
CHAPTER 0
Review and miscellanea

0.0 Introduction
yIn this initial chapter we summarize many useful concepts and facts, some of
which provide a foundation for the material in the rest of the book. Much of
this material is included in a typical elementary course in linear algebra, but we
also include some useful items that are not commonly found elsewhere and are
not used explicitly in our exposition. Thus, the reader may use this chapter for
a short review prior to beginning the main part of the book; later it can serve as
a convenient reference. We use it to set basic notation and give de�nitions that
are used without further comment in later chapters. We assume that the reader
is already familiar with the elementary concepts of linear algebra and with
mechanical aspects of matrix manipulations, such as matrix multiplication and
addition.

0.1 Vector spaces
A vector space is the fundamental setting for matrix analysis.

0.1.1 Scalar �eld. Underlying a vector space is its �eld, or set of scalars. For
our purposes, that underlying �eld is almost always the real numbersR or the
complex numbersC (see AppendixA) under the usual addition and multiplica-
tion, but it could be the rational numbers, the integers modulo a speci�ed prime
number, or some other �eld. When the �eld is unspeci�ed, we denote it by the
symbol F. To qualify as a �eld, a set must be closed under two binary op-
erations: �addition� and �multiplication�; both operations must be associative
and commutative and each must have an identity element in the set; inverses
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must exist in the set for all elements under addition and for all elements except
the additive identity under multiplication; multiplication must be distributive
over addition.

0.1.2 Vector spaces. A vector space V over a �eld F is a set V of objects
(called vectors) that is closed under a binary operation (�addition�) that is as-
sociative and commutative and has an identity (the zero vector, denoted by 0)
and additive inverses in the set. The set is also closed under an operation of
�scalar multiplication� of the vectors by elements of the scalar �eld F, with
the following properties for all a; b 2 F and all x; y 2 V : a(x+y) = ax+ay,
(a+ b)x = ax+ bx, a(bx) = (ab)x, and ex = x for the multiplicative identity
e 2 F.
For a given �eld F and a given positive integer n the set Fn of n-tuples with

entries from F forms a vector space over F under entry-wise addition in Fn.
Our convention is that elements of Fn are always presented as column vectors;
we often call them n-vectors. The special cases Rn and Cn are the basic
vector spaces of this book. The set of polynomials with real or with complex
coef�cients (of no more than a speci�ed degree or of arbitrary degree) and the
set of real or complex valued continuous functions or arbitrary functions on
subsets ofR or C are also examples of vector spaces (overR or C).

0.1.3 Subspaces, span, and linear combinations. A subspace of a vector
space V over a �eld F is a subset of V that is, by itself, a vector space over
F using the same operations of vector addition and scalar multiplication as in
V . A subset of V is a subspace precisely when it is closed under these two
operations. For example, f[a; b; 0]T : a; b 2 Rg is a subspace of R3 [see
(0.2.5) for the transpose notation]. An intersection of subspaces is always a
subspace; a union of subspaces need not be a subspace. The subsets f0g and
V are always subspaces of V , so they are often called trivial subspaces; a
subspace of V is said to be nontrivial if it is different from both f0g and V .
A subspace of V is said to be a proper subspace if it is not equal to V . We
call f0g the zero vector space. Since a vector space always contains the zero
vector, a subspace cannot be empty.
If S is a subset of a vector space V over a �eld F, spanS is the intersection

of all subspaces of V that contain S. If S is nonempty, then spanS = fa1v1+
� � �+akvk : a1; : : : ; ak 2 F, v1; : : : ; vk 2 S, and k = 1; 2; : : :g; if S is empty,
it follows from the de�nition that spanS = f0g. Notice that spanS is always
a subspace even if S is not a subspace; S is said to span V if spanS = V .
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A linear combination of vectors in a subset S of a vector space V over a �eld
F is any expression of the form a1v1 + � � � + akvk for some positive integer
k, some scalars a1; : : : ; ak 2 F, and some vectors v1; : : : ; vk 2 S. Thus,
the span of a nonempty subset S of V is the set of all linear combinations of
�nitely many vectors in S.
Let S1 and S2 be subspaces of a vector space over a �eld F. The sum of S1

and S2 is the subspace

S1 + S2 = span fS1 [ S2g
= f�x+ �y : x 2 S1, y 2 S2, and �; � 2 Fg

If S1 \ S2 = f0g, we say that the sum of S1 and S2 is a direct sum and write
it as S1 � S2; every z 2 S1 � S2 can be written as z = �x+ �y with x 2 S1,
y 2 S2, and �; � 2 F in one and only one way.

0.1.4 Linear dependence and independence. Let S be a given set of vec-
tors in a vector space V over a �eld F. We say that the set S is dependent
(more formally: linearly dependent) if for some integer k � 1 there are vec-
tors x1; : : : ; xk 2 S and scalars a1; : : : ; ak 2 F that are not all zero, such that
a1x1 + � � � + akxk = 0. A set of two or more vectors is dependent if one of
the vectors is a linear combination of some of the others. A set of two vectors
is dependent if and only if one of the vectors is a scalar multiple of the other.
For example, f[1; 2; 3]T , [1; 0;�1]T , [2; 2; 2]T g is a dependent set in R3; the
�rst vector is the third vector minus the second vector.
A subset of V is said to be independent (more formally: linearly indepen-

dent) if it is not dependent. For example, f[1; 2; 3]T , [1; 0;�1]T g is an inde-
pendent set inR3; neither vector is a scalar multiple of the other.
It is important to note that both independence and dependence are properties

of sets of vectors. Any subset of an independent set is independent; any set that
contains a dependent set is dependent. Since f0g is a dependent set, any set
that contains the zero vector is dependent. A set of vectors can be dependent,
while any proper subset of it is independent. An empty subset of a vector space
is not dependent, so it is independent.

0.1.5 Basis. An independent set that spans a vector space V is called a basis
for V . Each element of V can be represented as a linear combination of vec-
tors in a basis in one and only one way; this is no longer true if any element
whatsoever is appended to or deleted from the basis. An independent set in V
is a basis of V if and only if no set that properly contains it is independent.
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A set that spans V is a basis for V if and only if no proper subset of it spans
V . Every vector space has a basis. The empty set is a basis for the zero vector
space.

0.1.6 Extension to a basis. Any independent set in a vector space V that is
not already a basis may be extended to a basis of V ; that is, if an independent
set S1 � V is not a basis, then there is another independent set S2 � V such
that S1 [S2 is a basis of V . A given independent set that is not a basis may al-
ways be extended to a basis in many different ways; for example, any 3-vector
with nonzero third entry may be appended to the independent set f[1; 0; 0]T ,
[0; 1; 0]T g to produce a basis of R3. The real vector space C[0; 1] of real-
valued continuous functions on [0; 1] shows that a basis need not be �nite; the
in�nite set of monomials f1; t; t2; t3; : : :g is an independent set in C[0; 1].

0.1.7 Dimension. If some basis of the vector space V consists of a �nite num-
ber (a nonnegative integer) of elements, then all bases of V have the same
number of elements; this common number is called the dimension of the vec-
tor space V , and is denoted by dimV . In this event, V is said to be �nite-
dimensional; otherwise V is said to be in�nite-dimensional. In the in�nite-
dimensional case (e.g., C[0; 1]), there is a one-to-one correspondence between
the elements of any two bases. The real vector spaceRn has dimension n. The
vector space Cn has dimension n over the �eld C but dimension 2n over the
�eldR. The basis fe1; e2; : : : ; eng of Fn in which each n-vector ei has a 1 as
its ith entry and 0's elsewhere is called the standard basis.
It is convenient to say �V is an n-dimensional vector space� as a shorthand

for �V is a �nite-dimensional vector space whose dimension is n.� Any sub-
space of an n-dimensional vector space is �nite-dimensional; its dimension is
strictly less than n if it is a proper subspace.
Let V be a �nite-dimensional vector space and let S1and S2 be two given

subspaces of V . Then

dim (S1 \ S2) + dim (S1 + S2) = dimS1 + dimS2 (0.1.7.1)

Rewriting this identity as

dim (S1 \ S2) = dimS1 + dimS2 � dim (S1 + S2) (0.1.7.2)
� dimS1 + dimS2 � dimV

reveals the useful fact that if dimS1+dimS2 > dimV , then S1\S2 contains
a nonzero vector.
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0.1.8 Isomorphism. If U and V are vector spaces over the same scalar �eld
F, and if f : U ! V is an invertible function such that f(ax+ by) = af(x)+
bf(y) for all x; y 2 U and all a; b 2 F, then f is said to be an isomorphism and
U and V are said to be isomorphic (�same-structure�). Two �nite-dimensional
vector spaces over the same �eld are isomorphic if and only if they have the
same dimension; thus, any n-dimensional vector space over F is isomorphic to
Fn. Any n-dimensional real vector space is, therefore, isomorphic toRn, and
any n-dimensional complex vector space is isomorphic to Cn. Speci�cally, if
V is an n-dimensional vector space over a �eld F with speci�ed basis B =
fx1; : : : ; xng, then, since any element x 2 V may be written uniquely as
x = a1x1 + � � � + anxn in which each ai 2 F, we may identify x with the
n-vector [x]B = [a1; : : : ; an]T . For any basis B, the mapping x ! [x]B is an
isomorphism between V and Fn.

0.2 Matrices

The fundamental object of study here may be thought of in two important
ways: as a rectangular array of scalars and as a linear transformation between
two vector spaces, given speci�ed bases for each space.

0.2.1 Rectangular arrays. A matrix is an m-by-n array of scalars from a
�eld F. If m = n, the matrix is said to be square. The set of all m-by-n
matrices over F is denoted by Mm;n(F), and Mn;n(F) is often denoted by
Mn(F). The vector spaces Mn;1(F) and Fn are identical. If F = C, then
Mn(C) is further abbreviated to Mn, and Mm;n(C) to Mm;n. Matrices are
typically denoted by capital letters and their scalar entries are typically denoted
by doubly subscripted lower-case letters. For example, if

A =

�
2 � 32 0

�1 � 4

�
= [aij ]

then A 2 M2;3(R) has entries a11 = 2; a12 = �3=2; a13 = 0; a21 =

�1; a22 = �; a23 = 4. A submatrix of a given matrix is a rectangular ar-
ray lying in speci�ed subsets of the rows and columns of a given matrix. For
example [� 4] is a submatrix (lying in row 2 and columns 2 and 3) of A.
SupposeA = [aij ] 2Mn;m(F). Themain diagonal ofA is the list of entries

a11; a22; : : : ; akk, in which k = minfn;mg. It is sometimes convenient to
express the main diagonal of A as a vector diag(A) = [aii]

k
i=1 2 Fk. The

pth superdiagonal of A is the list a1;p+1; a2;p+2; : : : ; ak;p+k, in which k =
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minfn;m � pg, p = 0; 1; 2; : : : ;m � 1; the pth subdiagonal of A is the list
ap+1;1; ap+2;2; : : : ; ap+`;`, in which ` = minfn�p;mg, p = 0; 1; 2; : : : ; n�1.

0.2.2 Linear transformations. Let U be an n-dimensional vector space and
let V be an m-dimensional vector space, both over the same �eld F; let BU
be a basis of U and let BV be a basis of V . We may use the isomorphisms
x ! [x]BU and y ! [y]BV to represent vectors in U and V as n-vectors
and m-vectors over F, respectively. A linear transformation is a function T :
U ! V such that T (a1x1 + a2x2) = a1T (x1) + a2T (x2) for any scalars
a1;a2 and vectors x1; x2. A matrix A 2 Mm;n(F) corresponds to a linear
transformation T : U ! V in the following way: y = T (x) if and only if
[y]BV = A[x]BU . The matrix A is said to represent the linear transformation
T (relative to the bases BU and BV ); the representing matrix A depends upon
the bases chosen. When we study a matrixA, we realize that we are studying a
linear transformation relative to a particular choice of bases, but explicit appeal
to the bases is usually not necessary.

0.2.3 Vector spaces associated with a matrix or linear transformation.
Any n-dimensional vector space over F may be identi�ed with Fn; we may
think of A 2 Mm;n(F) as a linear transformation x ! Ax from Fn to Fm

(and also as an array). The domain of this linear transformation is Fn; its
range is rangeA = fy 2 Fm : y = Axg for some x 2 Fn; its null space is
nullspaceA = fx 2 Fn : Ax = 0g. The range of A is a subspace of Fm,
and the null space of A is a subspace of Fn. The dimension of nullspaceA is
denoted by nullityA; the dimension of rangeA is denoted by rankA. These
numbers are related by the Rank-Nullity Theorem

dim (rangeA) + dim (nullspaceA) = (0.2.3.1)
rankA+ nullityA = n

for A 2Mm;n(F). The null space of A is a set of vectors in Fn whose entries
satisfym homogeneous linear equations.

0.2.4 Matrix operations. Matrix addition is de�ned entry-wise for arrays of
the same dimensions and is denoted by + (�A + B�). It corresponds to addi-
tion of linear transformations (relative to the same basis), and it inherits com-
mutativity and associativity from the scalar �eld. The zero matrix (all en-
tries are zero) is the additive identity, andMm;n(F) is a vector space over F.
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Matrix multiplication is denoted by juxtaposition (�AB�) and corresponds to
the composition of linear transformations. Therefore, it is de�ned only when
A 2 Mm;n(F) and B 2 Mn;q(F). It is associative, but not always commuta-
tive. For example,�

1 2

6 8

�
=

�
1 0

0 2

� �
1 2

3 4

�
6=
�
1 2

3 4

� �
1 0

0 2

�
=

�
1 4

3 8

�
The identity matrix

I =

"
1 . . .

1

#
2Mn(F)

is the multiplicative identity inMn(F); its main diagonal entries are 1 and all
other entries are 0. The identity matrix and any scalar multiple of it (a scalar
matrix) commute with every matrix inMn(F); they are the only matrices that
do so. Matrix multiplication is distributive over matrix addition.
The symbol 0 is used throughout the book to denote each of the following:

the zero scalar of a �eld, the zero vector of a vector space, the zero n-vector in
Fn (all entries equal to the zero scalar in F), and the zero matrix inMm;n(F)

(all entries equal to the zero scalar). The symbol I denotes the identity matrix
of any size. If there is potential for confusion, we indicate the dimension of a
zero or identity matrix with subscripts, e.g., 0p;q, 0k, or Ik.

0.2.5 The transpose, conjugate transpose, and trace. IfA = [aij ] 2Mm;n(F),
the transpose of A, denoted by AT , is the matrix inMn;m(F) whose i; j entry
is aji; that is, rows are exchanged for columns and vice versa. For example,�

1 2 3

4 5 6

�T
=

24 1 4

2 5

3 6

35
Of course, (AT )T = A. The conjugate transpose (sometime called the adjoint
or Hermitian adjoint) of A 2 Mm;n(C), is denoted by A� and de�ned by
A� = �AT , in which �A is the entry-wise conjugate. For example,�

1 + i 2� i
�3 �2i

��
=

�
1� i �3
2 + i 2i

�
Both the transpose and the conjugate transpose obey the reverse-order law:
(AB)� = B�A� and (AB)T = BTAT . For the complex conjugate of a
product, there is no reversing: AB = �A �B. If x; y are real or complex vectors
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of the same size, then y�x is a scalar and its conjugate transpose and complex
conjugate are the same: (y�x)� = y�x = x�y = yT �x.
Many important classes of matrices are de�ned by identities involving the

transpose or conjugate transpose. For example, A 2 Mn(F) is said to be
symmetric ifAT = A, skew symmetric ifAT = �A, and orthogonal ifATA =
I; A 2 Mn(C) is said to be Hermitian if A� = A, skew Hermitian if A� =
�A, essentially Hermitian if ei�A is Hermitian for some � 2 R, unitary if
A�A = I , and normal if A�A = AA�.
Each A 2Mn(F) can be written in exactly one way as A = S(A) +C(A),

in which S(A) is symmetric and C(A) is skew-symmetric: S(A) = 1
2 (A +

AT ) is the symmetric part of A; C(A) = 1
2 (A � A

T ) is the skew-symmetric
part of A.
Each A 2 Mm;n(C) can be written in exactly one way as A = B + iC, in

whichB;C 2Mm;n(R): B = 1
2 (A+

�A) is the real part ofA; C = 1
2i (A� �A)

is the imaginary part of A.
EachA 2Mn(C) can be written in exactly one way asA = H(A)+iK(A),

in whichH(A) andK(A) are Hermitian: H(A) = 1
2 (A+A

�) is theHermitian
part of A; iK(A) = 1

2 (A�A
�) is the skew-Hermitian part of A.

The trace of a square matrix A = [aij ] 2 Mn(F) is the sum of its main
diagonal entries: trA = a11 + � � � + ann. For any A = [aij ] 2 Mm;n(C),
trAA� =

Pm;n
i;j=1 jaij j2, so

trAA� = 0 if and only if A = 0 (0.2.5.1)

0.2.6 Metamechanics of matrix multiplication. In addition to the conven-
tional de�nition of matrix-vector and matrix-matrix multiplication, several al-
ternative viewpoints can be useful.

a) If A 2 Mm;n(F), x 2 Fn, and y 2 Fm, then the (column) vector
Ax is a linear combination of the columns of A; the coef�cients of the
linear combination are the entries of x. The row vector yTA is a linear
combination of the rows ofA; the coef�cients of the linear combination
are the entries of y.

b) If bj is the jth column of B and aTi is the ith row of A, then the jth
column of AB is Abj and the ith row of AB is aTi B.

To paraphrase, in the matrix product AB, left multiplication by A multiplies
the columns of B and right multiplication by B multiplies the rows of A. See
(0.9.1) for an important special case of this observation when one of the factors
is a diagonal matrix.
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Suppose A 2Mm;p(F) and B 2Mn;q . Let ak be the kth column of A and
let bk be the kth column of B. Then

c) If m = n then ATB =
�
aTi bj

�
: the i; j entry of ATB is the scalar

aTi bj .
d) If p = q, then ABT =

Pn
k=1 akb

T
k : each summand is an m-by-n

matrix, the outer product of ak and bk.

0.2.7 Column space and row space of a matrix The range ofA 2Mm;n(F)

is also called its column space because Ax is a linear combination of the
columns of A for any x 2 Fn (the entries of x are the coef�cients in the linear
combination); the set fyTA : y 2 Fmg is the row space of A. If the column
space of A 2 Mm;n(F) is contained in the column space of B 2 Mm;k(F),
then there is some X 2 Mk;n(F) such that A = BX (and conversely); the
entries in column j of X tell how to express column j of A as a linear combi-
nation of the columns of B.
If A 2Mm;n(F) and B 2Mm;q(F), then

rangeA+ rangeB = range
�
A B

�
(0.2.7.1)

if A 2Mm;n(F) and B 2Mp;n(F), then

nullspaceA \ nullspaceB = nullspace
�
A

B

�
(0.2.7.2)

0.3 Determinants
Often in mathematics it is useful to summarize a multivariate phenomenon
with a single number, and the determinant function is an example of this. Its
domain is Mn(F) (square matrices only), and it may be presented in several
different ways. We denote the determinant of A 2Mn(F) by detA.

0.3.1 Laplace expansion by minors along a row or column. The determi-
nant may be de�ned inductively for A = [aij ] 2Mn(F) in the following way.
Assume that the determinant is de�ned overMn�1(F) and letAij 2Mn�1(F)

denote the submatrix of A 2Mn(F) obtained by deleting row i and column j
of A. Then for any i; j 2 f1; : : : ; ng we have

detA =
nX
k=1

(�1)i+kaik det Aik =
nX
k=1

(�1)k+jakj det Akj (0.3.1.1)
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The �rst sum is the Laplace expansion by minors along row i; the second sum
is the Laplace expansion by minors along column j. This inductive presenta-
tion begins by de�ning the determinant of a 1-by-1 matrix to be the value of
the single entry. Thus,

det [ a11] = a11

det

�
a11 a12
a21 a22

�
= a11a22 � a12a21

det

24 a11 a12 a13
a21 a22 a23
a31 a32 a33

35 = a11a22a33 + a12a23a31 + a13a21a32

�a11a23a32 � a12a21a33 � a13a22a31
and so on. Notice that det AT = detA, det A� = det A if A 2Mn(C), and
det I = 1.

0.3.2 Alternating sum. Consistent with the low-dimensional examples in (0.3.1),
for A = [aij ] 2Mn(F) we have the alternative presentation

detA =
X
�

sgn�
nY
i=1

ai�(i) (0.3.2.1)

in which the sum is over all n! permutations of the n items f1; : : : ; ng and
sgn�, the �sign� or �signum� of a permutation �, is +1 or �1 according to
whether the minimum number of transpositions (pair-wise interchanges) nec-
essary to achieve it starting from f1; 2; : : : ; ng is even or odd. Thus, each
product a1�(1)a2�(2) � � � an�(n) enters into the sum de�ning the determinant
with a + sign if � is even or a � sign if � is odd.
If sgn� in (0.3.2.1) is replaced by certain other functions of �, one obtains

generalized matrix functions in place of detA. For example, the permanent
of A, denoted by perA, is obtained by replacing sgn� by the function that is
identically +1.

0.3.3 Elementary row and column operations. Three simple and funda-
mental operations on rows or columns, called elementary row and column
operations can be used to transform a matrix (square or not) into a simple
form that facilitates such tasks as solving linear equations, determining rank,
and calculating determinants and inverses of square matrices. We focus on row
operations, which are implemented by matrices that act on the left. Column
operations are de�ned and used in a similar fashion; the matrices that imple-
ment them act on the right.
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Type 1: Interchange of two rows
For i 6= j, interchange of rows i and j of A results from left multiplication of
A by 26666666664

1 . . .
0 � � � 1
1...
. . .

...
1

1 � � � � � � � � � 0
1 . . .

1

37777777775
The two off-diagonal 1's are in the i; j and j; i positions, the two diagonal 0's
are in positions i; i and j; j, and all unspeci�ed entries are 0.

Type 2: Multiplication of a row by a nonzero scalar
Multiplication of row i of A by a nonzero scalar c results from left multiplica-
tion of A by 2666664

1 . . .
1
c
1 . . .

1

3777775
The i; i entry is c, all other main diagonal entries are 1, and all unspeci�ed
entries are 0.

Type 3: Addition of a scalar multiple of one row to another row
For i 6= j, addition of c times row i of A to row j of A results from left
multiplication of A by 266664

1 . . .
1
1

c
. . .
1

377775
The j; i entry is c, all main diagonal entries are 1, and all unspeci�ed entries
are 0. The displayed matrix illustrates the case in which j > i.
The matrices of each of the three elementary row (or column) operations are

just the result of the applying the respective operation to the identity matrix
I (on the left for a row operation; on the right for a column operation). The
effect of a Type 1 operation on the determinant is to multiply it by �1; the
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effect of a Type 2 operation is to multiply it by the nonzero scalar c; a Type 3
elementary operation does not change the determinant. The determinant of a
square matrix with a zero row is zero. The determinant of a square matrix is
zero if and only if some subset of the rows of the matrix is dependent.

0.3.4 Row-reduced echelon form. To eachA 2Mm;n(F) there corresponds
a canonical form in Mm;n(F), the row-reduced echelon form (RREF) of A,
which may be attained by a sequence of elementary row operations. Many
matrices have the same RREF, but each matrix has only one RREF regard-
less of the sequence of elementary operations used to attain it. The de�ning
speci�cations of the RREF are:

(a) Each nonzero row has 1 as its �rst nonzero entry;
(b) All other entries in the column of such a leading 1 are 0;
(c) Any rows consisting entirely of 0's occur at the bottom of the matrix;

and
(d) The leading 1's occur in a stairstep pattern, left to right; that is, a lead-

ing 1 in a lower row must occur to the right of its counterpart above
it.

For example, 2664
0 1 �1 0 0 2

0 0 0 1 0 �

0 0 0 0 1 4

0 0 0 0 0 0

3775
is in RREF.
IfR 2Mm;n(F) is the RREF ofA, thenR = EA, in which the nonsingular

matrixE 2Mm(F) is a product of Type 1, Type 2, and Type 3 elementary ma-
trices corresponding to the sequence of elementary row operations performed
to reduce A to RREF.
The determinant ofA 2Mn(F) is nonzero if and only if its RREF is In. The

value of detAmay be calculated by recording the effects upon the determinant
of each of the elementary operations that lead to the RREF.
For the system of linear equations Ax = b with A 2Mm;n(F) and b 2 Fm

given and x 2 Fn unknown, the set of solutions is unchanged if the same
sequence of elementary row operations is performed on both A and b. The
solutions of Ax = b are revealed by inspection of the RREF of [A b]. Since
the RREF is unique, two systems of linear equations Aix = bi, i = 1; 2, have
the same set of solutions if and only if the two augmented matrices [Ai bi],
i = 1; 2, have the same RREF.
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0.3.5 Multiplicativity. A key property of the determinant function is that it is
multiplicative: For A;B 2Mn(F)

detAB = detA detB

This may be proved using elementary operations that row-reduce bothA andB.

0.3.6 Functional characterization of the determinant. If we think of the
determinant as a function of each row (or column) of a matrix separately with
the others �xed, the Laplace expansion (0.3.1.1) reveals that the determinant is
a linear function of the entries in any one given row (column). We summarize
this property by saying that the function A! detA is multilinear in the rows
(columns) of A.
The determinant functionA! detA is the unique function f :Mn(F)! F

that is

(a) Multilinear in the rows of its argument;
(b) Alternating: any Type 1 operation on A changes the sign of f(A); and
(c) Normalized: f(I) = 1.

The permanent function is also multilinear (as are other generalized matrix
functions) and it is normalized, but it is not alternating.

0.4 Rank
0.4.1 De�nition. If A 2 Mm;n(F), rankA is the largest number of columns
of A that constitute an independent set. There can be different sets of indepen-
dent columns whose cardinality (number of elements) equals the rank. It is a
remarkable fact that rankAT = rankA. Therefore, an equivalent de�nition
of rank is the largest number of rows of A that constitute an independent set.
Thus, row rank = column rank.

0.4.2 Rank and linear systems. Let A 2 Mm;n(F) and b 2 Fn be given.
The linear system Ax = b may have no solution, exactly one solution, or
in�nitely many solutions; these are the only possibilities. If there is at least
one solution, the system is said to be consistent; if there is no solution, the
system is said to be inconsistent. The linear system Ax = b is consistent if
and only if rank[A b] = rankA. The matrix [A b] 2 Mm;n+1(F) is called
the augmented matrix. To say that the augmented matrix and the coef�cient
matrix A of a linear system have the same rank is just to say that b is a linear
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combination of the columns of A. In this case, appending b to the columns
of A does not increase the rank. A solution of the linear system Ax = b is a
vector x whose entries are the coef�cients in a representation of b as a linear
combination of the columns of A.

0.4.3 RREF and rank. Elementary operations do not change the rank of a
matrix, and thus rankA is the same as the rank of the RREF of A, which
is just the number of nonzero rows in the RREF. As a practical matter, how-
ever, numerical calculation of the rank by calculation of the RREF is unwise.
Round-off errors in intermediate numerical calculations can make zero rows
of the RREF appear to be nonzero, thereby affecting perception of the rank.

0.4.4 Characterizations of rank. The following statements about a given
matrix A 2 Mm;n(F) are all equivalent; each can be useful in a different
context.

(a) rankA = k;
(b) There exist k, and no more than k, rows of A that constitute a linearly

independent set;
(c) There exist k, and no more than k, columns of A that constitute a lin-

early independent set;
(d) There is a k-by-k submatrix of A with nonzero determinant, but all

(k + 1)-by-(k + 1) submatrices of A have determinant 0;
(e) dim (rangeA) = k;
(f) There is a set of k, but no more than k, linearly independent vectors b
such that the linear system Ax = b is consistent;

(g) k = n� dim(nullspaceA) (the rank-nullity theorem);
(h) k = minfp : A = XY T for some X 2Mm;p(F); Y 2Mn;p(F)g;
(i) k = minfp : A = x1y

T
1 + � � � + xpyTp g for some x1; : : : ; xp 2

Fm; y1; : : : ; yp 2 Fng

0.4.5 Rank inequalities. Some fundamental inequalities involving the rank
are:

(a) If A 2Mm;n(F), then rankA � minfm;ng.
(b) If one or more rows and/or columns are deleted from a matrix, the rank

of the resulting submatrix is not greater than the rank of the original
matrix.
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(c) Sylvester's inequality: If A 2Mm;k(F) and B 2Mk;n(F), then

(rankA+ rankB)� k � rankAB � minfrankA; rankBg

(d) The rank-sum inequality: If A;B 2Mm;n(F), then

jrankA� rankBj � rank(A+B) � rankA+ rankB (0.4.5.1)

with equality in the second inequality if and only if (rangeA)\(rangeB) =
f0g and (rangeAT ) \ (rangeBT ) = f0g. If rankB = 1 then

j rank(A+B)� rankAj � 1 (0.4.5.2)

in particular, changing one entry of a matrix can change its rank by at
most 1.

(e) Frobenius's inequality: If A 2 Mm;k(F); B 2 Mk;p(F), and C 2
Mp;n(F), then

rankAB + rankBC � rankB + rankABC

with equality if and only if there are matrices X and Y such that B =
BCX + Y AB.

0.4.6 Rank equalities.

(a) If A 2Mm;n(C), then rank A� = rank AT = rank �A = rank A.
(b) If A 2 Mm(F) and C 2 Mn(F) are nonsingular and B 2 Mm;n(F),

then rankAB = rankB = rankBC = rankABC; that is, left or
right multiplication by a nonsingular matrix leaves rank unchanged.

(c) If A;B 2 Mm;n(F), then rank A = rank B if and only if there exist a
nonsingular X 2 Mm(F) and a nonsingular Y 2 Mn(F) such that B
= XAY.

(d) If A 2Mm;n(C), then rank A�A = rankA.
(e) Full-rank factorization: IfA 2Mm;n(F), thenA has rank k if and only

if A = XY T for some X 2 Mm;k(F) and Y 2 Mn;k(F) that each
have independent columns. In particular, A has rank 1 if and only if A
= xyT for some nonzero vectors x 2 Fm and y 2 Fn. The equivalent
factorization A = XBY T for some nonsingular B 2 Mk(F) can also
be useful.

(f) Let A 2 Mm;n(F). If X 2 Mn;k(F) and Y 2 Mm;k(F), and if
W = Y TAX is nonsingular, then

rank(A�AXW�1Y TA) = rankA�rankAXW�1Y TA (0.4.6.1)
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When k = 1, this is Wedderburn's rank-one reduction formula: If
x 2 Fn and y 2 Fm, and if ! = yTAx 6= 0, then

rank
�
A� !�1AxyTA

�
= rankA� 1 (0.4.6.2)

Conversely, if � 2 F, u 2 Fn, v 2 Fm, and rank
�
A� �uvT

�
<

rankA, then rank
�
A� �uvT

�
= rankA � 1 and there are x 2 Fn

and y 2 Fm such that u = Ax, v = AT y, yTAx 6= 0, and � =
(yTAx)�1.

0.5 Nonsingularity
A linear transformation or matrix is said to be nonsingular if it produces the
output 0 only for the input 0. Otherwise, it is singular. If A 2 Mm;n(F) and
m < n, then A is necessarily singular. An A 2 Mn(F) is invertible if there is
a matrix A�1 2 Mn(F) (the inverse of A) such that A�1A = I . If A 2 Mn

and A�1A = I , then AA�1 = I , that is, A�1 is a left inverse if and only if it
is a right inverse; A�1 is unique whenever it exists.
It is useful to be able to call on several different criteria for a square matrix

to be nonsingular. The following are equivalent for a given A 2Mn(F):

(a) A is nonsingular;
(b) A�1 exists;
(c) rank A = n;
(d) The rows of A are linearly independent;
(e) The columns of A are linearly independent;
(f) det A 6= 0;
(g) The dimension of the range of A is n;
(h) The dimension of the null space of A is 0;
(i) Ax = b is consistent for each b 2 Fn;
(j) If Ax = b is consistent, then the solution is unique;
(k) Ax = b has a unique solution for each b 2 Fn;
(l) The only solution to Ax = 0 is x = 0; and
(m) 0 is not an eigenvalue of A (see Chapter 1).

The conditions (g) and (h) are equivalent for a linear transformation T :

V ! V on a �nite dimensional vector space V : Tx = y has a solution x for
every y 2 V if and only if the only x such that Tx = 0 is x = 0 if and only if
Tx = y has a unique solution x for every y 2 V .
The nonsingular matrices inMn(F) form a group, the general linear group

, often denoted GL(n;F).
If A 2 Mn(F) is nonsingular, then ((A�1)TAT )T = A(A�1) = I , so
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(A�1)TAT = I , which means that (A�1)T = (AT )�1. It is often convenient
to write either (A�1)T or (AT )�1 as A�T . If A 2 Mn(C) is nonsingular,
then (A�1)� = (A�)�1 and we may safely write either as A��.

0.6 The Euclidean inner product and norm

0.6.1 De�nitions. The scalar hx; yi � y�x is the Euclidean inner product
(standard inner product, usual inner product, scalar product) of x; y 2 Cn.
The Euclidean norm (usual norm, Euclidean length) on Cn is the real-valued
function kxk2 = hx; xi1=2 = (x�x)1=2; two important properties of this func-
tion are that kxk2 > 0 for all nonzero x 2 Cn and k�xk2 = j�j kxk2
for all x 2 Cn and all � 2 C. The function h�; �i : Cn� Cn ! C

is linear in the �rst argument and conjugate linear in the second, that is,
h�x1+�x2; yi = �hx1; yi+�hx2; yi and hx; �y1+�y2i = ��hx; y1i+��hx; y2i
for all �; � 2 C and y1; y2 2 Cn. A function f : Cn� Cn ! C with these
two properties is said to be sesquilinear; f is an inner product if it is sesquilin-
ear and f(x; x) > 0 for every nonzero x 2 Cn.

0.6.2 Orthogonality and orthonormality. Two vectors x; y 2 Cn are or-
thogonal if hx; yi = 0. In R2 and R3, �orthogonal� has the conventional
geometric interpretation of �perpendicular�. A set of vectors S � Cn is said
to be orthogonal if each pair of vectors x; y 2 S is orthogonal. A set of or-
thogonal vectors, none of which is the zero vector, is linearly independent. A
vector whose Euclidean norm is 1 is said to be normalized (a unit vector). For
any nonzero x 2 Cn, x= kxk2 is a unit vector. An orthogonal set of vectors is
said to be an orthonormal set if each of its elements is a unit vector.

0.6.3 The Cauchy�Schwarz inequality. TheCauchy�Schwarz inequality states
that

jhx; yij � kxk2 kyk2

for all x; y 2 Cn, with equality if and only if one of the vectors is a scalar
multiple of the other. The angle � between two nonzero vectors x; y 2 Cn is
de�ned by

cos � =
jhx; yij
kxk2 kyk2

; 0 � � � �
2
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0.6.4 Gram�Schmidt orthonormalization. Any �nite independent set S �
Cn may be replaced by an orthonormal set with the same span. This replace-
ment may be carried out in many ways, but there is a systematic way to do so
that has a useful special property. Present S as an ordered list: x1; : : : ; xn.
The Gram�Schmidt process produces a list of vectors z1; : : : ; zn such that
spanfz1; : : : ; zkg = spanfx1; : : : ; xkg for each k = 1; : : : ; n and the set
fz1; : : : ; zng is orthonormal. The vectors zi may be calculated in turn as fol-
lows: Let y1 = x1 and normalize it: z1 = y1= ky1k2. Let y2 = x2�hx2; z1iz1
(y2 is orthogonal to z1) and normalize it: z2 = y2= ky2k2. Once z1; : : : ; zk�1
have been determined, the vector

yk = xk � hxk; zk�1izk�1 � hxk; zk�2izk�2 � � � � � hxk; z1iz1

is orthogonal to z1; : : : ; zk�1; normalize it: zk = yk= kykk2. Continue until
k = n. If we denote Z = [z1 z2 : : : zn] and X = [x1 x2 : : : xn], the Gram-
Schmidt process gives a factorization Z = XR, in which the square matrix R
= [rij ] is nonsingular and upper triangular; that is, rij = 0 whenever i > j.
The Gram�Schmidt process may be applied to any �nite list of vectors, inde-

pendent or not. If {x1; : : : ; xng is not independent, the Gram-Schmidt process
produces a vector yk = 0 for the least value of k for which fx1; : : : ; xkg is
dependent, that is, the least value of k such that xk is a linear combination of
x1; : : : ; xk�1.

0.6.5 Orthonormal bases. An orthonormal set of vectors does not contain
the zero vector and is linearly independent. An orthonormal basis is a basis
whose elements constitute an orthonormal set. Since any �nite ordered basis
may be transformed with the Gram-Schmidt process to an orthonormal basis,
any �nite-dimensional real or complex vector space has an orthonormal basis,
and any orthonormal set may be extended to an orthonormal basis. Such a basis
is pleasant to work with, since the cross terms in inner product calculations all
vanish.

0.6.6 Orthogonal complements. Given any subset S � Cn, the orthogonal
complement of S is the set S? � fx 2 Cn : x�y = 0 for all y 2 Sg. Even
if S is not a subspace, S? is always a subspace. We have (S?)? = spanS,
and (S?)? = S if S is a subspace. It is always the case that dimS? +
dim(S?)? = n. If S1 and S2 are subspaces, then (S1 + S2)? = S?1 \ S?2 .
In the context of the linear system Ax = b with A 2 Mm;n, rangeA is
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the orthogonal complement of nullspaceA�; that is, Ax = b has solution (not
necessarily unique) if and only if b�z = 0 for all z 2 Cm such that A�z = 0.
If A 2 Mm;n and B 2 Mm;q, if X 2 Mm;r and Y 2 Mm;s, and if

rangeX = nullspaceA� and rangeY = nullspaceB�, then we have the
following companion to (0.2.7.1) and (0.2.7.2)

rangeA \ rangeB = nullspace
�
X�

Y �

�
(0.6.6.1)

0.7 Partitioned sets and matrices
A partition of set S is a collection of subsets of S such that each element of
S is a member of one and only one of the subsets. For example, a partition
of the set f1; 2; : : : ; ng is a collection of subsets �1; : : : ; �t (called index sets)
such that each integer between 1 and n is in one and only one of the index
sets. A sequential partition of f1; 2; : : : ; ng is a partition in which the index
sets have the special form �1 = f1; : : : ; i1g; �2 = fi1 + 1; : : : ; i2g; : : : ; �t =
fit�1 + 1; : : : ; ng.
A partition of a matrix is a decomposition of the matrix into submatrices

such that each entry of the original matrix is in one and only one of the sub-
matrices. Partitioning of matrices is often a convenient device for perception
of useful structure. For example, partitioning B = [b1 b2 : : : bn] 2 Mn(F)

according to its columns reveals the presentation AB = [Ab1 Ab2 : : : Abn] of
the matrix product, partitioned according to the columns of AB.

0.7.1 Submatrices. Let A 2 Mm;n(F). For index sets � � f1; : : : ;mg and
� � f1; : : : ; ng, we denote the (sub)matrix that lies in the rows of A indexed
by � and the columns indexed by � as A[�; �]. For example,24 1 2 3

4 5 6

7 8 9

35 [f1; 3g; f1; 2; 3g] = � 1 2 3

7 8 9

�
If m = n and � = �, the submatrix A[�] := A[�; �] is a principal submatrix
of A. An n-by-n matrix has

�
n
k

�
distinct principal submatrices of size k.

Often it is convenient to indicate a submatrix or principal submatrix via
deletion, rather than inclusion, of rows or columns. This may be accom-
plished by complementing the index sets. Let �c = f1; : : : ;mgn� and �c =
f1; : : : ; ngn� denote the index sets complementary to � and �, respectively.
Then A[�c; �c] is the submatrix obtained by deleting the rows indexed by �
and the columns indexed by �. For example, the submatrix A[�; ;c] contains
the rows of A indexed by �; A[;c; �] contains the columns of A indexed by �.
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The determinant of a square submatrix of A is called aminor of A. If the sub-
matrix is a principal submatrix, then the minor is a principal minor. A signed
minor, such as those appearing in the Laplace expansion (0.3.1.1) [(�1)i+j detAij ]
is called a cofactor of A. By convention, the empty principal minor is 1; that
is, detA[;] = 1. The size of a cofactor or minor is the number of rows of the
underlying square submatrix.

0.7.2 Partitions, block matrices, and multiplication. If �1; : : : ; �t consti-
tute a partition of f1; : : : ;mg and �1; : : : ; �s constitute a partition of f1; : : : ; ng,
then the matrices A

�
�i; �j

�
form a partition of the matrix A 2Mm;n(F); 1 �

i � t; 1 � j � s. If A 2 Mm;n(F) and B 2 Mn;p(F) are partitioned so that
the two partitions of f1; : : : ; ng coincide, the two matrix partitions are said to
be conformal. In this event,

(AB)
�
�i; 
j

�
=

sX
k=1

A [�i; �k]B
�
�k; 
j

�
(0.2.7.1)

in which the respective collections of submatrices A[�i; �k] and B[�k; 
j ] are
conformal partitions of A and B, respectively. The left-hand side of (0.2.7.1) is
a submatrix of the product AB (calculated in the usual way), and each summand
on the right-hand side is a standard matrix product. Thus, multiplication of
conformally partitioned matrices mimics usual matrix multiplication. The sum
of two partitioned matrices A;B 2 Mm;n(F) of the same size has a similarly
pleasant representation if the partitions of their rows (respectively, of their the
columns) are the same:

(A+B)
�
�i; �j

�
= A

�
�i; �j

�
+B

�
�i; �j

�
If a matrix is partitioned by sequential partitions of its rows and columns, the

resulting partitioned matrix is called a block matrix. For example, if the rows
and columns of A 2 Mn(F) are partitioned by the same sequential partition
�1 = f1; : : : ; kg; �2 = fk + 1; : : : ; ng, the resulting block matrix is

A =

�
A[�1; �1] A[�1; �2]

A[�2; �1] A[�2; �2]

�
=

�
A11 A12
A21 A22

�
in which the blocks are Aij = A[�i; �j ]. Computations with block matrices
are employed throughout the book; 2-by-2 block matrices are the most impor-
tant and useful.

0.7.3 The inverse of a partitioned matrix. It can be useful to know the cor-
responding blocks in the inverse of a partitioned nonsingular matrix A, that
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is, to present the inverse of a partitioned matrix in conformally partitioned
form. This may be done in a variety of apparently different, but equivalent,
ways�assuming that certain submatrices of A 2 Mn(F) and A�1 are also
nonsingular. For simplicity, let A be partitioned as a 2-by-2 block matrix

A =

�
A11 A12
A21 A22

�
with Aii 2 Mni(F); i = 1; 2 and n1 + n2 = n. A useful expression for the
correspondingly partitioned presentation of A�1 is" �

A11 �A12A�122 A21
��1

A�111 A12
�
A21A

�1
11 A12 �A22

��1
A�122 A21

�
A12A

�1
22 A21 �A11

��1 �
A22 �A21A�111 A12

��1
#

(0.7.3.1)
assuming that all the relevant inverses exist. This expression for A�1 may be
veri�ed by doing a partitioned multiplication by A and then simplifying. In
general index set notation, we may write

A�1 [�] =
�
A [�]�A [�; �c]A [�c]�1A [�c; �]

��1
and

A�1 [�; �c] = A [�]
�1
A [�; �c]

�
A [�c; �]A [�]

�1
A [�; �c]�A [�c]

��1
=

�
A [�; �c]A [�c]

�1
A [�c; �]�A [�]

��1
A [�; �c]A [�c]

�1

again assuming that the relevant inverses exist. There is an intimate relation-
ship between these representations and the Schur complement; see (0.8.5).
Notice that A�1[�] is a submatrix of A�1, while A[�]�1 is the inverse of a
submatrix of A; these two objects are not, in general, the same.

0.7.4 The Sherman-Morrison-Woodbury formula. Suppose a nonsingular
matrix A 2 Mn(F) has a known inverse A�1 and consider B = A +XRY ,
in which X is n-by-r, Y is r-by-n, and R is r-by-r and nonsingular. If B and
R�1 + Y A�1X are nonsingular, then

B�1 = A�1 �A�1X(R�1 + Y A�1X)�1Y A�1 (0.7.4.1)

If r is much smaller than n, then R and R�1+Y A�1X may be much easier to
invert than B. For example, if x; y 2 Fn are nonzero vectors,X = x, Y = yT ,
yTA�1x 6= �1, and R = [1], then (0.7.4.1) becomes a formula for the inverse
of a rank-1 adjustment to A:�

A+ xyT
��1

= A�1 �
�
1 + yTA�1x

��1
A�1xyTA�1 (0.7.4.2)
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In particular, if B = I + xyT for x; y 2 Fn and yTx 6= �1, then B�1 =
I � (1 + yTx)�1xyT .

0.7.5 Complementary Nullities. Suppose A 2 Mn(F) is nonsingular, let �
and � be nonempty subsets of f1; : : : ; ng, and write j�j = r and j�j = s for
the cardinalities of � and �. The law of complementary nullities is

nullity (A [�; �]) = nullity
�
A�1 [�c; �c]

�
(0.7.5.1)

which is equivalent to the rank identity

rank (A [�; �]) = rank
�
A�1 [�c; �c]

�
+ r + s� n (0.7.5.2)

Since we can permute rows and columns to place �rst the r rows indexed by
� and the s columns indexed by �, it suf�ces to consider the presentations

A =

�
A11 A12
A21 A22

�
and A�1 =

�
B11 B12
B21 B22

�
in which A11 and BT11 are r-by-s and A22 and BT22 are (n � r)-by-(n � s).
Then (0.7.5.1) says that nullityA11 = nullityB22.
The underlying principle here is very simple. Suppose the nullity of A11 is

k. If k � 1, let the columns of X 2 Ms;k(F) be a basis for the null space of
A11. Since A is nonsingular,

A

�
X

0

�
=

�
A11X

A21X

�
=

�
0

A21X

�
has full rank, so A21X has k independent columns. But�

B12 (A21X)

B22 (A21X)

�
= A�1

�
0

A21X

�
= A�1A

�
X

0

�
=

�
X

0

�
so B22(A21X) = 0 and hence nullityB22 � k = nullity A11, a statement
that is trivially correct if k = 0. A similar argument starting with B22 shows
that nullityA11 � nullityB22.
Of course, (0.7.5.1) also tells us that nullityA12 = nullityB12, nullityA21 =

nullityB21, and nullityA22 = nullityB11. If r + s = n, then rankA11 =
rankB22 and rankA22 = rankB11, while if n = 2r = 2s, then we also have
rankA12 = rankB12 and rankA21 = rankB21. Finally, (0.7.5.2) tells us
that the rank of an r-by-s submatrix of an n-by-n nonsingular matrix is at least
r + s� n.
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0.7.6 Rank in a partitioned matrix and rank-principal matrices. Partition
A 2Mn(F) as

A =

�
A11 A12
A21 A22

�
A11 2Mr(F);A22 2Mn�r(F)

IfA11 is nonsingular, then of course rank[A11 A12] = r and rank[AT11 AT21]T =
r. Remarkably, the converse is true if all the rank of A is located in its �rst
block row and �rst block column:

If rankA = rank[A11 A12] = rank
�
A11
A21

�
; then A11 is nonsingular

(0.7.6.1)
This follows from (0.4.6(c)): If A11 is singular, then rankA11 = k < r and
there are nonsingular S; T 2Mr(F) such that

SA11T =

�
Ik 0

0 0r�k

�
Therefore,

Â =

�
S 0

0 In�r

�
A

�
T 0

0 In�r

�
=

24 �
Ik 0

0 0r�k

�
SA12

A21T A22

35
has rank r, as do its �rst block row and column. Because the rth row of the
�rst block column of Â is zero, there must be some column in SA12 whose rth
entry is not zero, which means that Â has at least r + 1 independent columns.
This contradicts rank Â = rankA = r, so A11 must be nonsingular.
Suppose A 2Mn(F) and rankA = r. We say that A is rank principal if it

has a nonsingular r-by-r principal submatrix. It follows from (0.7.6.1) that if
there is some index set � � f1; : : : ; ng such that

rankA = rankA [�; ;c] = rankA [;c; �] (0.7.6.2)

(that is, if there is some set of r linearly independent rows of A such that the
corresponding r columns are linearly independent), then A is rank principal;
moreover, A[�] is nonsingular.
If A 2 Mn(F) is symmetric or skew-symmetric, or if A 2 Mn(C) is Her-

mitian or skew-Hermitian, then rankA [�; ;c] = rankA [;c; �] for every in-
dex set �, so A satis�es (0.7.6.2) and is therefore rank principal.

0.7.7 Commutativity and block diagonal matrices Two matrices A;B 2
Mn(F) are said to commute if AB = BA. Commutativity is not typical, but
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one important instance is encountered frequently. Suppose � = [�ij ]
s
i;j=1 2

Mn(F) is a block matrix in which �ij = 0 whenever i 6= j; �i 2 F and
�ii = �iIni for each i = 1; : : : ; s; and �i 6= �j if i 6= j. Partition B =

[Bij ]
s
i;j=1 2 Mn(F) conformally with �. Then �B = B� if and only if

�iBij = Bij�j for each i; j = 1; : : : ; s. These identities are satis�ed if and
only if Bij = 0 whenever i 6= j. Thus, � commutes with B if and only if B is
block diagonal conformal with �; see (0.9.2).

0.8 Determinants again

Some additional facts about and identities for the determinant are useful for
reference.

0.8.1 Compound matrices. The array of all determinants of submatrices of
a given size (that is, minors) of a given matrix A 2 Mm;n(F) is called a
compound matrix of A. In particular, the

�
m
k

�
-by-

�
n
k

�
matrix whose �; �, entry

is det A[�; �] is called the kth compound matrix of A and is denoted by Ck(A)
Here, � � f1; : : : ;mg and � � f1; : : : ; ng are index sets of cardinality k �
minfm;ng, usually ordered lexicographically, that is, f1; 2; 4g before f1; 2; 5g
before f1; 3; 4g and so on. For example, if

A =

24 1 2 3

4 5 6

7 8 9

35
then

C2(A) =

266666664
det

�
1 2

4 5

�
det

�
1 3

4 6

�
det

�
2 3

5 6

�
det

�
1 2

7 8

�
det

�
1 3

7 9

�
det

�
2 3

8 9

�
det

�
4 5

7 8

�
det

�
4 6

7 9

�
det

�
5 6

8 9

�

377777775
=

24 �3 �6 �3
�6 �12 �6
�3 �6 �3

35

If A 2Mm;k(F) and B 2Mk;n(F), then

Cr(AB) = Cr(A)Cr(B); r � minfm; k; ng (0.8.1.1)
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Also,

Cr(tA) = t
rCr(A); t 2 F

If I 2Mn, then Ck(I) = I 2M(nk )
If A 2Mn is nonsingular, then Ck(A)�1 = Ck(A�1)
If A 2Mm;n(F), then Ck(AT ) = Ck(A)T

and

If A 2Mm;n(C), then Ck(A�) = Ck(A)�

If � 2 Mn(F) is upper triangular [see (0.9.3)], then so is Ck(�), whose
main diagonal entries are the

�
n
k

�
possible products of k entries chosen from

the main diagonal of�.

0.8.2 The adjugate and the inverse. If A 2 Mn(F) and n � 2, the trans-
posed matrix of cofactors of A

adjA �
h
(�1)i+j det [A fjgc ; figc]

i
(0.8.2.0)

is called the adjugate of A; it is also called the classical adjoint of A. A
calculation using the Laplace expansion for the determinant reveals the basic
property of the adjugate

(adjA)A = A (adjA) = (detA) I (0.8.2.1)

Thus, adjA is nonsingular if and only if A is nonsingular, and det (adjA) =
(detA)

n�1.
If A is nonsingular, then A�1 = (adjA)=detA, and

adjA = (detA)A�1 (0.8.2.2)

In particular, adj(A�1) = A=detA = (adjA)�1.
Suppose A is singular. There are only two possible values for rank adjA.

If rankA � n � 2, then every square submatrix of A of size n � 1 has zero
determinant, so adjA = 0. If rankA = n � 1, then some submatrix of A
of size n � 1 has nonzero determinant, adjA 6= 0, A has n � 1 independent
columns, and (adjA)A = (detA) I = 0, so the null space of adjA has
dimension n � 1 and hence rank adjA = 1. If rank adjA = 1 and adjA =
xyT , then (0.8.2.1) ensures that

(Ax)yT = A(adjA) = 0 = (adjA)A = x(yTA);
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so Ax = 0 and yTA = 0. Conversely, if rankA = n�1, x 6= 0 6= y, Ax = 0,
and yTA = 0, then there is a nonzero scalar � such that adjA = �xyT .
The function A ! adjA is continuous on Mn (each entry of adjA is a

multinomial in the entries of A) and every matrix inMn is a limit of nonsin-
gular matrices, so properties of the adjugate can be deduced from continuity
and properties of the inverse function. For example, if A;B 2 Mn are non-
singular, then adj(AB) = (detAB)(AB)�1 = (detA)(detB)B�1A�1 =

(detB)B�1(detA)A�1 = (adjB)(adjA). Continuity then ensures that

adj (AB) = (adjB) (adjA) for all A;B 2Mn (0.8.2.3)

For any c 2 F and any A 2 Mn(F), adj(cA) = cn�1 adjA . In particular,
adj(cI) = cn�1I and adj 0 = 0.
If A is nonsingular, then

adj(adjA) = adj((detA)A�1) = (detA)
n�1

adjA�1

= (detA)
n�1

(A=detA) = (detA)
n�2

A

so continuity ensures that

adj(adjA) = (detA)n�2A for all A 2Mn (0.8.2.4)

IfA+B is nonsingular, thenA(A+B)�1B = B(A+B)�1A, so continuity
ensures that

A adj (A+B)B = B adj (A+B)A for all A;B 2Mn (0.8.2.5)

Let A;B 2Mn and suppose A commutes with B. If A is nonsingular, then
BA�1 = A�1ABA�1 = A�1BAA�1 = A�1B, so A�1 commutes with
B. But BA�1 = (detA)B adjA and A�1B = (detA)(adjA)B, so adjA
commutes with B. Continuity ensures that adjA commutes with B whenever
A commutes with B, even if A is singular.
If A = [aij ] is upper triangular then adjA � [bij ] is upper triangular and

each bii =
Q
j 6=i ajj ; if A is diagonal then so is adjA.

The adjugate is the transpose of the gradient of detA:

(adjA) =

�
@

@aij
detA

�T
(0.8.2.6)

If A is nonsingular, it follows from (0.8.2.6) that�
@

@aij
detA

�T
= (detA)A�1 (0.8.2.7)

If A 2Mn is nonsingular, then adjAT = (detAT )A�T = (detA)A�T =
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((detA)A�1)T = (adjA)T . Continuity ensures that

adjAT = (adjA)T for all A 2Mn(F) (0.8.2.8)

A similar argument shows that

adjA� = (adjA)� for all A 2Mn (0.8.2.9)

Let A = [a1 : : : an] 2 Mn(F) be partitioned according to its columns and
let b 2 Fn. De�ne

(A 
i
b) = [a1 : : : ai�1 b ai+1 : : : an]

that is, (A  
i
b) denotes the matrix whose ith column is b and whose remain-

ing columns coincide with those of A. Examination of the Laplace expansion
(0.3.1.1) of det (A 

i
b) by minors along column i reveals that it is the ith

entry of the vector (adjA) b, that is

[det (A 
i
b)]

n
i=1 = (adjA) b (0.8.2.10)

Applying this vector identity to each column of C = [c1 : : : cn] 2 Mn(F)

gives the matrix identity

[det (A 
i
cj)]

n
i;j=1 = (adjA)C (0.8.2.11)

0.8.3 Cramer's rule. Cramer's rule is a useful way to present analytically a
particular entry of the solution to Ax = b when A 2 Mn(F) is nonsingular.
The identity

A [det (A 
i
b)]

n
i=1 = A (adjA) b = (detA) b

follows from (0.8.2.9). If detA 6= 0 we obtain Cramer's rule

xi =
det(A 

i
b)

det A

for the ith entry xi of the solution vector x. Cramer's rule also follows directly
from multiplicativity of the determinant. The system Ax = b may be rewritten
as

A(I  i x) = A i b

and taking determinants of both sides (using multiplicativity) gives

(det A) det(I  
i
x) = det(A 

i
b)

But det(I  i x) = xi, and the formula follows.
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0.8.4 Minors of the inverse. An important fact, which generalizes the adju-
gate formula for the inverse of a nonsingular matrix and relates the minors of
A�1 to those of A 2Mn(F), is Jacobi's identity:

det A�1 [�c; �c] = (�1)
(
P
i2�

i+
P
j2�

j) det A [�; �]

detA
(0.8.4.1)

For principal submatrices, this formula assumes the simple form

det A�1(�c) =
det A [�]

det A
(0.8.4.2)

0.8.5 Schur complements and determinantal formulae. Let A = [aij ] 2
Mn(F) be given and suppose � � f1; : : : ; ng is an index set such that A[�] is
nonsingular. An important formula for detA, based upon the 2-partition of A
using � and �c, is

detA = detA [�] det
�
A [�c]�A [�c; �]A [�]�1A [�; �c]

�
(0.8.5.1)

which generalizes the familiar formula for the determinant of a 2-by-2 matrix.
The special matrix

A=A [�] � A [�c]�A [�c; �]A [�]�1A [�; �c] (0.8.5.2)

which also appears in the partitioned form for the inverse in (0.7.3.1), is called
the Schur complement of A [�] inA. When convenient, we take� = f1; : : : ; kg
and write A as a 2-by-2 block matrix A = [Aij ] with A11 = A[�], A22 =
A[�c], A12 = A[�; �c], and A21 = A[�c; �]. The formula (0.8.5.1) may be
veri�ed by computing the determinant of both sides of the identity�

I 0

�A21A�111 I

� �
A11 A12
A21 A22

� �
I �A�111 A12
0 I

�
(0.8.5.3)

=

�
A11 0

0 A22 �A21A�111 A12

�
which contains a wealth of information about the Schur complement S =

[sij ] � A=A11 = A22 �A21A�111 A12:

(a) The Schur complement S arises (uniquely) in the lower right corner
if linear combinations of the �rst k rows (respectively, columns) of A
are added to the last n� k rows (respectively, columns) in such a way
as to produce a zero block in the lower left (respectively, upper right)
corner; this is block Gaussian elimination, and it is (uniquely) possible
because A11 is nonsingular. Any submatrix of A that includes A11 as a
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principal submatrix has the same determinant before and after the block
eliminations that produce the block diagonal form in (0.8.5.3). Thus,
for any index set � = fi1; : : : ; img � f1; : : : ; n � kg, if we construct
the shifted index set ~� � fi1+k; : : : ; im+kg, then detA[�[ ~�; �[~
]
(before) = det(A11 � S[�; 
]) (after), so

detS [�; 
] = detA
h
� [ ~�; � [ ~


i
=detA [�] (0.8.5.4)

For example, if � = fig and 
 = fjg, then with � = f1; : : : ; kg we
have

detS [�; 
] = sij (0.8.5.5)
= detA [f1; : : : k; k + ig ; f1; : : : ; k; k + jg] =detA11

so all the entries of S are ratios of minors of A.
(b) rankA = rankA11 + rankS � rankA11, and rankA = rankA11 if

and only if A22 = A21A�111 A12;
(c) A is nonsingular if and only if S is nonsingular, since detA = detA11 detS.

If A is nonsingular, then detS = detA=detA11.

Suppose A is nonsingular. Then inverting both sides of (0.8.5.3) gives a
presentation of the inverse different from that in (0.7.3.1):

A�1 =

�
A11 +A

�1
11 A12S

�1A21A
�1
11 �A�111 A12S�1

�S�1A21A�111 S�1

�
(0.8.5.6)

Among other things, this tells us that A�1[fk + 1; : : : ; ng] = S�1, so

detA�1 [fk + 1; : : : ; ng] = detA11=detA (0.8.5.7)

This is a form of Jacobi's identity (0.8.4.1). Another form results from writing
the inverse in terms of the adjugate, which gives

det ((adjA) [fk + 1; : : : ; ng]) = (detA)n�k�1 detA11 (0.8.5.8)

When �c consists of a single element, the Schur complement of A[�] in A
is a scalar and (0.8.5.1) reduces to the identity

detA = A [�c] detA [�]�A [�c; �] (adjA [�])A [�; �c] (0.8.5.9)

which is valid even if A[�] is singular. For example, if � = f1; : : : ; n � 1g,
then �c = fng and A is presented as a bordered matrix

A =

�
~A x

yT a

�
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with a 2 F; x; y 2 Fn�1, and ~A 2 Mn�1(F); (0.8.5.9) is the Cauchy expan-
sion of the determinant of a bordered matrix

det

�
~A x

yT a

�
= adet ~A� yT

�
adj ~A

�
x (0.8.5.10)

The Cauchy expansion (0.8.5.10) involves signed minors of A of size n � 2
(the entries of adj ~A) and a bilinear form in the entries of a row and column;
the Laplace expansion (0.3.1.1) involves signed minors of A of size n� 1 and
a linear form in the entries of a row or column. If a 6= 0, we can use the Schur
complement of [a] in A to express

det

�
~A x

yT a

�
= adet( ~A� a�1xyT )

Equating the right-hand side of this identity to that of (0.8.5.10) and setting
a = �1 givesCauchy's formula for the determinant of a rank-one perturbation

det
�
~A+ xyT

�
= det ~A+ yT

�
adj ~A

�
x (0.8.5.11)

The uniqueness property of the Schur complement discussed in (a) can be
used to derive an identity involving a Schur complement within a Schur com-
plement. Suppose the nonsingular k-by-k block A11 is partitioned as a 2-by-2
block matrix A11 = [Aij ] in which the upper left `-by-` block A11 is non-
singular. Write A21 = [A1 A2], in which A1 is (n � k)-by-`, and write
AT12 = [BT1 BT2 ], in which B1 is `-by-(n� k); this gives the re�ned partition

A =

24 A11 A12 B1
A21 A22 B2
A1 A2 A22

35
Now add linear combinations of the �rst ` rows of A to the next k � ` rows in
order to reduce A21 to a zero block. The result is

A0 �

24 A11 A12 B1
0 A11=A11 B02
A1 A2 A22

35
where we have identi�ed the resulting 2,2 block of A0 as the (necessarily non-
singular) Schur complement of A11 in A11. Now add linear combinations of
the �rst k rows of A0 to the last n� k rows to reduce [A1 A2] to a zero block.
The result is

A00 �

24 A11 A12 B1
0 A11=A11 B02
0 0 A=A11

35
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in which we have identi�ed the resulting 3,3 block of A00 as the Schur com-
plement of A11 in A. The lower right 2-by-2 block of A00 must be A=A11, the
Schur complement of A11 in A. Moreover, the lower right block of A=A11
must be the Schur complement of A11=A11 in A=A11. This observation is the
quotient property of Schur complements:

A=A11 = (A=A11) = (A11=A11) (0.8.5.12)

If the four blocks Aij in (0.8.5.3) are square and the same size, and if A11
commutes with A21, then

detA = detA11 detS = det(A11S)

= det(A11A22 �A11A21A�111 A12) = det(A11A22 �A21A12)

If A11 commutes with A12, the same conclusion follows from computing
detA = (detS)(detA) = det(SA11). By continuity, the identity

detA = det(A11A22 �A21A12) (0.8.5.13)

is valid whenever A11 commutes with either A21 or A12, even if it is singular.
If A22 commutes with either A12 or A21, a similar argument using the Schur
complement of A22 shows that

detA = det(A11A22 �A12A21) (0.8.5.14)

if A22 commutes with either A21 or A12.

0.8.6 Determinantal identities of Sylvester and Kronecker We consider
two consequences of (0.8.5.4). If we set

B � [bij ] = [detA [f1; : : : k; k + ig ; f1; : : : ; k; k + jg]]n�ki;j=1

then each entry of B is the determinant of a bordered matrix of the form
(0.8.5.10): ~A is A11, x is the jth column of A12, yT is the ith row of A21, and
a is the i; j entry of A22. The identity (0.8.5.5) tells us that B = (detA11)S,
so

detB = (detA11)
n�k

detS

= (detA11)
n�k

(detA=detA11) = (detA11)
n�k�1

detA

This observation about B is Sylvester's identity for bordered determinants:

detB = (detA [�])
n�k�1

detA (0.8.6.1)

where B = [detA[� [ fig ; � [ fjg]], and i; j are indices not contained in �.



32 Review and miscellanea

If A22 = 0, then each entry of B is the determinant of a bordered ma-
trix of the form (0.8.5.10) with a = 0. In this case, the Schur complement
A=A11 = �A21A�111 A12 has rank at most k, so the determinant of every
(k + 1)-by-(k + 1) submatrix of B is zero; this observation about B is Kro-
necker's theorem for bordered determinants.

0.8.7 The Cauchy�Binet formula. This useful formula can be remembered
because of its similarity in appearance to the formula for matrix multiplication.
This is no accident, since it is equivalent to multiplicativity of the compound
matrix (0.8.1.1). Let A 2 Mm;k(F), B 2 Mk;n(F), and C = AB. Further,
let 1 � r � minfm; k; ng, and let � � f1; : : : ;mg and � � f1; : : : ; ng be
index sets, each of cardinality r. An expression for the �; � minor of C is

detC [�; �] =
X



det A [�; 
] detB [
; �]

in which the sum is taken over all index sets 
 � f1; : : : ; kg of cardinality r.

0.8.8 Relations among minors. Let A 2 Mm;n(F) be given and let a �xed
index set � � f1; : : : ;mg of cardinality k be given. The minors det A [�; !],
as ! � f1; : : : ; ng runs over ordered index sets of cardinality k, are not alge-
braically independent since there are more minors than there are distinct entries
among the submatrices. Quadratic relations are known among these minors.
Let i1; i2; : : : ; ik 2 f1; : : : ; ng be k distinct indices, not necessarily in natural
order, and let A[�; i1; : : : ; ik] denote the matrix whose rows are indicated by
� and whose jth column is column ij of A[�; f1; : : : ; ng]. The difference be-
tween this and our prior notation is that columns might not occur in natural
order as in A(f1; 3g; 4; 2), whose �rst column has the 1, 4 and 3, 4 entries of
A.We then have the relations

detA [�; i1; : : : ; ik] det A [�; j1; : : : ; jk]

=
kX
t=1

det A [�; i1; : : : ; is�1; jt; is+1; : : : ; ik] det A [�; j1; : : : ; jt�1; is; jt+1; : : : ; jk]

for each s = 1; : : : ; k and all sequences of distinct indices i1; : : : ; ik 2 f1; : : : ; ng
and j1; : : : ; jk 2 f1; : : : ; ng.

0.8.9 The Laplace expansion theorem. The Laplace expansion (0.3.1.1) by
minors along a given row or column is included in a natural family of expres-
sions for the determinant. Let A 2 Mn(F), let k 2 f1; : : : ; ng be given, and
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let � � f1; : : : ; ng be any given index set of cardinality k. Then

detA =
X
�

(�1)p(�;�) detA [�; �] detA [�c; �c]

=
X
�

(�1)p(�;�) detA [�; �] detA [�c; �c]

in which the sums are over all index sets � � f1; : : : ; ng of cardinality k, and
p(�; �) �

P
i2� i +

P
j2� j. Choosing k = 1 and � = fig or fjg gives the

expansions in (0.3.1.1).

0.8.10 Derivative of the determinant LetA(t) = [a1(t) : : : an(t)] be an n-
by-n complex matrix whose entries are differentiable functions of t, partitioned
according to its columns. It follows from multilinearity of the determinant
(0.3.6(a)) and the de�nition of the derivative that

d

dt
detA(t) =

nX
j=1

det
�
A 

j
a0j(t)

�
(0.8.10.1)

For example, if B = [b1 : : : bn] 2Mn is partitioned according to its columns
and if A(t) = tI � B = [te1 � b1 : : : ten � bn], then each a0j(t) = ej ;
(0.8.10.1) and a Laplace expansion by minors along column j identify the
derivative of det (tI �A) as the sum of the principal minors of tI �A:

d

dt
det (tI �A) =

nX
j=1

det ((tI �A) [fjgc]) = tr adj (tI �A) (0.8.10.2)

0.9 Special types of matrices

Certain matrices of special form arise frequently and have important proper-
ties. Some of these are cataloged here for reference and terminology.

0.9.1 Diagonal matrices. A matrix D = [dij ] 2 Mn;m(F), is diagonal if
dij = 0 whenever j 6= i. If all the diagonal entries of a diagonal matrix are
positive (nonnegative) real numbers, we refer to it as a positive (nonnegative)
diagonal matrix. The term positive diagonal matrix means that the matrix is
diagonal and has positive diagonal entries; it does not refer to a general ma-
trix with positive diagonal entries. The identity matrix I 2 Mn is a positive
diagonal matrix. A square diagonal matrix D is a scalar matrix if its diagonal
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entries are all equal; that is,D = �I for some � 2 F. Left or right multiplica-
tion of a matrix by a scalar matrix has the same effect as multiplying it by the
corresponding scalar.
IfA = [aij ] 2Mn;m(F) and q = minfm;ng, then diagA = [a11; : : : ; aqq]T 2

Fq denotes the vector of diagonal entries of A. Conversely, if x 2 Fq and ifm
and n are positive integers such thatminfm;ng = q, then diag x 2Mn;m(F)

denotes the n-by-m diagonal matrix A such that diagA = x.
Suppose D = [dij ]; E = [eij ] 2 Mn(F) are diagonal and let A = [aij ] 2

Mn(F) be given. Then: (a) detD =
Qn
i=1 dii; (b) D is nonsingular if and

only if all dii 6= 0; (c) Left multiplication of A by D multiplies the rows of A
by the diagonal entries of D (the ith row of DA is dii times the ith row of A);
(d) Right multiplication of A by Dmultiplies the columns of A by the diagonal
entries ofD, that is, the jth column ofAD is djj times the jth column ofA; (e)
DA = AD if and only if aij = 0 whenever dii 6= djj ; (f) If all the diagonal
entries of D are distinct and DA = AD, then A is diagonal; (g) For any
positive integer k, Dk = diag(dk11; : : : ; d

k
nn); (h) Any two diagonal matrices

D andE of the same size commute: DE = diag(d11e11; : : : ; dnnenn) = ED.

0.9.2 Block diagonal matrices. A matrix A 2Mn(F) of the form

A =

26664
A11

0
A22 . . .

0
Akk

37775
in which Aii 2 Mni(F), i = 1; : : : ; k, and

Pk
i=1 ni = n is called block

diagonal. It is convenient to write such a matrix as

A = A11 �A22 � � � � �Akk � �ki=1Aii

this is the direct sum of the matrices A11; : : : ; Akk. Many properties of block
diagonal matrices generalize those of diagonal matrices. For example, det
(�ki=1Aii) =

Qk
i=1 detAii, so that A = �Aii is nonsingular if and only if

each Aii is nonsingular, i = 1; : : : ; k. Furthermore, two direct sums A =

�ki=1Aii and B = �ki=1Bii, in which each Aii is the same size as Bii,
commute if and only if each Aii and Bii commute, i = 1; : : : ; k. Also,
rank(�ki=1Aii) =

Pk
i=1 rankAii.

0.9.3 Triangular matrices. A matrix T = [tij ] 2 Mn;m(F) is upper trian-
gular if tij = 0whenever i > j. If tij = 0whenever i � j, then T is said to be
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strictly upper triangular. Analogously, T is lower triangular (or strictly lower
triangular) if its transpose is upper triangular (or strictly upper triangular). A
triangular matrix is either lower or upper triangular. A square triangular ma-
trix shares with a square diagonal matrix the property that its determinant is the
product of its diagonal entries. Square triangular matrices need not commute
with other square triangular matrices of the same size. However, if T 2Mn is
triangular, has distinct diagonal entries, and commutes with B 2 Mn, then B
must be triangular of the same type as T .
Left multiplication of A 2 Mn(F) by a lower triangular matrix L, that is,

LA, replaces the ith row of A by a linear combination of the �rst through ith
rows of A. Sometimes the terms right (in place of upper) and left (in place of
lower) are used to describe triangular matrices. The rank of a triangular matrix
is at least, and can be greater than, the number of nonzero entries on the main
diagonal. If a square triangular matrix is nonsingular, its inverse is a triangular
matrix of the same type. A product of square triangular matrices of the same
size and type is a triangular matrix of the same type; each i; i diagonal entry of
such a matrix product is the product of the i; i entries of the factors.

0.9.4 Block triangular matrices. A matrix A 2Mn(F) of the form

A =

26664
A11 F

A22 . . .
0

Akk

37775
in which Aii 2 Mni(F), i = 1; : : : ; k, �ki=1ni = n, and all blocks below
the block diagonal are zero, is block upper triangular; it is strictly block upper
triangular if, in addition, all the diagonal blocks are zero blocks. A matrix is
block lower triangular if its transpose is block upper triangular; it is strictly
block lower triangular if its transpose is strictly block upper triangular. We
say that a matrix is block triangular if it is either block lower triangular or
block upper triangular; a matrix is both block lower triangular and block upper
triangular if and only if it is block diagonal.
A block upper triangular matrix in which all the diagonal blocks are 1-by-

1 or 2-by-2 is said to be upper quasi-triangular. A matrix is lower quasi-
triangular if its transpose is upper quasi-triangular; it is quasi-triangular if it
is either upper quasi-triangular or lower quasi-triangular. A matrix that is both
upper quasi-triangular and lower quasi-triangular is said to be quasi-diagonal.
The determinant of a block triangular matrix is the product of the determi-

nants of the diagonal blocks. The rank of a block triangular matrix is at least,
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and can be greater than, the sum of the ranks of the diagonal blocks. If a block
triangular matrix is nonsingular, its inverse is a block triangular matrix of the
same type with conformal blocks.

0.9.5 Permutation matrices. A square matrix P is a permutation matrix if
exactly one entry in each row and column is equal to 1 and all other entries
are 0. Multiplication by such matrices effects a permutation of the rows or
columns of the matrix multiplied. For example,

24 0 1 0

1 0 0

0 0 1

3524 1

2

3

35 =
24 2

1

3

35
illustrates how a permutation matrix produces a permutation of the rows (en-
tries) of a vector: it sends the �rst entry to the second position, the second
entry to the �rst position, and leaves the third entry in the third position. Left
multiplication of a matrix A 2 Mm;n by an m-by-m permutation matrix P
permutes the rows of A, while right multiplication of A by an n-by-n per-
mutation matrix P permutes the columns of A. The matrix that carries out a
Type 1 elementary operation (0.3.3) is an example of a special type of permu-
tation matrix called a transposition. Any permutation matrix is a product of
transpositions.
The determinant of a permutation matrix is �1, so permutation matrices are

nonsingular. Although permutation matrices need not commute, the product
of two permutation matrices is again a permutation matrix. Since the identity
is a permutation matrix and PT = P�1 for every permutation matrix P, the
permutation matrices constitute a subgroup of GL(n,C) with cardinality n!.
Since right multiplication by PT = P�1 permutes columns in the same way

that left multiplication by P permutes rows, the transformation A ! PAPT

permutes the rows and columns (and the main diagonal entries) of A 2Mn in
the same way. In the context of linear equations with coef�cient matrix A, this
transformation amounts to renumbering the variables and the equations in the
same way. A matrix A 2 Mn such that PAPT is triangular for some permu-
tation matrix P is called essentially triangular; these matrices have much in
common with triangular matrices.
If � 2Mn is diagonal and P 2Mn is a permutation matrix, then P�PT is

a diagonal matrix.
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The n-by-n reversal matrix is the permutation matrix

Kn �

24 1
. . .

1

35 = [�ij ] 2Mn (0.9.5.1)

in which �n�i+1;i = 1 for i = 1; : : : ; n and all other entries are zero. The rows
ofKnA are the rows of A presented in reverse order; the columns of AKn are
the columns of A presented in reverse order. The reversal matrix is some-
times called the sip matrix (standard involutory permutation), the backwards
identity, or the exchange matrix.
For any n-by-n matrix A = [aij ], the entries an�i+1;i for i = 1; : : : ; n

comprise its backwards diagonal (sometimes called the secondary diagonal or
anti-diagonal).

0.9.6 Circulant matrices. A matrix A 2Mn(F) of the form

A =

2666664
a1 a2 : : : : : : : : : an
an a1 a2 : : : an�1
an�1 an a1 : : : an�2
...

...
. . . . . .

...
a2 a3 : : : an a1

3777775 (0.9.6.1)

is a circulant matrix. Each row is the previous row cycled forward one step; the
entries in each row are a cyclic permutation of those in the �rst. The n-by-n
permutation matrix

Cn =

26666664

0 1 0 :: 0
... 0 1 .:

. . . .
. . . 0

0 1

1 0 : : : 0

37777775 =
�
0 In�1
1 01;n�1

�
(0.9.6.2)

is the basic circulant permutationmatrix. A matrixA 2Mn(F) can be written
in the form

A =
n�1X
k=0

ak+1C
k
n (0.9.6.3)

if and only if it is a circulant. We have C0n � I = Cnn , and the coef�cients
a1; a2; : : : ; an are the entries of the �rst row of A. Because of this representa-
tion, the circulant matrices of size n are a commutative algebra: linear combi-
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nations and products of circulants are circulants, and the inverse of a nonsin-
gular circulant is a circulant; any two circulants of the same size commute.

0.9.7 Toeplitz matrices. A matrix A = [aij ] 2Mn+1(F) of the form

A =

26666666664

a0 a1 a2 : : : : : : an
a�1 a0 a1 a2 : : : an�1
a�2 a�1 a0 a1 : : : an�2
...

...
. . . . .

. . . . .
. . . . .

...
...

...
. . . . .

. . . . . a1
a�n a�n+1 : : : : : : a�1 a0

37777777775
is a Toeplitz matrix. The entry aij is equal to aj�i for some given sequence
a�n; a�n+1; : : : ; a�1; a0; a1; a2; : : : ; an�1; an 2 C. The entries of A are con-
stant down the diagonals parallel to the main diagonal. The Toeplitz matrices

B =

266664
0 1 0

0
. . .
. . . 1

0 0

377775 and F =

26664
0 0

1 0
. . . . . .

0 1 0

37775
are called the backward shift and forward shift because of their effect on the
elements of the standard basis fe1; : : : ; en+1g. A matrix A 2 Mn+1 can be
written in the form

A =

nX
k=1

a�kF
k +

nX
k=0

akB
k

if and only if it is a Toeplitz matrix. Toeplitz matrices arise naturally in prob-
lems involving trigonometric moments.
An upper triangular Toeplitz matrix A 2 Mn+1(F) can be represented as a

polynomial in B:

A = a0I + a1B + � � �+ anBn

This representation (and the fact that Bn+1 = 0) makes it clear why the up-
per triangular Toeplitz matrices of size n are a commutative algebra: linear
combinations and products of upper triangular Toeplitz matrices are upper tri-
angular Toeplitz matrices; A is nonsingular if and only if a0 6= 0, in which
case A�1 = b0I + b1B + � � �+ bnBn is also an upper triangular Toeplitz ma-
trix with b0 = a�10 and bk = a�10 (

Pk�1
m=0 ak�mbm) for k = 1; : : : ; n; any two

upper triangular Toeplitz matrices of the same size commute.
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0.9.8 Hankel matrices. A matrix A 2Mn+1(F) of the form

A =

26666666666664

a0 a1 a2 : : : : : an
a1 a2 a3 : : : : : an an+1

a2 a3
. . . . . .

an+2

:
. . . . . ....

. . . . .
...

an
an an+1 an+2 : : : : : a2n

37777777777775
is a Hankel matrix. Each entry aij is equal to ai+j�2 for some given sequence
a0; a1; a2; : : : ; a2n�1; a2n. The entries of A are constant along the diagonals
perpendicular to the main diagonal. Hankel matrices arise naturally in prob-
lems involving power moments. Using the reversal matrix K of appropriate
size (0.9.5.1), notice that KT and TK are Hankel matrices for any Toeplitz
matrix T; KH and HK are Toeplitz matrices for any Hankel matrix H. Since
K = KT = K�1 and Hankel matrices are symmetric, this means that any
Toeplitz matrix is a product of two symmetric matrices with special structure:
the reversal matrix and a Hankel matrix.

0.9.9 Hessenberg matrices. A matrix A = [aij ] 2 Mn(F) is said to be in
upper Hessenberg form or to be an upper Hessenberg matrix if aij = 0 for all
i > j + 1:

A =

266666666664

a11 a12 : : : a1n
a21 a22

0 a32
. . . .

...
... 0

. . . .
...

.:
. . . .

0 0 : : : 0 an;n�1 ann

377777777775
An upper Hessenberg matrix A is said to be unreduced if all its sub-diagonal
entries are nonzero, that is, if ai+1;i 6= 0 for all i = 1; : : : ; n � 1; the rank of
such a matrix is at least n� 1 since its �rst n� 1 columns are independent.
LetA 2Mn(F) be unreduced upper Hessenberg. ThenA��I is unreduced

upper Hessenberg for all � 2 F, so rank(A� �I) � n� 1 for all � 2 F.
A matrix A 2Mn(F) is lower Hessenberg if AT is upper Hessenberg.
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0.9.10 Tridiagonal, bidiagonal, and other structured matrices. A matrix
A = [aij ] 2Mn(F) that is both upper and lower Hessenberg is called tridiag-
onal, that is, A is tridiagonal if aij = 0 whenever ji� jj > 1:

A =

266664
a1 b1

c1 a2
. . .

. . . . . . bn�1
cn�1 an

377775 (0.9.10.1)

The determinant of A can be calculated inductively starting with detA1 =
a1, detA2 = a1a2 � b1c1, and then computing a sequence of 2-by-2 matrix
products�
detAk+1 0

detAk 0

�
=

�
ak+1 �bkck
1 0

� �
detAk 0

detAk�1 0

�
; k = 2; : : : ; n�1

An upper bidiagonal matrix A 2 Mn(F) is a tridiagonal matrix (0.9.10.1)
in which c1 = � � � = cn�1 = 0. A matrix A 2Mn(F) is lower bidiagonal if
AT is upper bidiagonal.
A matrix A = [aij ] 2 Mn(F) is persymmetric if aij = an+1�j;n+1�i for

all i; j = 1; : : : ; n, that is, A is persymmetric if A = KnA
TKn, in which Kn

is the reversal matrix (0.9.5.1); A is skew-persymmetric if A = �KnA
TKn.

Thus, a persymmetric matrix is symmetric with respect to the backwards
diagonal. If A is persymmetric and invertible, then A�1 is also persymmetric
since A�1 = Kn(A

�1)TKn. Toeplitz matrices are persymmetric. A complex
matrix A such that A = KnA

�Kn is said to be perhermitian; the inverse of a
perhermitian and invertible matrix is perhermitian.
AmatrixA = [aij ] 2Mn(F) is called centrosymmetric if aij = an+1�i;n+1�j

for all i; j = 1; : : : ; n, that is, A is centrosymmetric if A = KnAKn; A is
skew-centrosymmetric if A = �KnAKn. A centrosymmetric matrix is sym-
metric about its geometric center, as illustrated by the example

A =

266664
1 0 2 1 1

0 1 3 2 0

1 1 1 1 1

0 2 3 1 0

1 1 2 0 1

377775
If A is centrosymmetric and invertible, then A�1 is also centrosymmetric,
since A�1 = KnA

�1Kn. A complex matrix A such that A = Kn
�AKn is

said to be centrohermitian; the inverse of a centrohermitian and invertible ma-
trix is centrohermitian.
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0.9.11 Vandermondematrices and Lagrange interpolation. A Vandermonde
matrix A 2Mn(F) is a matrix of the form

A =

26664
1 x1 x21 : : : xn�11

1 x2 x22 : : : xn�12
...
...

...
. . .

...
1 xn x2n : : : xn�1n

37775 (0.9.11.1)

in which x1; x2; : : : ; xn 2 F; that is, A = [aij ] with aij = xj�1i . It is a fact
that

detA =
nY

i;j=1
i>j

(xi � xj) (0.9.11.2)

so a Vandermonde matrix is nonsingular if and only if the n parameters x1; x2; : : : ; xn
are distinct.
The Vandermonde matrix arises in the interpolation problem of �nding a

polynomial p(x) = an�1xn�1+an�2xn�2+ � � �+a1x+a0 of degree at most
n� 1 with coef�cients from F such that

p(x1) = a0 + a1x1 + a2x
2
1 + � � �+ an�1xn�11 = y1

p(x2) = a0 + a1x2 + a2x
2
2 + � � �+ an�1xn�12 = y2

...
...

...
... (0.9.11.3)

p(xn) = a0 + a1xn + a2x
2
n + � � �+ an�1xn�1n = yn

in which x1; x2; : : : ; xn and y1; y2; : : : ; yn are given elements of F. The in-
terpolation conditions (0.9.11.3) are a system of n equations for the n un-
known coef�cients a0; a1; : : : ; an�1, and they have the form Aa = y, in which
a = [a0; a1; : : : ; an�1]

T 2 Fn, y = [y1; y2; : : : ; yn]T 2 Fn, and A 2Mn(F)

is the Vandermonde matrix (0.9.11.1). This interpolation problem always has
a solution if the points x1; x2; : : : ; xn are distinct, for A is nonsingular in this
event.
If the points x1; x2; : : : ; xn are distinct, the coef�cients of the interpolating

polynomial could in principle be obtained by solving the system (0.9.11.3),
but it is usually more useful to represent the interpolating polynomial p(x) as a
linear combination of the Lagrange interpolating polynomials

Li(x) =

nQ
j=1
j 6=1

(x� xj)

nQ
j=1
j 6=1

(xi � xj)
; i = 1; 2; : : : ; n
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Each polynomial Li(x) has degree n� 1 and has the property that Li(xk) = 0
if k 6= i, but Li(xi) = 1. Lagrange's interpolation formula

p(x) = y1L1(x) + y2L2(x) + � � �+ ynLn(x) (0.9.11.4)

provides a polynomial of degree at most n � 1 that satis�es the equations
(0.9.11.3).

0.9.12 Cauchy matrices A Cauchy matrix A 2 Mn(F) is a matrix of the
form A = [(ai + bi)

�1]ni;j=1, in which fa1; : : : ; ang and fb1; : : : ; bng are
scalars such that ai + bj 6= 0 for all i; j = 1; : : : ; n. It is a fact that

detA =

Q
1�i<j�n

(aj � ai)(bj � bi)Q
1�i�j�n

(ai + bj)
(0.9.12.1)

so A is nonsingular if and only if ai 6= aj and bi 6= bj for all i 6= j. A Hilbert
matrix H = [(i + j � 1)�1]ni;j=1 is a Cauchy matrix that is also a Hankel
matrix. It is a fact that

detH =
(1!2! � � � (n� 1)!)4

1!2! � � � (2n� 1)! (0.9.12.2)

so a Hilbert matrix is always nonsingular.

0.9.13 Involution, nilpotent, projection, coninvolution AmatrixA 2Mn(F)

is

� an involution if A2 = I , that is, if A = A�1.
� nilpotent if Ak = 0 for some positive integer k; the least such k is the index
of nilpotence of A.
� a projection if A2 = A (the term idempotent is also used).

Now suppose that F = C. A matrix A 2Mn is

� a Hermitian projection if A� = A and A2 = A (the term orthogonal pro-
jection is also used).
� coninvolutory if A �A = I , that is, if �A = A�1.
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0.10 Change of basis

Let V be an n-dimensional vector space over the �eld F, and let B1 = fv1; v2;
: : : ; vng be a basis for V. Any vector x 2 V can be represented as x = �1v1 +
�2v2+ � � �+�nvn because B1 spans V. If there were some other representation
of x = �1v1 + �2v2 + � � �+ �nvn in the same basis, then

0 = x� x = (�1 � �1)v1 + (�2 � �2)v2 + � � �+ (�n � �n)vn

from which it follows that all �i � �i = 0 because the set B1 is independent.
Given the basis B1, the linear mapping

x! [x]B1 �

26664
�1
�2
...
�n

37775 ; in which x = �1v1 + �2v2 + � � �+ �nvn

from V to Fn is well de�ned, one-to-one, and onto. The scalars �i are the
coordinates of x with respect to the basis B1, and the column vector [x]B1 is
the unique B1-coordinate representation of x.
Let T : V ! V be a given linear transformation. The action of T on

any x 2 V is determined once one knows the n vectors Tv1; T v2; : : : ; T vn,
because any x 2 V has a unique representation x = �1v1 + � � � + �nvn and
Tx = T (�1v1+ � � �+�nvn) = T (�1v1) + � � �+ T (�nvn) = �1Tv1+ � � �+
�nTvn by linearity. Thus, the value of Tx is determined once [x]B1 is known.
Let B2 = fw1; w2; : : : ; wng also be a basis for V (either different from or

the same as B1) and suppose that the B2-coordinate representation of Tvj is

[Tvj ]B2 =

26664
t1j
t2j
...
tnj

37775 ; j = 1; 2; : : : ; n

Then for any x 2 V we have

[Tx]B2 =

24 nX
j=1

�jTvj

35
B2

=
nX
j=1

�j [Tvj ]B2

=
nX
j=1

�j

26664
t1j
t2j
...
tnj

37775 =
264 t11 � � � t1n

...
. . .

...
tn1 � � � tnn

375
264 �1
...
�n

375
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The n-by-n array [tij ] depends on T and on the choice of the bases B1 and B2,
but it does not depend on x. We de�ne the B1-B2 basis representation of T to
be

B2 [T ]B1 =

264 t11 � � � t1n
...

. . .
...

tn1 � � � tnn

375 = �[Tv1]B2 : : : [Tvn]B2�
We have just shown that [Tx]B2 = B2 [T ]B1 [x]B1 for any x 2 V . In the im-
portant special case B2 = B1, we have B1 [T ]B1 , which is called the B1 basis
representation of T.
Consider the identity linear transformation I : V ! V de�ned by Ix= x for

all x. Then

[x]B2 = [Ix]B2 = B2 [I]B1 [x]B1 = B2 [I]B1 [Ix]B1 = B2 [I]B1 B1 [I]B2 [x]B2

for all x 2 V . By successively choosing x = w1; w2; : : : ; wn, this identity
permits us to identify each column of B2 [I]B1B1 [I]B2 and shows that

B2 [I]B1 B1 [I]B2 = In

If we do the same calculation starting with [x]B1 = [I]xB1 = � � � , we �nd that

B1 [I]B2 B2 [I]B1 = In

Thus, every matrix of the form B2 [I]B1 is invertible and B1 [I]B2 is its inverse.
Conversely, every invertible matrix S = [s1 s2 : : : sn] 2Mn(F) has the form
B1 [I]B for some basis B. We may take B to be the vectors f~s1; ~s2; : : : ; ~sng
de�ned by [~si]B1 = si; i = 1; 2; : : : ; n. The set B is independent because S is
invertible.
Notice that

B2 [I]B1 =
�
[Iv1]B2 : : : [Ivn]B2 ]

�
=
�
[v1]B2 : : : [vn]B2

�
so B2 [I]B1 expresses the elements of the basis B1 in terms of the basis B2. Now
let x 2 V and compute

B1 [T ]B2 [x]B2 = [Tx]B2 = [I (Tx)]B2 = B2 [I]B1 [Tx]B1
= B2 [I]B1 B1 [T ]B1 [x]B1 = B2 [I]B1 B1 [T ]B1 [Ix]B1
= B2 [I]B1 B1 [T ]B1 B1 [I]B2 [x]B2

By choosing x = w1; w2; : : : ; wn successively, we conclude that

B2 [T ]B2 = B2 [I]B1 B1 [T ]B1 B1 [I]B2 (0.10.1.1)

This identity shows how the B1 basis representation of T changes if the basis
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is changed to B2. For this reason, the matrix B2 [I]B1 is called the B1 � B2
change of basis matrix.
Any matrix A 2 Mn(F) is a basis representation of some linear transfor-

mation T : V ! V , for if B is any basis of V , we can determine Tx by
[Tx]B = A[x]B. For this T, a computation reveals that B[T ]B = A.

0.11 Equivalence Relations
Let S be a given set and let � be a given subset of S � S � f(a; b) : a 2 S
and b 2 Sg. Then � de�nes a relation on S in the following way: we say
that a is related to b, written a s b, if (a; b) 2 �. A relation on S is said
to be an equivalence relation if it is: (a) re�exive (a s a for every a 2 S),
(b) symmetric (a s b whenever b s a), and (c) transitive (a s c whenever
a s b and b s c). An equivalence relation on S gives a disjoint partition
of S in a natural way: If we de�ne the equivalence class of any a 2 S by
Sa � fb 2 S : b s ag, then S = [a2SSa and for each a; b 2 S, either
Sa = Sb (if a s b) or Sa \ Sb = ; (if a 6s b). Conversely, any disjoint
partition of S can be used to de�ne an equivalence relation on S.
The following table lists several equivalence relations that play important

roles in matrix analysis. The factors S and T are nonsingular, and the factors
U and V are unitary; A and B need not be square for equivalence or unitary
equivalence.

Equivalence Relation� A � B

congruence A = SBST

unitary congruence A = UBUT

*congruence A = SBS�

consimilarity A = SB �S
�1

equivalence A = SBT

unitary equivalence A = UBV

similarity A = SBS�1

unitary similarity A = UBU�

Whenever an interesting equivalence relation arises in matrix analysis, it can
be useful to identify a distinguished representative of each equivalence class (a
canonical form or normal form). Alternatively, we often want to have effective
criteria (invariants) that can be used to decide if two given matrices belong to
the same equivalence class.
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Abstractly, a canonical form for an equivalence relation s on S is a subset
C of S such that S = [a2CSa and Sa \Sb = ; whenever a; b 2 C and a 6= b.
For a given equivalence relation in matrix analysis, it is important to make
an artful and simple choice of canonical form, and one sometimes does this
in more than one way to tailor the canonical form to a speci�c purpose. For
example, the Jordan and Weyr canonical forms are different canonical forms
for similarity; the Jordan canonical form works well in problems involving
powers of matrices, while the Weyr canonical form works well in problems
involving commutativity.
An invariant for an equivalence relation s on S is a function f on S such

that f(a) = f(b) whenever a s b. A family of invariants F for an equivalence
relation s on S is said to be complete if f(a) = f(b) for all f 2 F if and only
if a s b; a complete family of invariants is often called a complete system of
invariants. For example, the singular values of a matrix are a complete system
of invariants for unitary equivalence.
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backwards
diagonal, 40
identity, 37

backwards diagonal, 37
basis
change of, matrix, 45
coordinates of a vector, 43
de�nition, 3
orthonormal, 18
representation, 44
standard, 4

bidiagonal, 40
block
diagonal, 24, 34, 35
Gaussian elimination, 28
triangular, 35

bordered matrix, 29

canonical form, 45
Cauchy
expansion of determinant, 30
matrix, 42
determinant, 42

rank-one perturbation, 30
Cauchy-Binet formula, 32
Cauchy-Schwarz inequality, 17
centrohermitian, 40
centrosymmetric, 40

characteristic polynomial
derivative of, 33

circulant, 37
classical adjoint, 25
coef�cient matrix, 13
cofactor, 20
size of, 20

column
operations, 10
rank, 13
space, 9

commute, 23
complementary nullities, 22
compound matrix, 24
congruence, 45
coninvolutory, 42
conjugate linear, 17
conjugate transpose, 7
consimilarity, 45
consistent linear system, 13
Cramer's rule, 27

dependent, 3
determinant, 9
Cauchy expansion of, 30
cofactor, 20
derivative of, 33
Kronecker theorem, 32
Laplace expansion of, 10
Laplace expansion theorem, 32
minor, 20
multiplicativity, 13
rank-one perturbation, 30
Sylvester's identity, 31

diagonal
backwards, 37
main, 5
secondary, 37

diagonal matrix, 33
commute with a, 34

47
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left multiplication by a, 34
right multiplication by a, 34

dimension, 4
direct sum, 34

elementary row/column operations, 10
equivalence, 45
equivalence class, 45
equivalence relation, 45
re�exive, 45
symmetric, 45
transitive, 45

essentially Hermitian, 8
Euclidean length or norm, see norm, Euclidean
exchange matrix, 37

�eld, 1
Frobenius
rank inequality, 15

full-rank factorization, 15

general linear group, 16
generalized matrix function, 10
Gram-Schmidt process, 18
group
general linear, 16

Hankel
matrix, 39

Hermitian
adjoint, 7
essentially, 8
matrix, 8
part, 8
projection, 42

Hessenberg
unreduced, 39
upper or lower, 39

Hilbert
matrix, 42
determinant, 42

Householder
transformation, 22

idempotent, 42
identity
backwards, 37
matrix, 7

imaginary
part, 8

inconsistent linear system, 13
independent, 3
index of nilpotence, 42
index set, 19
inequality
Cauchy-Schwarz, 17

inner product, 17

Euclidean, 17
standard, 17
usual, 17

invariant, 45
complete system, 46

inverse, 16
left, 16
rank one adjustment, 21
right, 16

involution, 42
isomorphism, 5

Jacobi identity, 28

Kronecker
theorem for bordered determinants, 32

Lagrange
interpolation formula, 42
interpolation polynomials, 41

Laplace
expansion, 10
expansion theorem, 32

linear combination, 3
linear transformation, 6
matrix represents a, 6

linearly
dependent, 3
independent, 3

lower bidiagonal, 40

main diagonal, 5
matrix
augmented, 13
backward shift, 38
bidiagonal, 40
block, 20
block diagonal, 24, 34, 35
block triangular, 35
bordered, 29
Cauchy, 42
centrohermitian, 40
centrosymmetric, 40
change of basis, 45
circulant, 37
circulant permutation, 37
coef�cient, 13
compound, 24
coninvolutory, 42
de�nition, 5
diagonal, 33
direct sum, 34
essentially triangular, 36
exchange, 37
forward shift, 38
Hankel, 39
Hermitian, 8
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projection, 42
Hermitian part, 8
Hessenberg, 39
unreduced, 39

Hilbert, 42
idempotent, 42
identity, 7
imaginary part, 8
inverse of partitioned, 21
invertible, 16
involutory, 42
linear transformation, of a, 6
lower bidiagonal, 40
lower triangular, 35
nilpotent, 42
nonnegative diagonal, 33
nonsingular, 16
normal, 8
orthogonal, 8
partitioned, 19
perhermitian, 40
permutation, 36
persymmetric, 40
positive diagonal, 33
principal submatrix, 19
projection, 42
quasi-diagonal, 35
quasi-triangular, 35
rank in a partitioned, 23
rank-principal, 23
real part, 8
reversal, 37
scalar, 7, 33
singular, 16
sip, 37
skew-centrosymmetric, 40
skew-Hermitian, 8
skew-Hermitian part, 8
skew-persymmetric, 40
skew-symmetric, 8
skew-symmetric part, 8
square, 5
strictly
block triangular, 35

strictly lower triangular, 35
strictly upper triangular, 35
symmetric, 8
symmetric part, 8
Toeplitz, 38
triangular, 35
tridiagonal, 40
unitary, 8
upper bidiagonal, 40
upper triangular, 34
Vandermonde, 41
zero, 6

minor, 20

principal, 20
size of, 20

minors
quadratic relations between, 32

Morrison
see Sherman-Morrison-Woodbury formula,

21
multilinear function, 13

nilpotence
index of, 42

nilpotent, 42
norm
Euclidean, 17
usual, 17

normal
form, 45

normal matrix
de�nition, 8

normalized vector, 17
null space, 6, 9
nullities
law of complementary, 22

nullity, 6
nullspaces
intersection of, 9

orthogonal
complement, 18
matrix, 8
set, 17
vectors, 17

orthonormal
basis, 18
set, 17

outer product, 9

partition, 20
according to columns, 19
conformal, 20
of a matrix, 19
of a set, 19
sequential, 19

perhermitian, 40
permanent, 10
permutation
matrix, 36
standard involutory, 37

persymmetric, 40
polynomial interpolation, 41
principal
minor, 20
submatrix, 20

projection, 42
Hermitian, 42

quasi-diagonal, 35
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quasi-triangular, 35
quotient property of Schur complements, 31

range, 6, 9
ranges
intersection of, 19
sum of, 9

rank, 6, 13
full-rank factorization, 15
partitioned matrix, 23

rank-nullity theorem, 6, 14
rank-principal matrix, 23
rank-sum inequality, 15
real
part, 8

reversal matrix, 37
reverse-order law, 7
row
operations, 10
rank, 13
space, 9

row-reduced echelon form, 12
RREF, 12

scalar
matrix, 7
product, see inner product

Schur
complement, 21, 28
quotient property, 31

secondary diagonal, 37
sesquilinear, 17
Sherman-Morrison-Woodbury formula, 21
shift
backward and forward, 38

similarity, 45
sip matrix, 37
skew Hermitian, 8
part, 8

skew symmetric, 8
part, 8

skew-centrosymmetric, 40
skew-persymmetric, 40
span, 2
subdiagonal, 6
submatrix, 19
de�nition, 5
principal, 19

subspace, 2
nontrivial, 2
proper, 2
sum, 3
trivial, 2

sum
of subspaces, 3

superdiagonal, 5
Sylvester

identity for bordered determinants, 31
rank inequality, 15

symmetric
matrix, 8
part, 8

Toeplitz
matrix, 38

trace, 8
transpose, 7
transposition, 36
triangular matrix, 34, 35
strictly, 35

tridiagonal, 40
tridiagonal matrix
determinant, 40

unitary
congruence, 45
de�nition, 8
equivalence, 45
similarity, 45

unreduced Hessenberg matrix, 39
upper bidiagonal, 40

Vandermonde, 41
vector
column, 2
coordinate representation of, 43
normalized, 17
unit, 17
zero, 2

vector space
de�nition, 2
subspace, 2
zero, 2

vectors
angle between two, 17

Wedderburn rank-one reduction, 16
Woodbury
see Sherman-Morrison-Woodbury formula,

21


