U IV

]

depending on the real parameter T . The needed solution is selected by smoothness for
all X ∈ R along with the asymptotics

U ∼ 3
√−6 X, |X| → ∞.

Theorem 3.4. (T.Claeys, M.Vanlessen) The special solution to (3.14) exists and is
unique for all real T .

We will denote U(X, T ) this solution to (3.14) depending on the parameter T .

We ar enow ready to formulate the universality conjecture describing critical be-
haviour of solutions to generic Hamiltonian perturbations of Hopf equation.

Universality Conjecture. Let v = v(x, t) be a solution to Hopf equation smooth
for

|x− x0| < r, 0 ≤ t < t0.

Let it have a generic gradient catastrophe at the point x = x0, t = t0; denote v0 =
v(x0, t0). Denote u = u(x, t; ε) the solution to the perturbed Hopf equation satisfying

u(x, 0; ε) = v(x, t0).

1) There exists ρ < r such that the solution u(x, t; ε) is defined on the domain

|x− x0| < ρ, 0 ≤ t < t0.

Moreover as ε → 0 it converges to v(x, t) for t < t0 −Δ for any positive Δ.

2) There exists a positive δ = δ(ε) > 0 such that the solution u(x, t; ε) can be extended
onto a bigger domain

|x− x0| < ρ, 0 ≤ t < t0 + δ(ε).

Near the critical point (x0, t0) it has the following asymptotics:

(3.15) u(x, t; ε) � v0 + ε2/7
( v0

κ2

)1/7

U

(
x− x0 − v0(t− t0)

(κ v3
0)

1/7ε6/7
,

t− t0
(κ3v2

0)
1/7ε4/7

)
+O

(
ε4/7

)
.
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Here

κ = −f ′′′(v0).

There are two main motivations fo the Universality Conjecture. First, one can
accompany the above rescaling

x̄ �→ k x̄(3.16)

t̄ �→ k2/3t̄

ū �→ k1/3ū

with the rescaling of the parameter ε:

ε �→ k7/6ε.

After such a rescaling and the Galilean transformation

x̄ �→ x̄− v0t̄

the perturbed equation

ut + u ux +
ε2

24

[
2c uxxx + 4c′uxuxx + c′′u3

x

]
+ ε4 [2p uxxxxx

(3.17)

+2p′(5uxxuxxx + 3uxuxxxx) + p′′(7uxu
2
xx + 6u2

xuxxx) + 2p′′′u3
xuxx

]
= 0.

will tend to the KdV equation

(3.18) ut + u ux +
ε2

12
c(v0)uxxx = O(k1/3)

assuming that

c(v0) 	= 0

(one more genericity assumption).

The second step is used in order to specify the needed solution to the KdV equation.
This solution will be specified by the so-called string equation. Let us introduce a
primitive g(u) of the function f :

g′(u) = f(u).

Observe that the equation of the method of characteristics can be written as the equa-
tion for the critical points of the function

Φx,t(v) := t
v2

2
− x v − g(v)

depending on the parameters x, t. We replace now this function by the functional

Φ̂x,t[u] =

∫ [
t
u2

2
− x u− hg(u; ux, . . . ; ε)

]
dx =

∫ [
t
u2

2
− x u

]
dx−Hg

where hg is defined by the formula (3.7) specialized at the KdV case

c(u) = c(v0) =: c0, p(u) = 0,
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i.e.

hg = g − ε2

24
c0 g′′′u2

x + ε4

[
c0

2 g(4)

480
u2

xx −
c0

2 g(6)

3456
u4

x

]
+ O(ε6).

Proposition 3.5. The solutions to the Euler – Lagrange equations

(3.19)
δΦ̂x,t

δu(x)
≡ u t− x− δHg

δu(x)
= 0

satisfy KdV equation (3.18). The unique formal solution to (3.19) that for ε → 0 admits
a regular expansion in ε is obtained from the solution v = v(x, t) to Hopf equation by
the quasitriviality transformation (3.11).

Applying the same rescaling of x, t, u and ε we see that the “string equation” (3.19)
tends to the P 2

I equation (3.14).

After all these heuristic arguments let us formulate the first rigorous result supporting
the universality conjecture.

Theorem 3.6. (T.Claeys, T.Grava). The Universality Conjecture holds true for generic
solutions to the KdV equation with analytic initial data.

At the end we will consider an example of a two-component Hamiltonian perturba-
tion of a hyperbolic PDE obtained from the Toda lattice equations (cf. the example of
general FPU systems above)

(3.20)
ut = 1

ε
[v(x + ε)− v(x)] = vx + 1

2
ε vxx + . . .

vt = 1
ε

[
eu(x) − eu(x−ε)

]
= euux − 1

2
ε (eu)xx + . . .

The system (3.20) is integrable; it can be included into an infinite family of pairwise
commuting Hamiltonian flows described in terms of isospectral deformations of differ-
ence Lax operator

L = eε∂x + v(x) + eu(x)e−ε∂x .

Denote t the infinite vector of times of the Toda hierarchy. Consider the solution
specified by the initial data

(3.21) eu(x,0;ε) = x, v(x, 0; ε) = 0.

As before the solution is understood in the form of a formal ε expansion.

Proposition 3.7. The tau-function of the particular solution (3.21) to Toda hierarchy
coincides with the formal asymptotic expansion of the GUE partition function

τ(x, t; ε) =
1

Vol(N)

∫
N×N

e−
1
ε
TrV (M)dM

(3.22)

V (M) =
1

2
M2 −

∑
k≥3

tkM
k, N =

x

ε

Vol(N) =
2N/2π

N2

2 ε−
N2

2
+ 1

12∏N−1
k=0 k!

.
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Recall that the formal expansion of the free energy of the GUE ensemble is written
in the form

log τ(x, t; ε) ∼ x2

2ε2

(
log x− 3

2

)
− 1

12
log x + ζ ′(−1)(3.23)

+
∑
g≥2

( ε

x

)2g−2 B2g

2g(2g − 2)
+

∑
g≥0

ε2g−2Fg(x; t3, t4, . . . )

where B2g are Bernoulli numbers, ζ(s) the Riemann zeta-function,

Fg(x; t3, t4, . . . ) =
∑

n

∑
k1,...,kn

ag(k1, . . . , kn)tk1 . . . tknxh,

h = 2− 2g −
(

n− |k|
2

)
, |k| = k1 + · · ·+ kn,

generate the numbers of fat graphs

ag(k1, . . . , kn) =
∑

Γ

1

# Sym Γ

where

Γ = a connected fat graph of genus g with n vertices of the valencies k1, . . . , kn,

Sym Γ is the symmetry group of the graph.

The above proposition puts at least some part of universality results of the theory of
random matrices into the more general setting of the problem of universality of critical
behaviour in Hamiltonian PDEs.
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