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1 The flavour structure of the Standard Model

We start from the Lagrangian describing electroweak interactions of Standard
Model (SM) fermions:

Lint = − g2√
2

(

W+
µ J

µ
ch +W−

µ J
µ†

ch

)

− g1 cos θWAµJ
µ
em − g2

cos θW

ZµJneutral
µ , (1)

where g1,2 denote the SU(2)L and U(1)Y gauge couplings respectively, θW is
the electroweak mixing angle and the currents involving quarks are given by:

Jµ
em =

2

3
ū′Liγ

µu′Li +
2

3
ū′Riγ

µu′Ri −
1

3
d̄′Liγ

µd′Li −
1

3
d̄′Riγ

µd′Ri (2)

Jµ
ch = ū′Liγ

µd′Li

Jµ
neutral = g

(u)
L ū′Liγ

µu′Li + g
(u)
R ū′Riγ

µu′Ri + g
(d)
L d̄′Liγ

µd′Li + g
(d)
R d̄′Riγ

µd′Ri ,

where g
(u)
L = 1/2−2/3 sin2 θW , g

(u)
R = −2/3 sin2 θW , g

(d)
L = −1/2+1/3 sin2 θW ,

g
(d)
R = 1/3 sin2 θW , the electric charge is given by e = g1 cos θW = g2 sin θW

and

qL,R = PL,R q =
(1 ∓ γ5)

2
q . (3)

Let us now consider Yukawa interactions:

−LY = Y u
ij Q̄

′
LiH̃u

′
Rj + Y d

ijQ̄
′
LiHd

′
Rj +H.c. , (4)

where

QLi =

(

uLi

dLi

)

, H =

(

h+

h0

)

, H̃ =

(

h0∗

−h+∗

)

. (5)

These interactions break the U(3)QL
⊗ U(3)dR

⊗ U(3)uR
flavour symmetries

of the SM gauge Lagrangian. Once the neutral component of the Higgs field
gets a vacuum expectation value 〈h0〉 = v/

√
2, breaking the electroweak

symmetry, the Yukawa interactions generate masses for quarks:

−Lm = m̂u
ijū

′
Liu

′
Rj + m̂d

ij d̄
′
Lid

′
Rj +H.c. . (6)

To go to the mass eigenstate basis for quarks, we must diagonalize the com-
plex matrices m̂u and m̂d. This can be done via a bi-unitary transformation.
Indeed, the Hermitian matrix m̂um̂u† can be diagonalized with a unitary
matrix UuL :

Uu
†
Lm̂um̂u†UuL = mu2

= diag(m2
u,m

2
c ,m

2
t ) . (7)
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In the same way, we obtain

Uu
†
Rm̂u†m̂uUuR = mu2

= diag(m2
u,m

2
c ,m

2
t ) . (8)

Finally, we have

Uu
†
Lm̂uUuR = mu = diag(mu,mc,mt) , (9)

Ud
†
Lm̂dUdR = md = diag(md,ms,mb) .

We thus write

−Lm = ū′LU
uLUu

†
Lm̂uUuRUu

†
Ru′R + d̄′LU

dLUd
†
Lm̂dUdRUd

†
Rd′R

= ūLm
uuR + d̄Lm

ddR , (10)

where uL,R = Uu
†
L,Ru′L,R and dL,R = Ud

†
L,Rd′L,R. We now rewrite the interac-

tions with gauge bosons in terms of mass eigenstates. The rotation matrices
cancel in neutral currents:

Jµ
em =

2

3
ūLU

u
†
LγµUuLuL +

2

3
ūRU

u
†
RγµUuRuR (11)

−1

3
d̄LU

d
†
LγµUdLdL − 1

3
d̄RU

d
†
RγµUdRdR

=
2

3
ūLγ

µuL +
2

3
ūRγ

µuR − 1

3
d̄Lγ

µdL − 1

3
d̄Rγ

µdR

Jµ
neutral = g

(u)
L ūLU

u
†
LγµUuLuL + g

(u)
R ūRU

u
†
RγµUuRuR

+g
(d)
L d̄LU

d
†
LγµUdLdL + g

(d)
R d̄RU

d
†
RγµUdRdR

= g
(u)
L ūLγ

µuL + g
(u)
R ūRγ

µuR + g
(d)
L d̄Lγ

µdL + g
(d)
R d̄Rγ

µdR .

The absence of tree-level Flavour Changing Neutral Currents (FCNC) is
a fundamental property of the SM. It is interesting to note that it is an
accidental symmetry, i.e. a property of renormalizable interactions due to
the field content and gauge structure of the SM. Indeed, extensions of the
SM generally do not preserve this accidental symmetry, since with additional
fields it is generally possible to write down FCNC vertices involving new
particles. Even within the SM, as we shall see in detail in the following, the
symmetry is broken by non-renormalizable interactions generated at the loop
level by the exchange of SM particles.

Turning to charged currents, we obtain

Jµ
ch = ūLU

u
†
LγµUdLdL = ūLV γ

µdL , (12)
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where we have introduced the Cabibbo-Kobayashi-Maskawa (CKM) matrix

V = Uu
†
LUdL . (13)

Let us now discuss the CP invariance of the SM Lagrangian in the weak
eigenstate basis. The gauge part can be shown to be invariant under CP
transformations. Let us then concentrate on the Yukawa interactions in
eq. (4). The action of CP on fermionic fields is given by:

ψ → γ0Cψ̄T ψ̄ → ψTCγ0 , (14)

where the matrix C has the property CT = C−1 = −C. We then obtain for
example

Y d
ijQ̄

′
LiHd

′
Rj → Y d

ijQ
′T

LiCγ
0H∗γ0Cd̄′

T

Rj = −Y d
ijQ

′T

LiH
∗d̄′

T

Rj = Y d
ij d̄

′
RjH

†Q′
Li ,
(15)

where in the last step we have taken into account the anticommutative nature
of the quark fields. Comparing the result above with the Hermitean conjugate
of LY , we see that Yukawa interactions are CP invariant if and only if Y u,d

ij are

real. In general, Y u,d
ij are arbitrary complex 3 × 3 matrices, corresponding

to 18 real parameters and 18 complex phases. However, not all of these
parameters are physical. We already noticed that SM gauge interactions
have an U(3)QL

⊗U(3)dR
⊗U(3)uR

flavour symmetry. Thus, we can perform
a U(3)QL

⊗U(3)dR
⊗U(3)uR

transformation on LY without affecting the gauge
Lagrangian. Since an n × n unitary matrix has n(n − 1)/2 real parameters
(angles) and n(n+1)/2 phases, an U(3)QL

⊗U(3)dR
⊗U(3)uR

transformation
contains 3× 3(3− 1)/2 = 9 angles and 3× 3(3 + 1)/2 = 18 phases. However,
one combination of phase transformations corresponds to baryon number
conservation U(1)B which is a property of the whole SM Lagrangian, so it
leaves Yukawa couplings unchanged. We conclude that Yukawa couplings
contain 18 − 9 = 9 real parameters and 18 − (18 − 1) = 1 phase. In the
mass eigenstate basis, these parameters correspond to 6 quark masses and to
3 angles and one phase in the CKM matrix. It is interesting to notice that
for a number of generations smaller than three, all phases can be reabsorbed
so that no CP violation arises in weak interactions. Indeed, the 2008 Nobel
prize was awarded to Kobayashi and Maskawa for introducing three-family
quark mixing to accommodate CP violation in SM weak interactions.

The CKM matrix is thus described by three angles and one phase. The
position of the phase is arbitrary, but of course physical quantities do not
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depend on the phase convention. A measure of CP violation is given by the
Jarlskog determinant

JCP ∝ Im(VijVklV
∗
ilV

∗
kj) , (16)

which is manifestly rephasing invariant.
The PDG advocates the use of the following parameterization for the

CKM matrix:

V =







1 0 0
0 c23 s23

0 −s23 c23













c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13













c12 s12 0
−s12 c12 0
0 0 1







=







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





 , (17)

where we have used the notation sij = sin θij, cij = cos θij. Since experimen-
tally there is a hierarchy between the three angles such that s13 ≪ s23 ≪
s12 ∼ 0.2, it is possible to construct approximate parameterizations of the
CKM matrix, such as the Wolfenstein parameterization and its generaliza-
tions to higher orders. As an example, we can identify

s12 = λ , s23 = Aλ2 , s13e
−iδ = Aλ3(ρ− iη) . (18)

Then, an approximate for for the CKM matrix can be obtained expanding
in powers of λ the expressions for the cosines of the mixing angles cij =√

1 − sij.
1 At the lowest order we obtain







1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1





 . (19)

The unitarity of V implies the presence of triangular relations among
CKM matrix elements. In particular, we have

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 = 1 +

VudV
∗
ub

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

, (20)

1The three angles θij can be chosen to lie in the first quadrant provided that δ varies

between 0 and 2π.
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where the last equality defines the so-called Unitarity Triangle (UT), as given
in Fig. ??. It is useful to define the following auxiliary quantities:

α = arg

(

− VtdV
∗
tb

VudV ∗
ub

)

, β = arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

, γ = arg

(

−VudV
∗
ub

VcdV ∗
cb

)

,

Rb =

∣

∣

∣

∣

∣

VudV
∗
ub

VcdV ∗
cb

∣

∣

∣

∣

∣

, Rt =

∣

∣

∣

∣

∣

VtdV
∗
tb

VcdV ∗
cb

∣

∣

∣

∣

∣

. (21)

Employing the generalized Wolfenstein parameterization to O(λ7), we
obtain

VudV
∗
ub = Aλ3(ρ̄+ iη̄) , (22)

VcdV
∗
cb = −Aλ3

VtdV
∗
tb = Aλ3(1 − ρ̄− iη̄) ,

so that the apex of the UT has coordinates (ρ̄, η̄), with ρ̄ = ρ(1 − λ2/2) and
η̄ = η(1 − λ2/2).

Nuclear β decays and K → π semileptonic decays allow us to determine
|Vud| and |Vus|, from which we can extract λ = 0.2258±0.0014. Exclusive and
inclusive semileptonic B decays into charmed final states give us an estimate
of |Vcb|:

|V excl
cb | = (39.2 ± 1.1)10−3 , |V incl

cb | = (41.7 ± 0.7)10−3 , (23)

while semileptonic charmless B decays give us access to |Vub|:

|V excl
ub | = (35 ± 4)10−4 , |V incl

ub | = (39.9 ± 1.5 ± 4.0)10−4 . (24)

These measurements allow us to determine the Rb side of the UT. Further-
more, we can measure the angle γ of the UT exploiting the interference
between b → cūs(d) and b → uc̄s(d) transitions in B → DK(π) decays, up
to a two-fold ambiguity. Experimental data give

γ = (78 ± 12)◦ ∪ (−102 ± 16)◦ . (25)

Combining all this information gives us a determination of the UT entirely
based on tree-level processes (see Fig. 1):

ρ̄ = ±0.06 ± 0.08 , η̄ = ±0.39 ± 0.03 . (26)
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Figure 1: Determination of the UT using only tree-level processes.

The determination of the UT, and thus of the full CKM matrix, using only
tree-level processes is a great experimental achievement. Indeed, New Physics
(NP) contributions to tree-level processes are expected to be either absent
(in all NP models with a discrete simmetry separating SM and NP particles)
or strongly suppressed with respect to the SM. Therefore, the determination
of the UT from tree-level processes can be considered to be valid also beyond
the SM, and it is the starting point to study flavour and CP violation beyond
the SM.

2 Effective Hamiltonian for B − B̄ mixing

We have seen in the previous lecture that the SM has an accidental symmetry
that forbids tree-level FCNC and confines flavour violation to charged current
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Figure 2: SM box diagrams for b̄d→ d̄b transitions.

interactions. However, combining two or more charged current interactions
we can generate FCNC transitions at the loop level. Let us now discuss
two very important properties of FCNC processes in the SM. The first is the
Glashow-Iliopoulos-Maiani (GIM) mechanism that suppresses loop-mediated
FCNC processes. The second is the possibility to write down FCNC ampli-
tudes using an effective Hamiltonian that contains only local operators.

2.1 b̄d→ d̄b transitions in the full theory

As a first example, let us consider the ∆B = 2 transition amplitude b̄d→ bd̄.
In the ’t-Hooft-Feynman gauge, the relevant diagrams are shown in Fig. 2.
The relevant Feynman rules are reported in Fig. ??. Let us concentrate first
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on diagram 7. We can write it down as follows:

∫

ūb

ig√
2
γµPLV

∗
jb

i

/p−muj

ig√
2
γνPLVjdvd × (27)

v̄b

ig√
2
γνPLV

∗
ib

i

/p−mui

ig√
2
γµPLVidud

(

−i
p2 −M2

W

)2
d4p

(2π)4
,

where we have neglected external momenta. Rationalizing propagators we
see that the chiral projectors kill contributions from quark masses in the
numerator. The relevant integral is thus

I ij
αβ =

∫ d4p

(2π)4

pαpβ

(p2 −M2
W )2(p2 −mui

)2(p2 −m2
uj

)
. (28)

Now,
1

p2 −m2
ui

− 1

p2 −m2
uj

=
m2

ui
−m2

uj

(p2 −m2
ui

)(p2 −m2
uj

)
, (29)

so that

I ij
αβ =

I i
αβ − Ij

αβ

m2
ui
−m2

uj

, (30)

where

I i
αβ =

∫ d4p

(2π)4

pαpβ

(p2 −M2
W )2(p2 −mui

)
=
gαβ

4

∫ d4p

(2π)4

p2

(p2 −M2
W )2(p2 −mui

)

=
gαβ

4
m2

ui

∫ d4p

(2π)4

1

(p2 −M2
W )2(p2 −mui

)
+ terms indep. on m2

ui
.(31)

Now, using the Feynman parameterization

1

anb
= n

∫ 1

0
dx

xn−1

[(1 − x)b+ xa]n+1 , (32)

we obtain

∫ d4p

(2π)4

1

(p2 −M2
W )2(p2 −mui

)
(33)

= 2
∫ 1

0
dx
∫ d4p

(2π)4

x
[

(1 − x)(p2 −m2
ui

) + x(p2 −M2
w)
]3
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= 2
∫ 1

0
dx
∫ d4p

(2π)4

x
[

p2 −M2
wx−m2

ui
(1 − x)

]3

= 2i
2π2

16π4

∫ 1

0
dx
∫ ∞

0

p3dp
[

−p2 −M2
wx−m2

ui
(1 − x)

]3 ,

where in the last step we have performed a Wick rotation to go to Euclidean
spacetime. Writing C = M2

Wx+m2
ui

(1 − x) we have

∫ ∞

0

p3dp

(p2 + C)3 = − 1

4

p2

(p2 + C)2

∣

∣

∣

∣

∣

∞

0

+
1

2

∫ ∞

0

pdp

(p2 + C)2 =
1

4

∫ ∞

0

dy

(y + C)2

= − 1

4

1

y + C

∣

∣

∣

∣

∣

∞

0

=
1

4C
. (34)

Substituting the result (34) in eq. (33) we are led to

− i

16π2

∫ 1

0
dx

x

xM2
W +m2

ui
(1 − x)

= − i

16π2M2
W

∫ 1

0
dx

x

x+ xi(1 − x)

= − i

16π2M2
W

∫ 1

0
dx

x

xi + x(1 − xi)
, (35)

where
xi = m2

ui
/M2

W . (36)

The integration on x can be carried out as follows:

∫ 1

0
dx

x

xi + x(1 − xi)
=

1

1 − xi

∫ 1

0
dx

(x(1 − xi) + xi) − xi

xi + x(1 − xi)

=
1

1 − xi

− xi

1 − xi

∫ 1

0
dx

1

xi + x(1 − xi)

=
1

1 − xi

− xi

1 − xi

1

1 − xi

log ((1 − xi)x+ xi)
∣

∣

∣

∣

1

0

=
1

1 − xi

+
xi log xi

(1 − xi)2
. (37)

Thus, up to terms independent on quark masses, we have

I i
αβ = −gαβ

4

i

16π2
J(xi) (38)
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with

J(xi) =
xi

1 − xi

+
x2

i log xi

(1 − xi)2
. (39)

Using eq. (30) we finally obtain

I ij
αβ = − gαβ

4M2
W

i

16π2
A(xi, xj) (40)

with

A(xi, xj) =
J(xi) − J(xj)

xi − xj

. (41)

We now turn to the Dirac structure. From eq. (27) we extract

ūbγµPLγαγνPLvd × v̄bγ
νPLγ

αγµPLud . (42)

This can be simplified using a Fierz identity. From the basic Fierz identity

δαβδγδ =
1

2
(PL)αδ(PL)γβ +

1

2
(PR)αδ(PR)γβ (43)

+
1

2
(γµPL)αδ(γµPR)γβ +

1

2
(γµPR)αδ(γµPL)γβ +

1

8
(σµν)αδ(σµν)αδ ,

we obtain

(PLvdv̄bPR)αδ = (PLvd)β(v̄bPR)γδαβδγδ (44)

= (PLvd)β(v̄bPR)γ(
1

2
(PL)αδ(PL)γβ +

1

2
(PR)αδ(PR)γβ

+
1

2
(γµPL)αδ(γµPR)γβ +

1

2
(γµPR)αδ(γµPL)γβ +

1

8
(σµν)αδ(σµν)αδ)

= (PLvd)β(v̄bPR)γ

1

2
(γµPR)αδ(γµPL)γβ =

1

2
(v̄bγ

µPLvd)(γµPR)αβ ,

Plugging eq. (44) into eq. (42) we obtain

1

2
(v̄bγ

ρPLvd)(ūbγµγαγνγρPRγ
νPLγ

αγµPLud) , (45)

which can be further simplified using

γµγαγ
µ = −2γα (46)
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to obtain
−4(v̄bγ

µPLvd)(ūbγµPLud) . (47)

The Feynman amplitude generated by this diagram is thus

iM(7) =
i

16π2
4

g4

16M2
W

∑

i,j=u,c,t

V ∗
ibVidV

∗
jbVjdA(xi, xj)(v̄bγ

µPLvd)(ūbγµPLud)

= i
G2

FM
2
W

2π2
(v̄bγ

µPLvd)(ūbγµPLud)
∑

i,j=u,c,t

λiλjA(xi, xj) , (48)

where GF/
√

2 = g2/(8M2
W ) is the Fermi constant and λi = V ∗

ibVid.
Diagram 8 in Fig. 2 is identical to the one we just computed, up to a

Fierz identity ((γµPL)αβ(γµPL)γδ = −(γµPL)αδ(γµPL)γβ:

iM(8) = −iG
2
FM

2
W

2π2
(v̄bγ

µPLud)(ūbγµPLvd)
∑

i,j=u,c,t

λiλjA(xi, xj) . (49)

2.2 Introducing the effective Hamiltonian

We notice that these Feynman amplitudes can be written as matrix elements
of an effective Hamiltonian involving a local operator. Let us consider the
following effective interaction:

H∆B=2
eff = Cb̄Lγ

µdLb̄LγµdL , (50)

built up of a numerical coefficient C, called Wilson coefficient, times a lo-
cal operator of mass dimension six. The Wilson coefficient must then have
dimensions mass−2. The matrix element of H∆B=2

eff is given by

iMH = −iC〈d̄b|b̄LγµdLb̄LγµdL|b̄d〉 (51)

= −2iC (ūbγ
µPLvdv̄bγµPLud − ūbγ

µPLudv̄bγµPLvd) .

Comparing eq. (51) with eqs. (48) and (49) we obtain

C(7+8) =
G2

FM
2
W

4π2

∑

i,j

λiλjA(xi, xj) . (52)

Proceeding along the same lines we obtain

C(3+5) = C(4+6) = −G
2
FM

2
W

4π2

∑

i,j

λiλjxixjA
′(xi, xj) , (53)

C(1+2) =
1

4

G2
FM

2
W

4π2

∑

i,j

λiλjxixjA(xi, xj) ,
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with

A′(xi, xj) =
J ′(xi) − J ′(xj)

xi − xj

, J ′(x) =
1

1 − x
+

x log x

(1 − x)2
. (54)

Summing the four contributions we finally obtain

C =
G2

FM
2
W

4π2

∑

i,j

λiλjĀ(xi, xj) , (55)

with

Ā(xi, xj) = A(xi, xj) − xixjA
′(xi, xj) +

1

4
xixjA(xi, xj) . (56)

The unitarity of the CKM matrix implies that

λu + λc + λt = 0 (57)

so that we can replace λu → −λt − λc to obtain
∑

i,j

λiλjĀ(xi, xj) = (λc + λt)
2Ā(xu, xu) + 2λcλtĀ(xc, xt) + λ2

cĀ(xc, xc)

+λ2
t Ā(xt, xt) − 2λt(λc + λt)Ā(xu, xt) − 2λc(λc + λt)Ā(xu, xc)

= λ2
tS0(xt) + λ2

cS0(xc) + 2λcλtS0(xc, xt) , (58)

where

S0(xt) = Ā(xt, xt) + Ā(xu, xu) − 2Ā(xu, xt) , (59)

S0(xc) = Ā(xc, xc) + Ā(xu, xu) − 2Ā(xu, xc) ,

S0(xc, xt) = Ā(xc, xt) + Ā(xu, xu) − Ā(xu, xt) − Ā(xu, xc) .

We note that S0 contains only differences of Ā functions with different
arguments. Thus, for massless or degenerate quarks no FCNC vertex can
be generated, and the coefficients are suppressed by the GIM mechanism.
Indeed, we have

S0(x)
x→0∼ x . (60)

Thus, the contribution of light quarks is suppressed by m2
ui
/M2

W , and it
vanishes as M−4

W .
We also notice that heavy quarks do not decouple from FCNC processes.

Indeed, in the large x limit we have

S0(x)
x>>1∼ x , (61)
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so that the top quark plays a dominant role in flavour physics. This non-
decoupling effect can be immediately understood recalling that the would-be
goldstone bosons couple to fermions with a strength proportional to quark
masses.

For Bd− B̄d mixing, we have λc ∼ λt, so that we can safely neglect S0(xc)
and S0(xc, xt) in eq. (58), leading to

H∆B=2
eff =

G2
FM

2
W

4π2
λ2

tS0(xt)b̄Lγ
µdLb̄LγµdL . (62)

We have obtained the result above neglecting external momenta. We now
show that the terms we neglected are suppressed by an additional factor of
q2/M2

W , where q is the external momentum. To this aim, let us write down
the full expression for I i

αβ:

I i
αβ(q) =

∫ d4p

(2π)4

pαpβ

((p− q)2 −M2
W )2(p2 −mui

)
(63)

and Taylor expand it around q = 0:

I i
αβ(q) = I i

αβ +
1

2

∂

∂qµ

∂

∂qν
I i
αβ(q)

∣

∣

∣

∣

∣

q=0

qµqν + O(q4) . (64)

We have

∂

∂qµ

∂

∂qν

1

[(p− q)2 −M2
w]2

∣

∣

∣

∣

∣

q=0

= 4

(

− δµν

(p2 −MW )3
+ 6

pµpν

(p2 −M2
W )4

)

. (65)

For the sake of simplicity, let us focus on the term proportional to δµν in
eq. (65); similar considerations apply to the other term. We obtain

I i
αβ(q) = I i

αβ − q2 ∂

∂M2
W

I i
αβ + . . . = I i

αβ +
q2

M2
W

x
∂

∂x
I i
αβ + . . . , (66)

showing explicitly that the effects of external momenta are suppressed by
powers of q2/M2

W .
To summarize, we have seen how the transition b̄d → d̄b is generated at

the loop level in the SM, how the GIM mechanism implies that this amplitude
is proportional to G2

Fm
2
ui

for light quarks, and how this amplitude can be
written as the matrix element of an effective Hamiltonian containing a local
operator.
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2.3 QCD corrections

Let us now very briefly comment on the inclusion of QCD effects in the
calculation above. Let us consider for example the exchange of a gluon
between external quark lines as in Fig. ??. In the full theory, this diagram
is convergent in the ultraviolet. However, the same diagram in the effective
theory has a logarithmic divergence. Indeed, the W propagator acts as a
regulator of the ultraviolet divergence. Thus, the result in the full theory
contains terms proportional to

αS log
M2

W

m2
b

, (67)

so that the large log spoils the perturbative expansion. This is due to the
presence of two widely different scales: the weak scale and the hadronic scale.
The effective Hamiltonian and the renormalization group equations give us a
very efficient tool to resum these large logs. Indeed, since the W boson acts
as a regulator of the effective theory, the coefficient of the log is given by the
anomalous dimension γ0 of the operator b̄Lγ

µdLb̄LγµdL, which can be easily
computed using dimensional regularization. Then, large logs are resummed
by computing the Wilson coefficient at a scaleM ∼MW and then by evolving
it to the hadronic scale µ ∼ mb using renormalization group equations. In
the leading logarithmic approximation, we have

C(µ) =

[

αS(MW )

αS(µ)

]

γ0

2β0

C = η(µ)C , (68)

where β0 is the first coefficient of the QCD beta function, and C is the Wilson
coefficient we computed above.

2.4 Hadronic matrix elements

We have obtained the effective Hamiltonian

H∆B=2
eff =

G2
FM

2
W

4π2
λ2

tS0(xt)η(µ)b̄Lγ
µdLb̄LγµdL(µ) , (69)

where µ is the renormalization scale. We have seen that this Hamiltonian
correctly describes the SM b̄d → d̄b transition amplitude, including the re-
summation of large logs. However, we are ultimately interested in computing
a transition amplitude for B mesons: can we use H∆B=2

eff for this purpose?
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The answer is positive, since the Wilson coefficient C(µ) does not depend
on the choice of the external states. Indeed, the dependence on external
states drops in the matching between the full and the effective theories, since
the two theories only differ in the ultraviolet. All the dependence on external
states is thus encoded in the matrix elements of the effective Hamiltonian.
Therefore, to compute the Bd → B̄d transition amplitude, we must compute
the matrix element

〈B|b̄LγµdLb̄LγµdL(µ)|B̄〉 . (70)

This matrix element contains all the low-energy hadronic dynamics, and it
must be computed using non-perturbative methods such as lattice QCD or
QCD sum rules.

It is customary to express the matrix element in eq. (70) in terms of the
Vacuum Insertion Approximation (VIA) result times a B-parameter. We
then have

〈B|b̄LγµdLb̄LγµdL(µ)|B̄〉 =
1

3
F 2

BmBB(µ) . (71)
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