
CHAPTER 1
Eigenvalues, eigenvectors, and similarity

1.0 Introduction and notation

yIn this and the following chapters, we motivate some key issues discussed in
the chapter with examples of how they arise, either conceptually or in applica-
tion.
Throughout the book, we use (typically without further comment) the no-

tation and terminology introduced in Chapter 0. Readers should consult the
index to �nd a de�nition of an unfamiliar term; unfamiliar notation can usu-
ally be identi�ed by using the Notation table that follows the References.

1.0.1 Change of basis and similarity. Every invertible matrix is a change-
of-basis matrix, and every change-of-basis matrix is invertible (0.10). Thus, if
B is a given basis of a vector space V , if T is a given linear transformation on
V, and if A = B[T ]B is the B basis representation of T, the set of all possible
basis representations of T is

fB1 [I]B B[T ]B B[I]B1 : B1 is a basis of V g
= fS�1AS: S 2Mn(F) is invertibleg

This is just the set of all matrices that are similar to the given matrixA. Similar
but not identical matrices are therefore just different basis representations of a
single linear transformation.
One would expect similar matrices to share many important properties�at

least, those properties that are intrinsic to the underlying linear transformation�
and this is an important theme in linear algebra. It is often useful to step back
from a question about a given matrix to a question about some intrinsic prop-
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52 Eigenvalues, eigenvectors, and similarity

erty of the linear transformation of which the matrix is only one of many pos-
sible representations.
The notion of similarity is a key concept in this chapter.

1.0.2 Constrained extrema and eigenvalues. A second key concept in this
chapter is the notion of eigenvector and eigenvalue. Nonzero vectors x such
that Ax is a scalar multiple of x play a major role in analyzing the structure of
a matrix or linear transformation, but such vectors arise in the more elemen-
tary context of maximizing (or minimizing) a real symmetric quadratic form
subject to a geometric constraint: For a given real symmetric A 2Mn(R),

maximize xTAx; subject to x 2 Rn; xTx = 1 (1.0.3)

A conventional approach to such a constrained optimization problem is to in-
troduce the Lagrangian L = xTAx � �xTx. Necessary conditions for an
extremum then are

0 = rL = 2(Ax� �x) = 0

Thus, if a vector x 2 Rn with xTx = 1 (and hence x 6= 0) is an extremum
of xTAx, it must satisfy the equation Ax = �x, and hence Ax is a real scalar
multiple of x. Such a pair �, x is called an eigenvalue�eigenvector pair for A.

Problems

1. UseWeierstrass's Theorem (see Appendix E) to explain why the constrained
extremum problem (1.0.3) has a solution, and conclude that every real symmet-
ric matrix has at least one real eigenvalue. Hint: f(x) = xTAx is a continuous
function on the compact set fx 2 Rn : xTx = 1g.

2. Suppose that A 2 Mn(R) is symmetric. Show that maxfxTAx : x 2
Rn; xTx = 1g is the largest real eigenvalue of A.

1.1 The eigenvalue�eigenvector equation
A matrix A 2 Mn can be thought of as a linear transformation from Cn into
Cn, namely

A : x! Ax (1.1.1)

but it is also useful to think of it as an array of numbers. The interplay between
these two concepts ofA, and what the array of numbers tells us about the linear
transformation, is a central theme of matrix analysis and a key to applications.
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A fundamental concept in matrix analysis is the set of eigenvalues of a square
complex matrix.

1.1.2 De�nition. Let A 2Mn. If a scalar � and a nonzero vector x satisfy the
equation

Ax = �x; x 2 Cn, x 6= 0, � 2 C (1.1.3)

then � is called an eigenvalue of A and x is called an eigenvector of A associ-
ated with �. The pair �; x is an eigenvalue�eigenvector pair for A.

The scalar � and the vector x in the preceding de�nition occur inextricably
as a pair. It is a key element of the de�nition that an eigenvector can never be
the zero vector.

Exercise. Consider the diagonal matrix D = diag(d1; d2; : : : ; dn). Explain
why the standard basis vectors ei, i = 1; : : : ; n, are eigenvectors of D. With
what eigenvalue is each eigenvector ei associated?

The equation (1.1.3) can be rewritten as �x � Ax = (�I � A)x = 0, a
square system of homogeneous linear equations. If this system has a nontrivial
solution, then � is an eigenvalue of A and the matrix �I �A is singular. Con-
versely, if � 2 C and if �I�A is singular, then there is a nonzero vector x such
that (�I �A)x = 0, so Ax = �x, that is, �; x is an eigenvalue�eigenvector
pair for A.

1.1.4 De�nition. The spectrum of A 2 Mn is the set of all � 2 C that are
eigenvalues of A; we denote this set by �(A).

For a given A 2 Mn, we do not know at this point whether �(A) is empty,
or, if it is not, whether it contains �nitely or in�nitely many complex numbers.

Exercise. If x is an eigenvector associated with an eigenvalue � of A, show
that any nonzero scalar multiple of x is an eigenvector of A associated with �.

If x is an eigenvector of A 2 Mn associated with �, it is often convenient
to normalize it, that is, to form the unit vector � = x= kxk2, which is still an
eigenvector of A associated with �. Normalization does not select a unique
eigenvector associated with �, however: �; ei�� is an eigenvalue-eigenvector
pair for A for all � 2 R.

Exercise. If Ax = �x, observe that �A�x = ���x. Explain why �( �A) = �(A). If
A 2Mn(R) and � 2 �(A), explain why �� 2 �(A) as well.

Even if they had no other importance, eigenvalues and eigenvectors would
be interesting algebraically: according to (1.1.3), the eigenvectors are just
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those vectors such that multiplication by the matrix A is the same as multi-
plication by the scalar �.

Example. Consider the matrix

A =

�
7 �2
4 1

�
2M2 (1.1.4a)

Then 3 2 �(A) and
�
1
2

�
is an associated eigenvector since

A

�
1

2

�
=

�
3

6

�
= 3

�
1

2

�
Also, 5 2 �(A). Find an eigenvector associated with the eigenvalue 5.

Sometimes the structure of a matrix makes an eigenvector easy to perceive,
so the associated eigenvalue can be computed easily.

Exercise. Let Jn be the n-by-n matrix whose entries are all equal to 1. Con-
sider the n-vector e whose entries are all equal to 1, and let xk = e � nek, in
which fe1; : : : ; eng is the standard basis for Cn. For n = 2, show that e and
x1 are linearly independent eigenvectors of J2 and that 2 and 0, respectively,
are the corresponding eigenvalues. For n = 3, show that e, x1, and x2 are
linearly independent eigenvectors of J3 and that 2, 0, and 0, respectively, are
the corresponding eigenvalues. In general, show that e; x1; : : : ; xn�1 are lin-
early independent eigenvectors of Jn and that n; 0; : : : ; 0, respectively, are the
corresponding eigenvalues.

Exercise. Show that 1 and 4 are eigenvalues of the matrix

A =

24 3 �1 �1
�1 3 �1
�1 �1 3

35
Hint: Use eigenvectors. Write A = 4I � J3 and use the preceding exercise.

Evaluation of a polynomial of degree k

p(t) = akt
k + ak�1t

k�1 + � � �+ a1t+ a0; ak 6= 0 (1.1.5a)

with real or complex coef�cients at a matrix A 2Mn is well de�ned since we
may form linear combinations of integral powers of a given square matrix. We
de�ne

p(A) � akAk + ak�1Ak�1 + � � �+ a1A+ a0I (1.1.5b)



1.1 The eigenvalue�eigenvector equation 55

in which we observe the universal convention that A0 � I . A polynomial
(1.1.5a) of degree k is said to be monic if ak = 1; since ak 6= 0, a�1k p(t) is
always monic. Of course, a monic polynomial cannot be the zero polynomial.
There is an alternative way to represent p(A) that has very important conse-

quences. The Fundamental Theorem of Algebra (Appendix C) ensures that any
monic polynomial (1.1.5a) of degree k � 1 can be represented as a product of
exactly k complex or real linear factors:

p(t) = (t� �1) � � � (t� �k) (1.1.5c)

This representation of p(t) is unique up to permutation of its factors. It tells us
that p(�j) = 0 for each j = 1; : : : ; k, so that each �j is a root of the equation
p(t) = 0; one also says that each �j is a zero of p(t). Conversely, if � is a
complex number such that p(�) = 0, then � 2 f�1; : : : ; �kg, so a polynomial
of degree k � 1 has at most k distinct zeroes. In the product (1.1.5c), some
factors might be repeated, e.g., p(t) = t2 + 2t + 1 = (t + 1)(t + 1). The
number of times a factor (t��j) is repeated is the multiplicity of �j as a zero
of p(t). The factorization (1.1.5c) gives a factorization of p(A):

p(A) = (A� �1I) � � � (A� �kI) (1.1.5d)

The eigenvalues of p(A) are linked to the eigenvalues of A in a simple way.

1.1.6 Theorem. Let p(t) be a given polynomial of degree k. If �; x is an
eigenvalue�eigenvector pair ofA 2Mn, then p(�); x is an eigenvalue�eigenvector
pair of p(A). Conversely, if k � 1 and if � is an eigenvalue of p(A), then there
is some eigenvalue � of A such that � = p(�).

Proof: We have

p(A)x � akAkx+ ak�1Ak�1x+ � � �+ a1Ax+ a0x, ak 6= 0

and Ajx = Aj�1Ax = Aj�1�x = �Aj�1x = � � � = �jx by repeated appli-
cation of the eigenvalue�eigenvector equation. Thus,

p(A)x = ak�
kx+ � � �+ a0x = (ak�k + � � �+ a0)x = p(�)x

Conversely, if � is an eigenvalue of p(A) then p(A) � �I is singular. Since
p(t) has degree k � 1, the polynomial q(t) � p(t) � � has degree k � 1

and we can factor it as q(t) = (t � �1) � � � (t � �k) for some complex or real
�1; : : : ; �k. Since p(A)� �I = q(A) = (A� �1I) � � � (A� �kI) is singular,
some factor A � �jI is singular, which means that �j is an eigenvalue of A.
But 0 = q(�j) = p(�j)� �, so � = p(�j), as claimed.
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Exercise. Suppose A 2 Mn. If �(A) = f�1; 1g, what is �(A2)? Caution:
The �rst assertion in Theorem 1.1.6 permits you to identify a point in �(A),
but you must invoke the second assertion in order �nd out if it is the only point
in �(A).

Exercise. Consider A =
�
0
0
1
0

�
. What is A2? Show that e1 is an eigenvector

of A and of A2, both associated with the eigenvalue � = 0. Show that e2
is an eigenvector of A2 but not of A. Explain why the �converse� part of
Theorem 1.1.6 speaks only about eigenvalues of p(A), not eigenvectors. Show
that A has no eigenvectors other than scalar multiples of e1 and explain why
�(A) = f0g.

1.1.7 Observation. A matrix A 2Mn is singular if and only if 0 2 �(A).

Proof: The matrix A is singular if and only if Ax = 0 for some x 6= 0. This
happens if and only if Ax = 0x for some x 6= 0, that is, if and only if � = 0 is
an eigenvalue of A.

1.1.8 Observation. Let A 2 Mn and �; � 2 C be given. Then � 2 �(A) if
and only if �+ � 2 �(A+ �I).

Proof: If � 2 �(A) there is a nonzero vector x such that Ax = �x and
hence (A + �I)x = Ax + �x = �x + �x = (� + �)x. Thus, � + � 2
�(A+�I). Conversely, if �+� 2 �(A+�I) there is a nonzero vector y such
that Ay + �y = (A + �I)y = (� + �)y = �y + �y. Thus, Ay = �y and
� 2 �(A).

We are now prepared to make a very important observation: every complex
matrix has a nonempty spectrum, that is, for eachA 2Mn there is some scalar
� 2 C and some nonzero x 2 Cn such that Ax = �x.

1.1.9 Theorem. Let A 2Mn be given. Then A has an eigenvalue. In fact, for
each given nonzero y 2 Cn there is a polynomial g(t) of degree at most n� 1
such that g(A)y is an eigenvector of A.

Proof: Letm be the least integer k such that fy;Ay;A2y; : : : ; Akyg is linearly
dependent. Then m � 1 since y 6= 0, and m � n since any n + 1 vectors in
Cn are linearly dependent. Let a0; a1; : : : ; am be scalars, not all zero, such
that

amA
my + am�1A

m�1y + � � �+ a1Ay + a0y = 0 (1.1.10)

If am = 0, then (1.1.10) implies that fy;Ay;A2y; : : : ; Am�1yg is linearly
dependent, contradicting the minimality of m. Thus, am 6= 0 and we may
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consider the polynomial p(t) = tm + (am�1=am)tm�1 + � � � + (a1=am)t +
(a0=am). The identity (1.1.10) ensures that p(A)y = 0, so 0; y is an eigenvalue�
eigenvector pair for p(A). Theorem 1.1.6 ensures that one of the m zeroes of
p(t) is an eigenvalue of A.
Suppose � is a zero of p(t) that is an eigenvalue of A and factor p(t) =

(t � �)g(t), in which g(t) is a polynomial of degree m � 1. If g(A)y = 0,
the minimality of m would be contradicted again, so g(A)y 6= 0. But 0 =
p(A)y = (A� �I)(g(A)y), so the nonzero vector g(A)y is an eigenvector of
A associated with the eigenvalue �.

The preceding argument shows that for a given A 2Mn we can �nd a poly-
nomial of degree at most n such that at least one of its zeroes is an eigenvalue
of A. In the next section, we introduce a polynomial pA(t) of degree exactly n
such that each of its zeroes is an eigenvalue of A and each eigenvalue of A is a
zero of pA(t), that is, pA(�) = 0 if and only if � 2 �(A).
Problems

1. Suppose thatA 2Mn is nonsingular. According to (1.1.7), this is equivalent
to assuming that 0 =2 �(A). For each � 2 �(A), show that ��1 2 �(A�1). If
Ax = �x and x 6= 0, show that A�1x = ��1x.

2. Let A 2Mn be given. (a) Show that the sum of the entries in each row of A
is 1 if and only if 1 2 �(A) and the vector e = [1; 1; : : : ; 1]T is an associated
eigenvector, that is, Ae = e. (b) Suppose that the sum of the entries in each
row of A is 1. If A is nonsingular, show that the sum of the entries in each row
of A�1 is also 1. Moreover, for any given polynomial p(t), show that the sums
of the entries in each row p(A) are equal. Equal to what?

3. Let A 2 Mn(R). Suppose that � is a real eigenvalue of A and that Ax =
�x; x 2 Cn; x 6= 0. Let x = u + iv, in which u; v 2 Rn are the respective
real and imaginary parts of x. (0.2.5) Show that Au = �u and Av = �v.
Explain why at least one of u; v must be nonzero and conclude that A has a
real eigenvector associated with �. Must both u and v be eigenvectors of A?
Can A have a real eigenvector associated with a non-real eigenvalue?

4. Consider the block diagonal matrix

A =

�
A11 0

0 A22

�
; Aii 2Mni

Show that �(A) = �(A11) [ �(A22). There are three things you must show:
(a) if � is an eigenvalue of A, then it is an eigenvalue of either A11 or of A22;
(b) if � is an eigenvalue of A11, then it is an eigenvalue of A; and (c) if � is an
eigenvalue of A22, then it is an eigenvalue of A.
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5. Let A 2 Mn be a given idempotent matrix, so A2 = A. Show that each
eigenvalue of A is either 0 or 1. Explain why I is the only nonsingular idem-
potent matrix.

6. Show that all eigenvalues of a nilpotent matrix are 0. Give an example of
a nonzero nilpotent matrix. Explain why 0 is the only nilpotent idempotent
matrix.

7. If A 2 Mn is Hermitian, show that all eigenvalues of A are real. Hint:
Let �; x be an eigenvalue�eigenvector pair of A. Then x�Ax = �x�x. But
x�x > 0 and x�Ax = x�A�x = x�Ax is real.

8. Explain how the argument in Theorem (1.1.9) fails if we try to use it to show
that every square real matrix has a real eigenvalue.

9. Use the de�nition (1.1.3) to show that the real matrixA =
�
0
�1

1
0

�
has no real

eigenvalue. However, Theorem 1.1.9 says that A has a complex eigenvalue.
Actually, there are two; what are they?

10. Provide details for the following example, which shows that a linear opera-
tor on an in�nite dimensional complex vector space might have no eigenvalues.
Let V = f(a1; a2; : : : ; ak; : : :) : ai 2 C; i = 1; 2; : : :g be the vector space of
all formal in�nite sequences of complex numbers and de�ne the right shift op-
erator S on V by S(a1; a2; : : :) = (0; a1; a2; : : :). Verify that S is a linear. If
Sx = �x, show that x = 0.

11. Let A 2 Mn and � 2 �(A) be given. Then A � �I is singular, so
(A � �I) adj(A � �I) = (det(A � �I))I = 0. [See (0.8.2)] Explain why
there is some y 2 Cn (y = 0 is possible) such that A � �I = xy�, so every
nonzero column of adj(A � �I) is an eigenvector of A associated with the
eigenvalue �. Why is this observation useful only if rank(A� �I) = n� 1?

12. Suppose that � is an eigenvalue of A =
�
a
c
b
d

�
2 M2. Use Problem 11 to

show that if either column of
�
d��
�c

�b
a��

�
is nonzero, then it is an eigenvector of

A associated with �. Why must one of the columns be a scalar multiple of the
other? Use this method to �nd eigenvectors of the matrix (1.1.4a) associated
with the eigenvalues 3 and 5.

13. LetA 2Mn and � 2 �(A) be given. Suppose x 6= 0 andAx = �x, so that
(adjA)Ax = (adjA)�x. If � 6= 0, explain why (adjA)x = (��1 detA)x. If
� = 0, refer to (0.8.2) and explain why there is some y 2 Cn (possibly y = 0)
such that adjA = xy�, so (adjA)x = (y�x)x. In either case, notice that x is
an eigenvector of adjA.
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1.2 The characteristic polynomial and algebraic multiplicity

Natural questions to ask about the eigenvalues of A 2Mn are: How many are
there? How may they be characterized in a systematic way?
Rewrite the eigenvalue-eigenvector equation (1.1.3) as

(�I �A)x = 0; x 6= 0 (1.2.1)

Thus, � 2 �(A) if and only if �I �A is singular, that is, if and only if

det(�I �A) = 0 (1.2.2)

1.2.3 De�nition. Thought of as a formal polynomial in t, the characteristic
polynomial of A 2Mn is

pA(t) � det(tI �A)

We refer to the equation pA(t) = 0 as the characteristic equation of A.

1.2.4 Observation. The characteristic polynomial of each A = [aij ] 2 Mn

has degree n and pA(t) = tn � (trA)tn�1 + � � � + (�1)n detA. Moreover,
pA(�) = 0 if and only if � 2 �(A), so �(A) contains at most n complex
numbers.

Proof: Each summand in the presentation (0.3.2.1) of the determinant of tI�A
is a product of exactly n entries of tI � A, each from a different row and
column, so each summand is a polynomial in t of degree at most n. The degree
of a summand can be n only if every factor in the product involves t, which
happens only for the summand

(t� a11) � � � (t� ann) = tn � (a11 + � � �+ ann)tn�1 + � � � (1.2.4a)

that is the product of the diagonal entries. Any other summand must contain
a factor �aij with i 6= j, so the diagonal entries (t � aii) (in the same row
as aij) and (t � aii) (in the same column as aij) cannot also be factors; this
summand therefore cannot have degree larger than n�2. Thus, the coef�cients
of tn and tn�1 in the polynomial pA(t) arise only from the summand (1.2.4a).
The constant term in pA(t) is just pA(0) = det(0I � A) = det(�A) =
(�1)n detA. The remaining assertion is the equivalence of (1.2.1) and (1.2.2),
together with the fact that a polynomial of degree n � 1 has at most n distinct
zeroes.

Exercise. Show that the roots of det(A � tI) = 0 are the same as those of
det(tI�A) = 0, and that det(A�tI) = (�1)n det(tI�A) = (�1)n(tn+� � � )
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The characteristic polynomial could alternatively be de�ned as det(A �
tI) = (�1)ntn + � � � . The convention we have chosen ensures that the co-
ef�cient of tn in the characteristic polynomial is always +1.

Exercise. Let A =
�
a
c
b
d

�
2M2. Show that the characteristic polynomial of A

is
pA(t) = t

2 � (a+ d)t+ (ad� bc) = t2 � (trA) t+ detA

With r � (a � d)2 + 4bc and letting
p
r be a �xed square root of r, deduce

that each of

�1 =
1
2

�
a+ d+

p
r
�

and �2 =
1
2

�
a+ d�

p
r
�

(1.2.4b)

is an eigenvalue of A. Verify that trA = �1 + �2 and detA = �1�2. Explain
why �1 6= �2 if and only if r 6= 0. If A 2 M2(R), show that (a) the eigenval-
ues of A are real if and only if r � 0; (b) the eigenvalues are real if bc � 0;
and (c) if r < 0 then �1 = �2, that is, �1 is the complex conjugate of �2.

The preceding exercise illustrates that an eigenvalue � of a matrix A 2 Mn

with n > 1 can be a multiple zero of pA(t) (equivalently, a multiple root of its
characteristic equation). Indeed, the characteristic polynomial of I 2Mn is

pI(t) = det(tI � I) = det((t� 1)I) = (t� 1)n det I = (t� 1)n

so the eigenvalue � = 1 has multiplicity n as a zero of pI(t). How should we
account for such repetitions in an enumeration of the eigenvalues?
For a given A 2 Mn with n > 1, factor its characteristic polynomial as

pA(t) = (t��1) � � � (t��n). We know that each zero �i of pA(t) (regardless
of its multiplicity) is an eigenvalue of A. A computation reveals that

pA(t) = t
n � (�1 + � � �+ �n)tn�1 + � � �+ (�1)n�1 � � ��n (1.2.4c)

so a comparison of (1.2.4) and (1.2.4c) tells us that the sum of the zeroes of
pA(t) is the trace ofA, and the product of the zeroes of pA(t) is the determinant
of A. If each zero of pA(t) has multiplicity one, that is, if �i 6= �j whenever
i 6= j, then �(A) = f�1; : : : ; �ng, so trA is the sum of the eigenvalues of
A and detA is the product of the eigenvalues of A. If these two statements
are to remain true even if some zeroes of pA(t) have multiplicity greater than
one, we must enumerate the eigenvalues of A according to their multiplicities
as roots of the characteristic equation.

1.2.5 De�nition. Let A 2Mn. The multiplicity of an eigenvalue � of A is its
multiplicity as a zero of the characteristic polynomial pA(t). For clarity, we
sometimes refer to the multiplicity of an eigenvalue as its algebraic multiplic-
ity.



1.2 The characteristic polynomial and algebraic multiplicity 61

Henceforth, the eigenvalues of A 2 Mn will always mean the eigenvalues
together with their respective (algebraic) multiplicities. Thus, the zeroes of the
characteristic polynomial of A (including their multiplicities) are the same as
the eigenvalues of A (including their multiplicities):

pA(t) = (t� �1)(t� �2) � � � (t� �n) (1.2.6)

in which �1; : : : ; �n are the n eigenvalues of A, listed in any order. When we
refer to the distinct eigenvalues of A, we mean the elements of �(A).
We can now say without quali�cation that each matrix A 2Mn has exactly

n eigenvalues among the complex numbers; the trace and determinant of A are
the sum and product, respectively, of its eigenvalues. If A is real, some or all
of its eigenvalues might not be real.

Exercise. Consider a real matrixA 2Mn(R). Explain why all the coef�cients
of pA(t) are real. Suppose A has a non-real eigenvalue �. Why is �� also an
eigenvalue of A, and why are the algebraic multiplicities of � and �� the same?
If x; � is an eigenvector-eigenvalue pair for A, explain why �x; �� is also an
eigenvector-eigenvalue pair. Notice that x and �x are eigenvectors of A that are
associated with distinct eigenvalues � and ��.

1.2.7 Example. Let x; y 2 Cn. What are the eigenvalues and determinant of
I + xy�? Using (0.8.5.11) and the fact that adj(�I) = �n�1I , we compute

pI+xy�(t) = det(tI � (I + xy�)) = det((t� 1)I � xy�)
= det((t� 1)I)� y� adj((t� 1)I)x
= (t� 1)n � (t� 1)n�1y�x = (t� 1)n�1(t� (1 + y�x))

Thus, the eigenvalues of I + xy� are 1 + y�x and 1 (with multiplicity n� 1),
so det(I + xy�) = (1 + y�x)(1)n�1 = 1 + y�x.

1.2.8 Example. Let x; y 2 Cn, x 6= 0, and A 2 Mn. Suppose that Ax = �x
and let the eigenvalues of A be �; �2; : : : ; �n. What are the eigenvalues of
A+ xy�? Using (0.8.5.11) again, we compute

pA+xy�(t) = det (tI � (A+ xy�)) = det ((tI �A)� xy�)
= det (tI �A)� y� adj(tI �A)x

Multiply both sides by (t��), use the identity (t��) adj(tI�A)x = det(tI�
A)x (Problem 13 in (1.2)), and compute

(t� �) pA+xy�(t) = (t� �) det (tI �A)� y�(t� �) adj(tI �A)x
= (t� �) det (tI �A)� det(tI �A)y�x
= (t� �)pA(t)� pA(t)y�x
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Thus, we have the polynomial identity

(t� �) pA+xy�(t) = (t� (�+ y�x)) pA(t)

The zeroes of the left-hand side are � together with the n eigenvalues of A +
xy�. The zeroes of the right-hand side are � + y�x; �; �2; : : : ; �n. It follows
that the eigenvalues of A+ xy� are �+ y�x; �2; : : : ; �n.

Since we now know that each n-by-n complex matrix has �nitely many
eigenvalues, we may make the following de�nition.

1.2.9 De�nition. Let A 2Mn. The spectral radius of A is �(A) � maxfj�j :
� 2 �(A)g.

Exercise. Explain why every eigenvalue ofA 2Mn lies in the closed bounded
disk fz : z 2 C and jzj � �(A)g in the complex plane.

Exercise. Suppose A 2Mn has at least one nonzero eigenvalue. Explain why
minfj�j : � 2 �(A) and � 6= 0g > 0.

Exercise. Underlying both of the two preceding exercises is the fact that �(A)
is a nonempty �nite set. Explain why.

Sometimes the structure of a matrix makes the characteristic polynomial
easy to calculate. This is the case for diagonal or triangular matrices.

Exercise. Consider an upper triangular matrix

T =

264 t11 � � � t1n
. . .

...
0 tnn

375 2Mn

Show that pT (t) = (t � t11) � � � (t � tnn), so the eigenvalues of T are its
diagonal entries t11; t22; : : : ; tnn. What if T is lower triangular? What if T is
diagonal?

Exercise. Suppose that A 2Mn is block upper triangular

A =

264 A11 F
. . .

0 Akk

375 ; Aii 2Mni for i = 1; : : : ; nk

Explain why pA(t) = pA11(t) � � � pAkk
(t) and the eigenvalues of A are the

eigenvalues ofA11; together with those ofA22, . . . , together with those ofAkk
including all their respective algebraic multiplicities. This observation is the
basis of many algorithms to compute eigenvalues. Explain why the preceding
exercise is a special case of this one.
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1.2.10 De�nition. The sum of all the k-by-k principal minors of A 2 Mn

(there are (nk ) of them) is denoted by Ek(A).

We have already encountered principal minor sums as two coef�cients of
the characteristic polynomial

pA(t) = t
n + an�1t

n�1 + � � �+ a2t2 + a1t+ a0

If k = 1, then (nk ) = n and E1(A) = a11 + � � � + ann = trA = �an�1;
if k = n, then (nk ) = 1 and En(A) = detA = (�1)na0. The broader
connection between coef�cients and principal minor sums is a consequence
of the fact that the coef�cients are explicit functions of certain derivatives of
pA(t) at t = 0:

ak =
1

k!
p
(k)
A (0); k = 0; 1; : : : ; n� 1 (1.2.11)

Use (0.8.10.2) to evaluate the derivative

p0A(t) = tr adj(tI �A)

Observe that tr adjA is the sum of all the principal minors of A of size n� 1,
so tr adjA = En�1(A). Then

a1 = p0A(t)jt=0 = tr adj(tI �A)jt=0 = tr adj(�A)
= (�1)n�1 tr adj(A) = (�1)n�1En�1(A)

Now observe that tr adj(tI �A) =
Pn

i=1 pA(i)
(t) is the sum of the charac-

teristic polynomials of the n principal submatrices of A of size n � 1, which
we denote by A(1); : : : ; A(n). Use (0.8.10.2) again to evaluate

p00A(t) =
d

dt
tr adj(tI�A) =

nX
i=1

d

dt
pA(i)

(t) =

nX
i=1

tr adj(tI�A(i)) (1.2.12)

Each summand tr adj(tI � A(i)) is the sum of the n � 1 principal minors of
size n� 2 of a principal minor of tI �A, so each summand is a sum of certain
principal minors of tI � A of size n� 2. Each of the ( n

n�2 ) principal minors
of tI�A of size n�2 appears twice in (1.2.12): the principal minor with rows
and columns k and ` omitted appears when i = k as well as when i = `. Thus,

a2 =
1

2
p00A(t)jt=0 =

1

2

nX
i=1

tr adj(tI �A(i))
��
t=0

=
1

2

nX
i=1

tr adj(�A(i))

=
1

2
(�1)n�2

nX
i=1

tr adj(A(i)) =
1

2
(�1)n�2 (2En�2(A))

= (�1)n�2En�2(A)
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Repeating this argument reveals that p(k)A (0) = k!(�1)n�kEn�k(A), k =
0; 1; : : : ; n� 1, so the coef�cients of the characteristic polynomial (1.2.11) are

ak =
1

k!
p
(k)
A (0) = (�1)n�kEn�k(A); k = 0; 1; : : : ; n� 1

and hence

pA(t) = t
n � E1(A)tn�1 + � � �+ (�1)n�1En�1t+ (�1)nEn (1.2.13)

With the identity (1.2.6) in mind, we make the following de�nition:

1.2.14 De�nition. The kth elementary symmetric function of n complex num-
bers �1; : : : ; �n, k � n, is

Sk(�1; : : : ; �n) �
X

1�i1<���<ik�n

kY
j=1

�ij

Notice that the sum has (nk ) summands. If A 2 Mn and �1; : : : ; �n are its
eigenvalues, we de�ne Sk(A) � Sk(�1; : : : ; �n).

Exercise. What are S1(�1; : : : ; �n) and Sn(�1; : : : ; �n)? Explain why none
of the functions Sk(�1; : : : ; �n) changes if the list �1; : : : ; �n is re-indexed
and re-arranged.

A calculation with (1.2.6) reveals that

pA(t) = t
n�S1(A)tn�1+ � � �+(�1)n�1Sn�2(A)t+(�1)n�1Sn (1.2.15)

Comparison of (1.2.6) with (1.2.15) gives the following identities between el-
ementary symmetric functions of eigenvalues of a matrix and sums of its prin-
cipal minors.

1.2.16 Theorem. Let A 2Mn. Then

Sk(A) = Ek(A); k = 1; : : : ; n

The next theorem shows that a singular complex matrix can always be shifted
slightly to become nonsingular. This important fact often permits us to use con-
tinuity arguments to deduce results about singular matrices from properties of
nonsingular matrices.

1.2.17 Theorem. Let A 2 Mn be given. Then there is some � > 0 such that
A+ "I is nonsingular whenever " 2 C and 0 < j"j < �.

Proof: Observation 1.1.8 ensures that � 2 �(A) if and only if � + " 2
�(A + "I). Therefore, 0 2 �(A + "I) if and only if � + " = 0 for some
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� 2 �(A), that is, if and only if " = �� for some � 2 �(A). If all the
eigenvalues of A are zero, take � = 1. If some eigenvalue of A is nonzero, let
� = minfj�j : � 2 � and � 6= 0g. If we choose any " such that 0 < j"j < �,
we are assured that �" =2 �(A), so 0 =2 �(A+ "I) and A+ "I is nonsingular.

There is a useful connection between the derivatives of a polynomial p(t)
and the multiplicity of its zeroes: � is a zero of p(t) with multiplicity k � 1 if
and only if we can write p(t) in the form

p(t) = (t� �)kq(t)

in which q(t) is a polynomial such that q(�) 6= 0. Differentiating this identity
gives p0(t) = k(t��)k�1q(t) + (t��)kq0(t), which shows that p0(�) = 0 if
and only if k > 1. If k � 2, then p00(t) = k(k�1)(t��)k�2q(t) + polynomial
terms each involving a factor (t � �)m with m � k � 1, so p00(�) = 0 if and
only if k > 2. Repetition of this calculation shows that � is a zero of p(t)
of multiplicity k if and only if p(�) = p0(�) = � � � = p(k�1)(�) = 0 and
p(k)(�) 6= 0.

1.2.18 Theorem. Let A 2 Mn and suppose � 2 �(A) has algebraic multi-
plicity k. Then rank(A� �I) � n� k with equality for k = 1.

Proof: Apply the preceding observation to the characteristic polynomial pA(t)
of a matrix A 2 Mn that has an eigenvalue � with multiplicity k � 1. If we
let B = A � �I , then zero is an eigenvalue of B with multiplicity k and
hence p(k)B (0) 6= 0. But p(k)B (0) = k!(�1)n�kEn�k(B), so En�k(B) 6= 0. In
particular, some principal minor of B = A � �I of size n � k is nonzero, so
rank(A � �I) � n � k. If k = 1 we can say more: A � �I is singular, so
n > rank(A� �I) � n� 1, which means that rank(A� �I) = n� 1 if the
eigenvalue � has algebraic multiplicity one.

Problems

1. Let A 2Mn. Use the identity Sn(A) = En(A) to verify (1.1.7).

2. For matrices A 2 Mm;n and B 2 Mn;m, show by direct calculation that
tr(AB) = tr(BA). For any A 2 Mn and nonsingular S 2 Mn, deduce that
tr(S�1AS) = trA. For any A;B 2 Mn use multiplicativity of the determi-
nant function to show that det(S�1AS) = detA, that is, the determinant is a
similarity invariant.

3. Let D 2 Mn be a diagonal matrix. Compute the characteristic polynomial
pD(t) and show that pD(D) = 0.
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4. Suppose A 2 Mn is idempotent. Use (1.2.15) and Problem 5 in (1.1) to
show that every coef�cient of pA(t) is an integer (positive, negative, or zero).

5. Use Problem 6 in (1.1) to show that the trace of a nilpotent matrix is 0. What
is the characteristic polynomial of a nilpotent matrix?

6. If A 2Mn and � 2 �(A) has multiplicity 1, we know that rank(A��I) =
n�1. Consider the converse: If rank(A��I) = n�1, must � be an eigenvalue
of A? Must it have multiplicity 1?

7. Use (1.2.13) to determine the characteristic polynomial of the tridiagonal
matrix 266664

1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

377775
Consider how this procedure could be used to compute the characteristic poly-
nomial of a general n-by-n tridiagonal matrix.

8. Let A 2 Mn and � 2 C be given. Suppose the eigenvalues of A are
�1; : : : ; �n. Explain why pA+�I(t) = pA(t��) and deduce from this identity
that the eigenvalues of A+ �I are �1 + �; : : : ; �n + �.

9. Explicitly compute S2(�1; : : : ; �6), S3(�1; : : : ; �6), S4(�1; : : : ; �6), and
S5(�1; : : : ; �6).

10. IfA 2Mn(R) and if n is odd, show thatA has at least one real eigenvalue.
Hint: Any nonreal complex zeroes of a polynomial with real coef�cients occur
in conjugate pairs; pA(t) has real coef�cients if A 2Mn(R).

11.Let V be a vector space over a �eld F. An eigenvalue of a linear transfor-
mation T : V ! V is a scalar � 2 F such that there is a nonzero vector � 2 V
with T� = ��. Show that if F is the �eld of complex numbers and if V is
�nite-dimensional, then every linear transformation T has an eigenvalue. Give
examples to show that if either hypothesis is weakened (�nite dimensionality
of V or F = C), then T may not have an eigenvalue. Hint: Let B be a basis for
V and consider [T ]B.

12. Let x = [xi], y = [yi] 2 Cn, and a 2 C be given and let A =
�
0n
y�

x
a

�
2

Mn+1. Show that pA(t) = tn�1(t2�at�y�x) in two ways: (a) Use Cauchy's
expansion (0.8.5.10) to calculate det

�
tIn
�y�

�x
t�a
�
. (b) Explain why rankA � 2

and use (1.2.13). Why do only E1(A) and E2(A) need to be calculated and
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only principal submatrices of the form
�
0
�yi

xi
a

�
need to be considered? What

are the eigenvalues of A?

13. Let x; y 2 Cn, a 2 C, and B 2 Mn. Consider the bordered matrix
A =

�
B
y�

x
a

�
2Mn+1. (a) Use (0.8.5.10) to show that

pA(t) = (t� a)pB(t)� y�(adj(tI �B))x (1.2.19)

(b) If B = �In, deduce that

pA(t) = (t� �)n�1(t2 � (a+ �)t+ a�� y�x) (1.2.20)

and conclude that the eigenvalues of
�
�In
y�

x
a

�
are � with multiplicity n � 1,

together with 1
2 (a+ �� ((a� �)

2 + 4y�x)1=2).

14. Let n � 3, B 2Mn�2, and �; � 2 C. Consider the block matrix

A =

24 � F F
0 � 0

0 F B

35
in which theF entries are not necessarily zero. Show that pA(t) = (t��)(t�
�)pB(t). Hint: Evaluate det(tI � A) by cofactors along the �rst column, and
then use cofactors along the �rst row in the next step.

15. SupposeA(t) 2Mn is a given continuous matrix-valued function and each
of the vector valued functions x1(t); : : : ; xn(t) 2 Cn satis�es the system of or-
dinary differential equations x0j(t) = A(t)xj(t). LetX(t) = [x1(t) : : : xn(t)]
and letW (t) � detX(t). Use (0.8.10) and (0.8.2.11) and provide details for
the following argument:

W 0(t) =
nX
j=1

det
�
X(t) j x0j(t)

�
= tr

�
det

�
X(t) 

i
x0j(t)

��n
i;j=1

= tr ((adjX(t))X 0(t)) = tr ((adjX(t))A(t)X(t)) =W (t) trA(t)

Thus, W (t) satis�es the scalar differential equation W 0(t) = trA(t)W (t),
whose solution is Abel's formula for theWronskian

W (t) =W (t0)e
R t
t0
trA(s) ds

Conclude that if the vectors x1(t); : : : ; xn(t) are linearly independent for t =
t0, then they are linearly independent for all t. How did you use the identity
trBC = trCB (Problem 2)?

16. Let A 2 Mn and x; y 2 Cn be given. Let f(t) = det(A + txyT ). Use
(0.8.5.11) to show that f(t) = detA + �t, a linear function of t. What is
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�? For any t1 6= t2, show that detA = (t2f(t1) � t1f(t2))=(t2 � t1). Now
consider

A =

266664
d1 b � � � b

c d2
. . .

...
...

. . . . . . b

c � � � c dn

377775 2Mn

x = y = e (all ones), t1 = b, and t2 = c. Let q(t) = (d1�t) � � � (dn�t). Show
that detA = (bq(c) � cq(b))=(b � c) if b 6= c, and detA = q(b) � bq0(b) if
b = c. If d1 = � � � = dn = 0, show that pA(t) = (b(t+c)n�c(t+b)n)=(b�c)
if b 6= c, and pA(t) = (t+ b)n�1(t� (n� 1)b) if b = c.

17. Let A;B 2 Mn and let C =
�
0n
B

A
0n

�
. Use (0.8.5.13-14) to show that

pC(t) = pAB(t
2) = pBA(t

2), and explain carefully why this implies that AB
and BA have the same eigenvalues. Explain why this con�rms that trAB =

trBA and detAB = detBA. Also explain why det(I+AB) = det(I+BA).

18. Let A 2M3. Explain why pA(t) = t3 � (trA)t2 + (tr adjA)t� detA.

19. Suppose all the entries of A = [aij ] 2 Mn are either zero or one, and
suppose all the eigenvalues �1; : : : ; �n ofA are positive real numbers. Explain
why detA is a positive integer, and provide details for the following:

n � trA =
1

n
(�1 + � � �+ �n)n � n(�1 � � ��n)1=n

= n(detA)1=n � n

Conclude that all �i = 1, all aii = 1, and detA = 1.

20. For any A 2Mn, show that det(I +A) = 1 + E1(A) + � � �+ En(A).

21. Let A 2 Mn and nonzero vectors x; y 2 Cn be given. Suppose that
c 2 C, y�x = 1, Ax = �x, and the eigenvalues of A are �; �2; : : : ; �n.
Show that the eigenvalues of the Google matrix A(c) = cA+ (1� c)�xy� are
�; c�2; : : : ; c�n. Hint: Example 1.2.8.

1.3 Similarity
We know that a similarity transformation of a matrix in Mn corresponds to
representing its underlying linear transformation onCn in another basis. Thus,
studying similarity can be thought of as studying properties that are intrinsic
to one linear transformation, or the properties that are common to all its basis
representations.
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1.3.1 De�nition. Let A;B 2 Mn be given. We say that B is similar to A if
there exists a nonsingular S 2Mn such that

B = S�1AS

The transformation A ! S�1AS is called a similarity transformation by the
similarity matrix S. We say that B is permutation similar to A if there is a
permutation matrix P such that B = PTAP . The relation �B is similar to A�
is sometimes abbreviated B � A.

1.3.2 Observation. Similarity is an equivalence relation onMn; that is, sim-
ilarity is re�exive, symmetric, and transitive; see (0.11).

Like any equivalence relation, similarity partitions the setMn into disjoint
equivalence classes. Each equivalence class is the set of all matrices in Mn

similar to a given matrix, a representative of the class. All matrices in an
equivalence class are similar, and matrices in different classes are not similar.
The crucial observation is that matrices in a similarity class share many impor-
tant properties. Some of these are mentioned here; a complete description of
the similarity invariants (e.g., Jordan canonical form) is in Chapter 3.

1.3.3 Theorem. Let A;B 2 Mn. If B is similar to A, then A and B have the
same characteristic polynomial.

Proof: Compute

pB(t) = det (tI �B)
= det (tS�1S � S�1AS) = det (S�1(tI �A)S)
= det S�1det (tI �A) det S = (det S)�1(det S)det (tI �A)
= det (tI �A) = pA(t)

1.3.4 Corollary. If A;B 2Mn and if A and B are similar, then they have the
same eigenvalues.

Exercise. Show that the only matrix similar to the zero matrix is the zero ma-
trix, and the only matrix similar to the identity matrix is the identity matrix.

1.3.5 Example. Having the same eigenvalues is a necessary but not suf�cient
condition for similarity. Consider�

0 1

0 0

�
and

�
0 0

0 0

�
which have the same eigenvalues but are not similar.
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Exercise. Suppose that A;B 2Mn are similar and let q(t) be a given polyno-
mial. Show that q(A) and q(B) are similar. In particular, show that A + �I
and B + �I are similar for any � 2 C.

Exercise. Let A;B;C;D 2 Mn. Suppose that A � B and C � D, both via
the same similarity matrix S. Show that A+ C � B +D and AC � BD.

Exercise. Let A;S 2 Mn and suppose that S is nonsingular. Show that
Sk(S

�1AS) = Sk(A) for all k = 1; : : : ; n and explain why Ek(S�1AS) =
Ek(A) for all k = 1; : : : ; n. Thus, all the principal minor sums (1.2.10) are
similarity invariants, not just the determinant and trace.

Exercise. Explain why rank is a similarity invariant: If B 2 Mn is similar to
A 2Mn, then rank B = rank A. Hint: See (0.4.6).

Since diagonal matrices are especially simple and have very nice properties,
it is of interest to know for which A 2 Mn there is a diagonal matrix in the
similarity equivalence class ofA, that is, which matrices are similar to diagonal
matrices.

1.3.6 De�nition. If A 2 Mn is similar to a diagonal matrix, then A is said to
be diagonalizable.

1.3.7 Theorem. Let A 2Mn be given. Then A is similar to a block matrix of
the form�

� C

0 D

�
; � = diag(�1; : : : ; �k); D 2Mn�k; 1 � k < n (1.3.7.1)

if and only if there is a linearly independent set of k vectors in Cn, each of
which is an eigenvector of A. The matrix A is diagonalizable if and only if
there is a linearly independent set of n vectors, each of which is an eigenvector
of A. If fx(1); : : : ; x(n)g is a basis of Cn consisting of eigenvectors of A and
if S = [x(1) : : : x(n)], then S�1AS is a diagonal matrix. If A is similar to a
matrix of the form (1.3.7.1), then the diagonal entries of � are eigenvalues of
A; if A is similar to a diagonal matrix �, then the diagonal entries of � are all
of the eigenvalues of A.

Proof: Suppose that k < n, fx(1); : : : ; x(k)g � Cn is linearly independent,
and Ax(i) = �ix

(i) for each i = 1; : : : ; k. Let � = diag(�1; : : : ; �k), let
S1 = [x(1) : : : x(k)] and choose any S2 2 Mn such that S = [S1 S2] is
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nonsingular. Calculate

S�1AS = S�1[Ax(1) : : : Ax(k) AS2] = S
�1[�1x

(1) : : : �kx
(k) AS2]

= [�1S
�1x(1) : : : �kS

�1x(k) S�1AS2] = [�1e1 : : : �kek S
�1AS2]

=

�
� C

0 D

�
; � = diag(�1; : : : ; �k);

�
C

D

�
= S�1AS2

Conversely, if S is nonsingular, S�1AS =
h
�
0
C
D

i
, and we partition S =

[S1 S2] with S1 2 Mn;k, then S1 has independent columns and [AS1 AS2] =
AS = S

h
�
0
C
D

i
= [S1� S1C + S2D]. Thus, AS1 = S1�, so each column of

S1 is an eigenvector of A.
If k = n and we have a basis fx(1); : : : ; x(n)g of Cn such that Ax(i) =

�ix
(i) for each i = 1; : : : ; n, let� = diag(�1; : : : ; �n) and let S = [x(1) : : : x(n)],

which is nonsingular. Our previous calculation shows that S�1AS = �. Con-
versely, if S is nonsingular and S�1AS = � then AS = S�, so each column
of S is an eigenvector of A.
The �nal assertions about the eigenvalues follow from an examination of the

characteristic polynomials: pA(t) = p�(t)pD(t) if k < n and pA(t) = p�(t)
if k = n.

The proof of Theorem 1.3.7 is, in principle, an algorithm for diagonalizing
a diagonalizable matrix A 2 Mn: �nd all n of the eigenvalues of A; �nd n
associated (and linearly independent!) eigenvectors; and construct the matrix
S. However, except for small examples, this is not a practical computational
procedure.

Exercise. Show that
�
0
0
1
0

�
is not diagonalizable. Hint: If it were diagonaliz-

able, it would be similar to the zero matrix. Alternatively, how many linearly
independent eigenvectors are associated with the eigenvalue 0?

Exercise. Let q(t) be a given polynomial. If A is diagonalizable, show that
q(A) is diagonalizable. If q(A) is diagonalizable, must A be diagonalizable?
Why?

Exercise. If � is an eigenvalue of A 2 Mn that has multiplicity m � 1, show
that A is not diagonalizable if rank (A� �I) > n�m.

Exercise. If there is a linearly independent set of k vectors in Cn, each of
which is an eigenvector of A 2 Mn associated with a given eigenvalue �,
explain carefully why the (algebraic) multiplicity of � is at least k.

Diagonalizability is assured if all the eigenvalues are distinct. The basis for
this fact is the following important lemma about some of the eigenvalues.
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1.3.8 Lemma. Let �1; : : : ; �k be k � 2 distinct eigenvalues of A 2 Mn (that
is, �i 6= �j if i 6= j and 1 � i; j � k), and suppose that x(i) is an eigenvector
associated with �i for each i = 1; : : : ; k. Then fx(1); : : : ; x(k)g is linearly
independent.

Proof: Suppose there are complex scalars�1; : : : �k such that�1x(1)+�2x(2)+
� � �+ �rx(r) = 0. Let B1 = (A� �2I)(A� �3I) � � � (A� �kI) (the product
omits A� �1I). Since x(i) is an eigenvector associated with the eigenvalue �i
for each i = 1; : : : ; n, we have B1x(i) = (�i��2)(�i��3) � � � (�i��k)x(i),
which is zero if 2 � i � k (one of the factors is zero) and nonzero if i = 1 (no
factor is zero and x(1) 6= 0). Thus,

0 = B1

�
�1x

(1) + �2x
(2) + � � �+ �kx(k)

�
= �1B1x

(1) + �2B1x
(2) + � � �+ �kB1x(k)

= �1B1x
(1) + 0 + � � �+ 0 = �1B1x(1)

which ensures that �1 = 0 since B1x(1) 6= 0. Repeat this argument for each
j = 2; : : : ; k, de�ning Bj by a product like that de�ning B1, but in which the
factor A � �jI is omitted. For each j we �nd that �j = 0, so �1 = � � � =
�k = 0 and hence fx(1); : : : ; x(k)g is an independent set.

1.3.9 Theorem. If A 2 Mn has n distinct eigenvalues, then A is diagonaliz-
able.

Proof: Let x(i) be an eigenvector associated with the eigenvalue �i for each
i = 1; : : : ; n. Since all the eigenvalues are distinct, Lemma 1.3.8 ensures that
fx(1); : : : ; x(n)g is linearly independent. Theorem 1.3.7 then ensures that A is
diagonalizable.

Having distinct eigenvalues is suf�cient for diagonalizability, but of course
it is not necessary.

Exercise. Give an example of a diagonalizable matrix that does not have dis-
tinct eigenvalues.

Exercise. Let A;P 2 Mn and suppose that P is a permutation matrix, so
every entry of P is either 0 or 1 and PT = P�1; see (0.9.5). Show that the
permutation similarity PAP�1 reorders the diagonal entries of A. For any
given diagonal matrix D 2 Mn explain why there is a permutation similarity
PDP�1 that puts the diagonal entries of D into any given order. In particu-
lar, explain why P can be chosen so that any repeated diagonal entries occur
contiguously.
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In general, matrices A;B 2 Mn do not commute, but if A and B are both
diagonal, they always commute. The latter observation can be generalized
somewhat; the following lemma is helpful in this regard.

1.3.10 Lemma. Let B1 2 Mn1 ; : : : ; Bd 2 Mnd be given and let B be the
direct sum

B =

264 B1 0
. . .

0 Bd

375 = B1 � � � � �Bd
Then B is diagonalizable if and only if each of B1; : : : ; Bd is diagonalizable.

Proof: If for each i = 1; : : : ; d there is a nonsingular Si 2 Mni such that
S�1i BiSi is diagonal, and if we de�ne S = S1 � � � � �Sd, then one checks
that S�1BS is diagonal.
For the converse, we proceed by induction. There is nothing to prove for

d = 1. Suppose that d � 2 and that the assertion has been established for
direct sums with d� 1 or fewer direct summands. Let C = B1 � � � � �Bd�1,
let n = n1 + � � �+ nd�1, and letm = nd. Let S 2Mn+m be nonsingular and
such that

S�1BS = S�1 (C �Bd)S = � = diag(�1; �2; : : : ; �n+m)

Rewrite this identity as BS = S�. Partition S = [s1 s2 : : : sn+m] with

si =

�
�i
�i

�
2 Cn+m; �i 2 Cn; �i 2 Cm; i = 1; 2; : : : ; n+m

ThenBsi = �isi implies thatC�i = �i�i andBd�i = �i�i for i = 1; 2; : : : ; n+
m. The row rank of [�1 : : : �n+m] 2 Mn;n+m is n because this matrix com-
prises the �rst n rows of the nonsingular matrix S. Thus, its column rank
is also n, so the set f�1; : : : ; �n+mg contains a subset of n independent vec-
tors, each of which is an eigenvector of C. Theorem 1.3.7 ensures that C is
diagonalizable and the induction hypothesis ensures that its direct summands
B1; : : : ; Bd are all diagonalizable. The row rank of [�1 : : : �n+m] 2Mn;n+m

is m, so the set f�1; : : : ; �n+mg contains a subset of m independent vectors;
it follows that Bd is diagonalizable as well.

1.3.11 De�nition. Two matrices A;B 2 Mn are said to be simultaneously
diagonalizable if there is a single nonsingular S 2 Mn such that S�1AS and
S�1BS are both diagonal.

Exercise. Let A;B; S 2 Mn and suppose that S is nonsingular. Show that A
commutes with B if and only if S�1AS commutes with S�1BS.
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Exercise. If A;B 2 Mn are simultaneously diagonalizable, show that they
commute. Hint: Diagonal matrices commute.

Exercise. Show that if A 2 Mn is diagonalizable and � 2 C, then A and �I
are simultaneously diagonalizable.

1.3.12 Theorem. Let A;B 2Mn be diagonalizable. Then A and B commute
if and only if they are simultaneously diagonalizable.

Proof: Assume thatA andB commute, perform a similarity transformation on
both A and B that diagonalizes A (but not necessarily B) and groups together
any repeated eigenvalues of A. If �1; : : : ; �d are the distinct eigenvalues of A
and n1; : : : ; nd are their respective multiplicities, then we may assume that

A =

264 �1In1 0

�2In2 . . .
0 �dInd

375 ; �i 6= �j if i 6= j (1.3.13)

Since AB = BA, (0.7.7) ensures that

B =

264 B1 0
. . .

0 Bd

375 ; each Bi 2Mni (1.3.14)

is block diagonal conformal to A. Since B is diagonalizable, (1.3.10) ensures
that each Bi is diagonalizable. Let Ti 2 Mni be nonsingular and such that
T�1i BiTi is diagonal for each i = 1; : : : ; d; let

T =

264 T1 0

T2 . . .
0 Td

375 (1.3.15)

Then T�1i �iIniTi = �iIni , so T�1AT = A and T�1BT are both diagonal.
The converse is included in an earlier exercise.

We want to have a version of Theorem 1.3.12 involving arbitrarily many
commuting diagonalizable matrices. Central to our investigation is the notion
of an invariant subspace and the companion notion of a block triangular matrix.

1.3.16 De�nitions. A family F � Mn of matrices is a nonempty �nite or
in�nite set of matrices; a commuting family is a family of matrices in which
every pair of matrices commutes. For a given A 2 Mn, a subspaceW � Cn
is A-invariant if Aw 2W for every w 2W . A subspaceW � Cn is trivial
if eitherW = f0g orW = Cn; otherwise, it is nontrivial. For a given family
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F � Mn, a subspace W � Cn is F-invariant if W is A-invariant for each
A 2 F . A given family F � Mn is reducible if some nontrivial subspace of
Cn is F -invariant; otherwise, F is irreducible.

Exercise. For A 2Mn, show that each nonzero element of a one-dimensional
A-invariant subspace of Cn is an eigenvector of A.

Exercise. Suppose that n � 2 and S 2 Mn is nonsingular. Partition S =

[S1 S2], in which S1 2 Mn;k and S2 2 Mn;n�k with 1 < k < n. Explain
why

S�1S1 = [e1 : : : ek] =

�
Ik
0

�
and S�1S2 = [ek+1 : : : en] =

�
0

In�k

�
Invariant subspaces and block triangular matrices are two sides of the same

valuable coin: the former is the linear algebra side, while the latter is the matrix
analysis side. Let A 2 Mn with n � 2 and suppose that W � Cn is a k-
dimensional subspace with 1 < k < n. Choose a basis s1; : : : ; sk of W and
let S1 = [s1 : : : sk] 2 Mn;k. Choose any sk+1; : : : ; sn such that s1; : : : ; sn
is a basis for Cn, let S2 = [sk+1 : : : sn] 2 Mn;n�k, and let S = [S1 S2];
S has linearly independent columns, so it is nonsingular. IfW is A-invariant,
then Asj 2 W for each j = 1; : : : ; k, so each Asj is a linear combination
of s1; : : : ; sk, that is, AS1 = S1B for some B 2 Mk. If AS1 = S1B, then
AS = [AS1 AS2] = [S1B AS2] and hence

S�1AS =
�
S�1S1B S�1AS2

�
=

� �
Ik
0

�
B S�1AS2

�
=

�
B C

0 D

�
; B 2Mk; 1 � k � n� 1 (1.3.17)

The conclusion is thatA is similar to a block triangular matrix (1.3.17) if it has
a k-dimensional invariant subspace. But we can say a little more: we know
that B 2 Mk has an eigenvalue, so suppose B� = �� for some scalar � and
a nonzero � 2 Ck. Then 0 6= S1� 2 W and A(S1�) = (AS1)� = S1B� =

�(S1�), which means that A has an eigenvector inW .
Conversely, if S = [S1 S2] 2 Mn is nonsingular, S1 2 Mn;k, and S�1AS

has the block triangular form (1.3.17), then

AS1 = AS

�
Ik
0

�
= S

�
B C

0 D

� �
Ik
0

�
=
�
S1 S2

� � B1
0

�
= S1B

so the (k-dimensional) span of the columns of S1 is A-invariant. We summa-
rize the foregoing discussion in the following observation.



76 Eigenvalues, eigenvectors, and similarity

1.3.18 Observation. Suppose that n � 2. A given A 2 Mn is similar to
a block triangular matrix of the form (1.3.17) if and only if some nontrivial
subspace ofCn isA-invariant. Moreover, ifW � Cn is a nonzeroA-invariant
subspace, then some vector in W is an eigenvector of A. A given family
F � Mn is reducible if and only if there is some k 2 f2; : : : ; n � 1g and a
nonsingular S 2Mn such that S�1AS has the form (1.3.17) for every A 2 F .

The following lemma is at the heart of many subsequent results.

1.3.19 Lemma. Let F � Mn be a commuting family. Then some nonzero
vector in Cn is an eigenvector of every A 2 F .

Proof: There is always a nonzero F-invariant subspace, namely, Cn. Let
m = min{dimV : V is a nonzero F-invariant subspace of Cn} and let W
be any given F-invariant subspace such that dimW = m. Let any A 2 F be
given. SinceW is F-invariant, it is A-invariant, so (1.3.18) ensures that there
is some nonzero x0 2 W and some � 2 C such that Ax0 = �x0. Consider
the subspace WA;� � fx 2 W :Ax = �xg. Then x0 2 WA;� so WA;� is a
nonzero subspace ofW . For any B 2 F and any x 2 WA;�, F-invariance of
W ensures that Bx 2W . Using commutativity of F , we compute

A(Bx) = (AB)x = (BA)x = B(Ax) = B(�x) = �(Bx)

which shows that Bx 2 WA;�. Thus, WA;� is F-invariant and nonzero, so
dimWA;� � m. ButWA;� � W , so dimWA;� � m and henceW = WA;�.
We have now shown that for each A 2 F there is some scalar �A such that
Ax = �Ax for all x 2 W , so every nonzero vector inW is an eigenvector of
every matrix in F .

Exercise. Consider the nonzeroF-invariant subspaceW in the preceding proof.
Explain whym = dimW = 1.

Exercise. Suppose F �Mn is a commuting family. Show that there is a non-
singular S 2 Mn such that for every A 2 F , S�1AS has the block triangular
form (1.3.17) with k = 1.

Lemma 1.3.19 concerns commuting families of arbitrary nonzero cardinal-
ity. Our next result shows that Theorem 1.3.12 can be extended to arbitrary
commuting families of diagonalizable matrices.

1.3.20 De�nition. A family F �Mn is said to be simultaneously diagonaliz-
able if there is a single nonsingular S 2Mn such that S�1AS is diagonal for
every A 2 F .
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1.3.21 Theorem. Let F � Mn be a family of diagonalizable matrices. Then
F is a commuting family if and only if it is a simultaneously diagonalizable
family. Moreover, for any givenA0 2 F and for any given ordering �1; : : : ; �n
of the eigenvalues of A0, there is a nonsingular S 2Mn such that S�1A0S =
diag(�1; : : : ; �n) and S�1BS is diagonal for every B 2 F .

Proof: If F is simultaneously diagonalizable, then it is a commuting family
by a previous exercise. We prove the converse by induction on n. If n = 1,
there is nothing to prove since every family is both commuting and diago-
nal. Let us suppose that n � 2 and that, for each k = 1; 2; : : : ; n � 1, any
commuting family of k-by-k diagonalizable matrices is simultaneously diago-
nalizable. If every matrix in F is a scalar matrix, there is nothing to prove, so
we may assume that A 2 F is a given n-by-n diagonalizable matrix with dis-
tinct eigenvalues �1; �2; : : : ; �k and k � 2, that AB = BA for every B 2 F ,
and that each B 2 F is diagonalizable. Using the argument in (1.3.12), we
reduce to the case in which A has the form (1.3.13). Since every B 2 F com-
mutes with A, (0.7.7) ensures that each B 2 F has the form (1.3.14). Let
B; B̂ 2 F , so B = B1 � � � � � Bk and B̂ = B̂1 � � � � � B̂k in which each
of Bi; B̂i has the same size and that size is at most n� 1. Commutativity and
diagonalizability of B and B̂ imply commutativity and diagonalizability of Bi
and B̂i for each i = 1; : : : ; d. By the induction hypothesis, there are k simi-
larity matrices T1; T2; : : : ; Tk of appropriate size, each of which diagonalizes
the corresponding block of every matrix in F . Then the direct sum (1.3.15)
diagonalizes every matrix in F .
We have shown that there is a nonsingular T 2 Mn such that T�1BT is

diagonal for everyB 2 F . Then T�1A0T = P diag(�1; : : : ; �n)PT for some
permutation matrixP , PT (T�1A0T )P = (TP )�1A0(TP ) = diag(�1; : : : ; �n)
and (TP )�1B(TP ) = PT (T�1BT )P is diagonal for every B 2 F (0.9.5).

Remarks: We defer two important issues until Chapter 3: (1) GivenA;B 2
Mn; how can we determine if A is similar to B? (2) How can we tell if a given
matrix is diagonalizable without knowing its eigenvectors?

Although AB and BA need not be the same (and need not be the same
size even when both products are de�ned), their eigenvalues are as much the
same as possible. Indeed, if A and B are both square, then AB and BA have
exactly the same eigenvalues. These important facts follow from a simple but
very useful observation.
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Exercise. LetX 2Mm;n be given. Explain why
�
Im
0
X
In

�
2Mm+n is nonsin-

gular and verify that its inverse is
�
Im
0
�X
In

�
.

1.3.22 Theorem. Suppose that A 2Mm;n and B 2Mn;m withm � n. Then
the n eigenvalues of BA are the m eigenvalues of AB together with n � m
zeroes; that is, pBA(t) = tn�mpAB(t). Ifm = n and at least one of A or B is
nonsingular, then AB and BA are similar.

Proof: A computation reveals that

�
Im �A
0 In

� �
AB 0

B 0n

� �
Im A

0 In

�
=

�
0m 0

B BA

�

and the preceding exercise ensures that C1 =
�
AB
B

0
0n

�
and C2 =

�
0m
B

0
BA

�
are similar. The eigenvalues of C1 are the eigenvalues of AB together with
n zeroes. The eigenvalues of C2 are the eigenvalues of BA together with m
zeroes. Since the eigenvalues of C1 and C2 are the same, the �rst assertion
of the theorem follows. The �nal assertion follows from the observation that
AB = A(BA)A�1 if A is nonsingular andm = n.

Theorem 1.3.22 has many applications, several of which emerge in the fol-
lowing chapters. Here are just four.

1.3.23 Example. Eigenvalues of a low-rank matrix. Suppose A 2 Mn is
factored as A = XY T , in which X;Y 2 Mn;r and r < n. Then the eigen-
values of A are the same as those of the r-by-r matrix Y TX , together with
n � r zeroes. For example, consider the n-by-n matrix Jn = eeT whose
entries are all ones. Its eigenvalues are the eigenvalue of the 1-by-1 matrix
eT e = [n], namely, n, together with n � 1 zeroes. The eigenvalues of any
matrix of the form A = xyT with x; y 2 Cn (rankA is at most 1) are
yTx, together with n � 1 zeroes. The eigenvalues of any matrix of the form
A = xyT + zwT = [x z][y w]T with x; y; z; w 2 Cn (rankA is at most 2) are
the two eigenvalues of [y w]T [x z] =

�
yT x
wT x

yT z
wT z

�
(1.2.4b) together with n� 2

zeroes.

1.3.24 Example. Cauchy's determinant identity. Let a nonsingularA 2Mn
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and x; y 2 Cn be given. Then

det(A+ xyT ) = (detA)
�
det(I +A�1xyT )

�
= (detA)

nY
i=1

�i(I +A
�1xyT )

= (detA)
nY
i=1

�
1 + �i(A

�1xyT )
�

= (detA)
�
1 + yTA�1x

�
(use (1.3.23))

= detA+ yT
�
(detA)A�1

�
x = detA+ yT (adjA)x

Cauchy's identity det(A + xyT ) = detA + yT (adjA)x, valid for any A 2
Mn, now follows by continuity. For a different approach, see (0.8.5).

1.3.25 Example. For any n � 2, consider the n-by-n real symmetric Hankel
matrix

A = [i+ j]ni;j=1 =

26664
2 3 4 � � �
3 4 5 � � �
4 5 6 � � �
...

. . .

37775 = veT + evT = [v e][e v]T

in which every entry of e 2 Rn is 1 and v = [1 2 : : : n]T . The eigenvalues of
A are the same as those of

B = [e v]T [v e] =

�
eT v eT e

vT v vT e

�
=

"
n(n+1)

2 n
n(n+1)(2n+1)

6
n(n+1)

2

#

together with n � 2 zeroes. According to (1.2.4b), the eigenvalues B (one
positive and one negative) are

n(n+ 1)

"
1

2
�
s

2n+ 1

6(n+ 1)

#

1.3.26 Example. For any n � 2, consider the n-by-n real skew-symmetric
Toeplitz matrix

A = [i� j]ni;j=1 =

26664
0 �1 �2 � � �
1 0 �1 � � �
2 1 0 � � �
...

. . .

37775 = veT � evT = [v � e][e v]T
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Except for n� 2 zeroes, the eigenvalues of A are the same as those of

B = [e v]T [v � e] =
�
eT v �eT e
vT v �vT e

�
which, using (1.2.4b) again, are �ni2

q
n2�1
3 .

Theorem 1.3.22 on the eigenvalues of AB vs. BA is only part of the story;
we return to that story in (3.2.11).
If A 2Mn is diagonalizable and A = S�S�1, then aS also diagonalizes A

for any a 6= 0. Thus, a diagonalizing similarity is never unique. Nevertheless,
every similarity of A to a particular diagonal matrix can be obtained from just
one given similarity.

1.3.27 Theorem. Suppose A 2 Mn is diagonalizable, let �1; : : : ; �d be its
distinct eigenvalues with respective multiplicities n1; : : : ; nd, let S; T 2 Mn

be nonsingular, and suppose A = S�S�1, in which � is a diagonal matrix of
the form (1.3.13). (a) Then A = T�T�1 if and only if T = S(R1� � � ��Rd)
in which each Ri 2 Mni is nonsingular. (b) If S = [S1 : : : Sd] and T =

[T1 : : : Td] are partitioned conformally to �, then A = S�S�1 = T�T�1

if and only if for each i = 1; : : : ; d the column space of Si is the same as the
column space of Ti. (c) If A has n distinct eigenvalues and S = [s1 : : : sn]

and T = [t1 : : : tn] are partitioned according to their columns, then A =

S�S�1 = T�T�1 if and only if there is a nonsingular diagonal matrix R =
diag(r1; : : : ; rn) such that T = SR if and only if for each i = 1; : : : ; n the
column si is a nonzero scalar multiple of the corresponding column ti.

Proof: We have S�S�1 = T�T�1 if and only if (S�1T )� = �(S�1T ) if
and only if S�1T is block diagonal conformal to � (0.7.7), that is, if and only
if S�1T = R1�� � ��Rd and each Ri 2Mni is nonsingular. For (b), observe
that if 1 � k � n then the column space of X 2 Mn;k is contained in the
column space of Y 2 Mn;k if and only if there is some C 2 Mk such that
X = Y C; if, in addition, rankX = rankY = k, then C must be nonsingular.
The assertion (c) is a special case of (a) and (b).

Could two real matrices be similar only via a complex matrix? The follow-
ing theorem answers that question.

1.3.28 Theorem. Let real matrices A;B 2Mn(R) be given and suppose that
there is a nonsingular S 2 Mn such that A = SBS�1, that is, A and B
are similar over C. Then there is a nonsingular T 2 Mn(R) such that
A = TBT�1, that is, A and B are similar overR.
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Proof: Let S = C + iD be nonsingular and C;D 2 Mn(R). Then A =

SBS�1 if and only if A(C + iD) = AS = SB = (C + iD)B. Equating
the real and imaginary parts of this identity shows that AC = CB and AD =

DB. If C is nonsingular, take T = C. Otherwise, consider the polynomial
p(t) = det(C+tD), which is not identically constant since p(0) = detC = 0
and p(i) = detS 6= 0. Since p(t) has only �nitely many zeros in the complex
plane, there is a real t0 such that p(t0) 6= 0. Take T = C + t0D.

Our �nal theorem about similarity shows that the only relationship between
the eigenvalues and main diagonal entries of a complex matrix is that their
respective sums be equal.

1.3.29 Theorem. Let an integer n � 2 and complex scalars �1; : : : ; �n and
d1; : : : ; dn be given. There is an A 2 Mn with eigenvalues �1; : : : ; �n and
main diagonal entries d1; : : : ; dn if and only if

Pn
i=1 �i =

Pn
i=1 di. If �1; : : : ; �n

and d1; : : : ; dn are all real and have the same sums, there is an A 2 Mn(R)

with eigenvalues �1; : : : ; �n and main diagonal entries d1; : : : ; dn.

Proof: We know that trA = E1(A) = S1(A) for anyA 2Mn (1.2.16), which
establishes the necessity of the stated condition. We must prove its suf�ciency.
If k � 2 and if �1; : : : ; �k and d1; : : : ; dk are any given complex scalars

such that
Pk

i=1 �i =
Pk

i=1 di, we claim that the upper bidiagonal matrix

T (�1; : : : ; �k) =

266664
�1 1

�2
. . .
. . . 1

�k

377775 2Mk

is similar to a matrix with diagonal entries d1; : : : ; dk; that matrix has the prop-
erty asserted. Let L(s; t) =

h
1
s�t

0
1

i
, so L(s; t)�1 =

h
1
t�s

0
1

i
.

Consider �rst the case k = 2, so �1+�2 = d1+d2. Compute the similarity
L(�1; d1)T (�1; �2)L(�1; d1)

�1 =�
1 0

�1 � d1 1

� �
�1 1

0 �2

� �
1 0

d1 � �1 1

�
=

�
d1 F
F �1 + �2 � d1

�
=

�
d1 F
F d2

�
in which we use the hypothesis �1 + �2 � d1 = d1 + d2 � d1 = d2. This
veri�es our claim for k = 2.
We proceed by induction. Assume that our claim has been proved for some
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k � 2 and that
Pk+1

i=1 �i =
Pk+1

i=1 di. Partition T (�1; : : : ; �k+1) = [Tij ]
2
i;j=1,

in which T11 = T (�1; �2), T12 = E2, T21 = 0, and T22 = T (�3; : : : ; �k+1),
with E2 = [e2 0 : : : 0] 2 M2;k�1 and e2 = [0 1]T 2 C2. Let L =

L(�1; d1)� Ik�1 and compute LT (�1; : : : ; �k+1)L�1 =�
L(�1; d1) 0

0 Ik�1

� �
T (�1; �2) E2

0 T (�3; : : : ; �k+1)

� �
L(d1; �1) 0

0 Ik�1

�

=

24 �
d1 F
F �1 + �2 � d1

�
E2

0 T (�3; : : : ; �k+1)

35
=

�
d1 F
F T (�1 + �2 � d1; �3; : : : ; �k+1)

�
=

�
d1 F
F D

�
The sum of the eigenvalues of D = T (�1 + �2 � d1; �3; : : : ; �k+1) 2 Mk

is
Pk+1

i=1 �i � d1 =
Pk+1

i=1 di � d1 =
Pk+1

i=2 di, so the induction hypothesis
ensures that there is a nonsingular S 2 Mk such that the diagonal entries
of SDS�1 are d2; : : : ; dk+1. Then

�
1
0
0
S

� h
d1
F
F
D

i �
1
0
0
S

��1
=
h
d1
F

F
SDS�1

i
has

diagonal entries d1; d2; : : : ; dk+1.
If �1; : : : ; �n and d1; : : : ; dn are all real, all of the matrices and similarities

in the preceding constructions are real.

Exercise. Write out the details of the inductive step k = 2 ) k = 3 in the
preceding proof.

Problems

1. Let A;B 2 Mn. Suppose that A and B are diagonalizable and commute.
Let �1; : : : ; �n be the eigenvalues ofA and let �1; : : : ; �n be the eigenvalues of
B. (a) Show that the eigenvalues ofA+B are �1+�i1 ; �2+�i2 ; : : : ; �n+�in ,
for some permutation i1; : : : ; in of 1; : : : ; n. (b) If B is nilpotent, explain why
A and A+B have the same eigenvalues. (c) What are the eigenvalues of AB?

2. If A;B 2 Mn and if A and B commute, show that any polynomial in A
commutes with any polynomial in B.

3. If A 2 Mn, SAS�1 = � = diag(�1; : : : ; �n), and p(t) is a polynomial,
show that p(A) = S�1p(�)S and that p(�) = diag(p(�1); : : : ; p(�n)). This
provides a simple way to evaluate p(A) if one can diagonalize A.

4. If A 2Mn has distinct eigenvalues �1; : : : ; �n and commutes with a given
matrix B 2 Mn, show that B is diagonalizable and that there is a polyno-
mial p(t) of degree at most n � 1 such that B = p(A). Hint: Review the
proof of Theorem (1.3.12) and show that B and A are simultaneously diag-
onalizable. See (0.9.11) and explain why there is a (Lagrange interpolating)
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polynomial p(t) of degree at most n � 1 such that the eigenvalues of B are
p(�1); : : : ; p(�n).

5. Give an example of two commuting matrices that are not simultaneously
diagonalizable. Does this contradict Theorem (1.3.12)? Why?

6. (a) If � = diag(�1; : : : ; �n), show that p�(�) is the zero matrix. (b)
SupposeA 2Mn is diagonalizable. Explain why pA(t) = p�(t) and p�(A) =
Sp�(�)S

�1. Conclude that pA(A) is the zero matrix.

7. A matrix A 2Mn is a square root of B 2Mn if A2 = B. Show that every
diagonalizableB 2Mn has a square root. DoesB =

�
0
0
1
0

�
have a square root?

Why? Hint: If A2 = B and Ax = �x, show that �4x = A4x = B2x = 0 and
explain why both eigenvalues of A are zero. Then trA = 0 so A =

�
a
c
b
�a
�
.

Also, detA = 0, so a2 + bc = 0. Then A2 =?

8. If A;B 2 Mn and if at least one has distinct eigenvalues (no assumption,
even of diagonalizability, about the other), provide details for the following
geometric argument that A and B commute if and only if they are simulta-
neously diagonalizable: One direction is easy; for the other, suppose B has
distinct eigenvalues and Bx = �x with x 6= 0. Then B(Ax) = A(Bx) =

A�x = �Ax, so Ax = �x for some � 2 C (Why? See (1.2.18)). Thus, we
can diagonalize A with the same matrix of eigenvectors that diagonalizes B.
Of course, the eigenvalues of A need not be distinct.

9. Consider the singular matrices A =
�
1
0
0
0

�
and B =

�
0
1
0
0

�
. Show that AB

and BA are not similar, but that they do have the same eigenvalues.

10. Let A 2 Mn be given, and let �1; : : : ; �k be distinct eigenvalues of A.
For each i = 1; 2; : : : ; k suppose fx(i)1 ; x

(i)
2 ; : : : ; x

(i)
ni g is an independent set

of ni � 1 eigenvectors of A corresponding to the eigenvalue �i. Show that
fx(1)1 ; x

(1)
2 ; : : : ; x

(1)
n1 g[� � �[fx

(k)
1 ; x

(k)
2 ; : : : ; x

(k)
nk g is an independent set. Hint:

If some linear combination is zero, say 0 =
Pk

i=1

Pni
j=1 cijx

(i)
j =

Pk
i=1 y

(i),
use (1.3.8) to show that each y(i) = 0.

11. Provide details for the following alternative proof of Lemma (1.3.19):
(a) Suppose that A;B 2 Mn commute, x 6= 0, and Ax = �x. Consider
x;Bx;B2x;B3x; : : :. Suppose Bkx is the �rst element of this sequence that
is dependent upon its predecessors; S = Spanfx;Bx;B2x; : : : ; Bk�1xg is
B-invariant and hence contains an eigenvector of B. But ABjx = BjAx =

Bj�x = �Bjx, so every nonzero vector in S is an eigenvector forA. Conclude
that A and B have a common eigenvector. (b) If F = fA1; A2 : : : ; Amg �
Mn is a �nite commuting family, use induction to show that it has a common
eigenvector: If y 6= 0 is a common eigenvector forA1; A2 : : : ; Am�1, consider
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y;Amy;A
2
my;A

3
my; : : :. (c) IfF �Mn is a non-�nite commuting family, then

no subset of F containing more than n2 matrices can be linearly independent.
Select a maximal independent set and explain why a common eigenvector for
this �nite set is a common eigenvector for F .

12. Let A;B 2 Mn, and suppose that either A or B is nonsingular. If AB is
diagonalizable, show that BA is also diagonalizable. Consider A =

�
0
0
1
0

�
and

B =
�
1
0
1
0

�
to show that this need not be true if both A and B are singular.

13. Show that two diagonalizable matrices are similar if and only if their char-
acteristic polynomials are the same. Is this true for two matrices that are not
both diagonalizable? Hint: Consider

�
0
0
0
0

�
and

�
0
0
1
0

�
.

14. Suppose A 2 Mn is diagonalizable. (a) Prove that the rank of A is equal
to the number of its nonzero eigenvalues. (b) Prove that rankA = rankAk

for all k = 1; 2; : : : : (c) Prove that A is nilpotent if and only if A = 0. (d) If
trA = 0, prove that rankA 6= 1. (e) Use each of the four preceding results to
show that B =

�
0
0
1
0

�
is not diagonalizable.

15. Let A 2Mn and a polynomial p(t) be given. If A is diagonalizable, show
that p(A) is diagonalizable. What about the converse?

16. Let A 2 Mn and suppose that n > rankA = r � 1. If A is similar to
B � 0n�r (so B 2 Mr is nonsingular), show that A has a nonsingular r-by-r
principal submatrix (that is, A is rank principal (0.7.6)). If A is rank principal,
must it be similar to B � 0n�r? Hint: pA(t) = tn�r(tr � tr�1 trB + � � � �
detB), so Er(A) 6= 0. (1.2.13) Consider

�
1
i
i
�1
�
.

17. Let A;B 2 Mn be given. Prove that there is a nonsingular T 2 Mn(R)

such that A = TBT�1 if and only if there is a nonsingular S 2 Mn such
that both A = SBS�1 and �A = S �BS�1. Hint: Let S = C + iD with
C = (S + �S)=2 and D = (S � �S)=(2i). Then AS = SB and A �S = �SB

imply that AC = CB and AD = DB. Proceed as in the preceding problem.

18. Suppose A;B 2 Mn are coninvolutory, that is, A �A = B �B = I . Show
that A and B are similar over C if and only if they are similar overR.

19. Let B;C 2 Mn and de�ne A =
�
B
C
C
B

�
2 M2n. Let Q = 1p

2

�
In
In

In
�In

�
and verify that Q�1 = Q = QT . Show that Q�1AQ = (B + C)� (B � C).
Explain why (a) detA = det(B2+CB�BC�C2); (b) rankA = rank(B+
C) + rank(B � C); (c) If C is nilpotent, then the eigenvalues of A are the
eigenvalues of B, each with doubled multiplicity; (d) If B is symmetric and C
is skew symmetric, then the eigenvalues of A are the eigenvalues of B + C,
each with doubled multiplicity.
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20. Represent any A;B 2Mn as A = A1+ iA2 and B = B1+ iB2, in which
A1; A2; B1; B2 2 Mn(R). De�ne R1(A) =

�
A1

�A2

A2

A1

�
2 M2n(R). Show

that:
(a) A = B if and only if R1(A) = R1(B), R1(A + B) = R1(A) + R1(B),
R1(AB) = R1(A)R1(B), and R(In) = I2n;
(b) if A is nonsingular then R1(A) is nonsingular, and R1(A�1) = R1(A)�1;
(c) if S is nonsingular, then R1(SAS�1) = R1(S)R1(A)R1(S)�1;
(d) if A and B are similar, then R1(A) and R1(B) are similar.
Let the eigenvalues ofA be �1; : : : ; �n, let S =

�
In
0
iIn
In

�
, and letU = 1p

2

�
In
iIn

iIn
In

�
.

Show that:
(e) S�1 = �S and U�1 = �U = U�;
(f) S�1R1(A)S =

�
A
�A2

0
�A

�
and U�1R1(A)U =

�
A
0
0
�A

�
;

(g) the eigenvalues of R1(A) are the same as the eigenvalues of A� �A, which
are �1; : : : ; �n; �1; : : : ; �n;
(h) detR1(A) = jdetAj2 and rankR1(A) = 2 rankA;
(i) if R1(A) is nonsingular then A is nonsingular.
(j) iIn is not similar to �iIn, but R1(iIn) is similar to R1(�iIn), so the im-
plication in (d) can not be reversed.
(k) pR1(A)(t) = pA(t)p �A(t).
(l) R1(A�) = R1(A)T , so A is Hermitian if and only if R1(A) is (real) sym-
metric.
(m) A commutes with A� if and only if R1(A) commutes with R1(A)T , that
is, the complex matrix A is normal if and only if the real matrix R1(A) is nor-
mal. (2.5)
The block matrix R1(A) is an example of a real representation of A.

21. Using the same notation as in the preceding problem, de�ne R2(A) =�
A1

A2

A2

�A1

�
2 M2n(R). Let V = 1p

2

��iIn
In

�iIn
�In

�
, and consider R2(iIn) =�

0
In

In
0

�
and R2(In) =

�
In
0

0
�In

�
. Show that:

(a) V �1 = V �, R2(In)�1 = R2(In) = R2(In)
�, R2(iIn)�1 = R2(iIn) =

R2(iIn)
�, and R2(iIn) = V �1R2(In)V ;

(b)A = B if and only ifR2(A) = R2(B), andR2(A+B) = R2(A)+R2(B);
(c) R2(A) = V

�
0
A

�A
0

�
V �1;

(d) detR2(A) = (�1)njdetAj2;
(e) R2(A) is nonsingular if and only if A is nonsingular;
(f) R2(AB) = R2(A � In �B) = R2(A)R2(In)R2(B);
(g) R2( �A) = R2(In)R2(A)R2(In), so R2( �A) is similar to R2(A);
(h) �R2(A) = R2(�A) = R2(iIn � A � iIn) = (R2(iIn)R2(In)) � R2(A) �
(R2(iIn)R2(In))

�1, so R2(�A) is similar to R2(A);
(i) R2(A)R2(B) = V ( �AB �A �B)V �1;
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(j) if A is nonsingular, then R2(A)�1 = R2( �A�1);
(k) R2(A)2 = R1( �AA);
(l) if S is nonsingular, thenR2(SA �S�1) = (R2(S)R2(In))�R2(A)�(R2(S)R2(In))�1,
so R2(SA �S�1) is similar to R2(A). In fact, the converse is true: if R2(A) is
similar to R2(B), then there is a nonsingular S such that B = SA �S�1; see
Chapter XXX.
(m) R2(AT ) = R2(A)T , so A is (complex) symmetric if and only if R2(A) is
(real) symmetric.
(n) A is unitary if and only if R2(A) is real orthogonal. Hint: (m) and (j).
The block matrix R2(A) is a second example of a real representation of A.

22. Let A;B 2 Mn. Show that A and B are similar if and only if there are
X;Y 2 Mn, at least one of which is nonsingular, such that A = XY and
B = Y X .

23. Let B 2 Mn and C 2 Mn;m and de�ne A =
�
B
0
C
0m

�
2 Mn+m. Show

that A is similar to B � 0m if and only if rank[B C] = rankB, that is, if
and only if there is some X 2 Mn;m such that C = BX . Hint: Consider a
similarity of A via

�
In
0
X
Im

�
.

24. For a given integer n � 3, let � = 2�=n and letA = [cos(j�+k�)]nj;k=1 2
Mn(R). Show that A = [x y][x y]T , in which x = [� �2 : : : �n]T , y =
[��1 ��2 : : : ��n]T , and � = e2�i=n. Show that the eigenvalues of A are
n=2 and �n=2, together with n� 2 zeroes.

25. Let x; y 2 Cn be given and suppose that y�x 6= �1. (a) Verify that (I +
xy�)�1 = I�cxy�, in which c = (1+y�x)�1. (b) Let � = diag(�1; : : : ; �n)
and suppose that y�x = 0. Explain why the eigenvalues of

A = (I + xy�)�(I � xy�) = � + xy��� �xy� � (y��x)xy�

are �1; : : : ; �n. Notice that A has integer entries if the entries of x, y, and
� are integers. Use this observation to construct an interesting 3-by-3 matrix
with integer entries and eigenvalues 1, 2, and 7; verify that your construction
has the asserted eigenvalues.

26. Let e1; :::; en and "1; :::; "m, denote the standard orthonormal bases of Cn

and Cm, respectively. Consider the n-by-m block matrix P = [Pij ] 2 Mmn

in which each block Pij 2 Mm;n is given by Pij = "je
T
i . (a) Show that P

is a permutation matrix. (b) Similarity of any matrix A 2 Mmn by P gives
a matrix ~A � PAPT whose entries are a re-arrangement of the entries of
A. Appropriate partitioning of both A and ~A permits us to describe this re-
arrangement in a simple way. Write A = [Aij ] 2 Mmn as an m-by-m block
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matrix in which each block Akl � [a(k;l)ij ] 2Mn, and write ~A = [ ~Aij ] as an n-
by-n block matrix in which each block ~Aij 2Mm. Explain why the i; j entry
of ~Apq is the p; q entry of Aij for all i; j = 1; :::;m and all p; q = 1; :::; n,
that is, ~Apq = [a

(i;j)
pq ]. Since A and ~A are permutation similar, they have

the same eigenvalues, determinant, etc. Hint: ~Apq =
Pn

i;j=1 PpiAijP
T
qj =Pn

i;j=1

�
eTpAijeq

�
"i"

T
j (c) Various special patterns in the entries of A result

in special patterns in the entries of ~A (and vice versa). For example, explain
why: (i) All of the blocks Aij are upper triangular if and only if ~A is block
upper triangular. (ii) All of the blocks Aij are upper Hessenberg if and only
if ~A is block upper Hessenberg. (iii) All of the blocks Aij are diagonal if and
only if ~A is block diagonal. (iv) A is block upper triangular and all of the
blocks Aij are upper triangular if and only if ~A is block diagonal and all of its
main diagonal blocks are upper triangular.

27. (Continuation of Problem 26) Let A = [Akl] 2 Mmn be a given m-by-m
block matrix with each Akl � [a

(k;l)
ij ] 2 Mn, and suppose each block Akl

is upper triangular. Explain why the eigenvalues of A are the same as those
of ~A11 � � � � � ~Ann, in which ~App � [a

(i;j)
pp ] for p = 1; :::; n. Thus, the

eigenvalues of A depend only on the main diagonal entries of the blocks Aij .
In particular, detA = (det ~A11) � � � (det ~Ann). What can you say about the
eigenvalues and determinant of A if the diagonal entries of each block Aij are
constant (so there are scalars �kl such that a

(k;l)
ii = �kl for all i = 1; :::; n and

all k; l = 1; :::;m)?

28. Let A 2 Mm;n and B 2 Mn;m be given. Prove that det(Im + AB) =
det(In +BA).

29. Let A = [aij ] 2 Mn. Suppose each aii = 0 for i = 1; : : : ; n and
aij 2 f�1; 1g for all i 6= j. Explain why detA is an integer. Use Cauchy's
identity (1.3.24) to show that if any �1 entry of A is changed to +1, then
the parity of detA is unchanged, that is it remains even if it was even and it
remains odd if it was odd. Show that the parity of detA is the same as the
parity of det(Jn � I), which is opposite to the parity of n. Conclude that A is
nonsingular if n is even.

30. Suppose A 2 Mn is diagonalizable and A = S�S�1 in which � has the
form (1.3.13). If f(z) is a complex valued function whose domain includes
�(A), we de�ne f(A) � Sf(�)S�1 in which f(�) � f(�1)In1 � � � � �
f(�d)Ind . Does f(A) depend on the choice of the diagonalizing similarity
(which is never unique)? Use Theorem 1.3.27 to show that it does not, that is,
if A = S�S�1 = T�T�1, show that Sf(�)S�1 = Tf(�)T�1. If A has real
eigenvalues, show that cos2(A) + sin2(A) = I .
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31. Let a; b 2 C. Show that the eigenvalues of
�
a
�b

b
a

�
are a� ib.

32. Let x 2 Cn be a given nonzero vector, and write x = u + iv, in which
u; v 2 Rn. (0.2.5) Show that fx; �xg is linearly independent (over C) if and
only if fu; vg is linearly independent (over R).

33. Suppose A 2 Mn(R) has a non-real eigenvalue � and write � = a + ib

with a; b 2 R and b 6= 0; let x be an eigenvector associated with � and write
x = u + iv with u; v 2 Rn. Explain why: u and v are both nonzero and ��
is an eigenvalue of A associated with the eigenvector �x. Explain why: fx; �xg
is linearly independent (1.3.8) and hence fu; vg is linearly independent. Show
thatAu = 1

2 (Ax+A�x) = au�bv andAv = bu+av, soA[u v] = [u v]
h
a
�b

b
a

i
.

Let S = [u v S1] 2 Mn(R) be nonsingular and have u and v as its �rst and
second columns. Explain why

S�1AS = S�1
�
A[u v] AS1

�
= S�1

�
[u v]

�
a b

�b a

�
AS1

�

=

24 �
a b

�b a

�
F

0 A1

35 ; A1 2Mn�2

Thus, a real square matrix with a non-real eigenvalue � = a+ib can be de�ated
by real similarity to a real block matrix in which the upper left 2-by-2 block�
a
�b

b
a

�
reveals the real and imaginary parts of �.

34. If A;B 2Mn are similar, show that adjA and adjB are similar.

35. A set A � Mn is an algebra if (i) A is a subspace, and (ii) AB 2 A
wheneverA;B 2 A. Provide details for the following assertions and assemble
a proof of Burnside's theorem on matrix algebras: Let n � 2 and let A �Mn

be a given algebra. Then A =Mn if and only if A is irreducible.
(a) If n � 2 and an algebra A � Mn is reducible, then A 6= Mn. Hint: If A
is reducible, use (1.3.17) to give an example of an A 2 Mn such that A =2 A.
This is the easy implication in Burnside's theorem; some work is required to
show that if A is irreducible, then A = Mn. In the following, A � Mn is a
given algebra and A� = fA� : A 2 Ag.
(b) If n � 2 and A is irreducible, then A 6= f0g. Hint: Every subspace is
A-invariant if A = f0g .
(c) If x 2 Cn is nonzero, then Ax = fAx : A 2 Ag is an A-invariant
subspace of Cn.
(d) If n � 2, x 2 Cn is nonzero, and A is irreducible, then Ax = Cn.
(e) For any given x 2 Cn, A�x = fA�x : A 2 Ag is a subspace of Cn.
(f) If n � 2, x 2 Cn is nonzero, and A is irreducible, then A�x = Cn. Hint:
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If not, let z be a nonzero vector that is orthogonal to the subspaceA�x, that is,
(A�x)�z = x�Az = 0 for all A 2 A. Use (d) to choose an A 2 A such that
Az = x.
(g) If n � 2 and A is irreducible, there is some A 2 A such that rankA = 1.
Hint: If d = minfrankA : A 2 A and A 6= 0g > 1, choose any Ad 2 A with
rankAd = d. Choose distinct i; j such that fAei; Aejg is linearly independent
(pair of columns of Ad), so Adei 6= 0 and Adej 6= �Adei for all � 2 C.
Choose B 2 A such that B(Adei) = ej . Then AdBAdei 6= �Adei for all
� 2 C. The range of Ad is AdB-invariant (AdB(Adx) = Ad(BAdx)) so it
contains an eigenvector ofAdB (1.3.18). Thus, there is an x such thatAdx 6= 0
and for some �0 2 C, (AdB��0I)(Adx) = 0. Hence, AdBAd��0Ad 2 A,
AdBAd � �0Ad 6= 0, and rank(AdBAd � �Ad) < d. This contradiction
implies that d = 1.
(h) If n � 2, A is irreducible, and there are nonzero y; z 2 Cn such that
yz� 2 A, then A contains every rank one matrix. Hint: For any given nonzero
�; � 2 Cn, choose A;B 2 A such that � = Ay and � = B�z. Then ��� =
A(yz�)B 2 A.
(i) If A contains every rank one matrix, then A =Mn. (0.4.4(i))

36. Suppose A;B 2 Mn are given and n � 2. The algebra generated by A
and B is the span of the set of all words in A and B (2.2.5). (a) If A and B
have no common eigenvector, explain why the algebra generated by A and B
is all of Mn. (b) Let A =

�
0
0
1
0

�
and B =

�
0
1
0
0

�
. Show that A and B have

no common eigenvector, so the algebra that they generate is all ofM2. Give a
direct proof by exhibiting a basis ofM2 consisting of words in A and B.

Further Readings and Notes: Theorem 1.3.29 is due to L. Mirsky (1958);
our proof is adapted from E. Carlen and E. Lieb, Short proofs of theorems of
Horn and Mirsky on diagonals and eigenvalues of matrices, Electron. J. Lin-
ear AlgebraXXXX. The proof of Burnside's theorem in Problem 35 is adapted
from I. Halperin and P. Rosenthal, Burnside's Theorem on Algebras of Matri-
ces, Amer. Math. Monthly 87 (1980) 810. For alternative approaches, see
[RadRos] and V. Lomonosov and P. Rosenthal, The simplest proof of Burn-
side's theorem on matrix algebras, Linear Algebra Appl. 383 (2004) 45-47.

1.4 Left and right eigenvectors, and geometric multiplicity
The eigenvectors of a matrix are important not only for their role in diagonal-
ization, but also for their utility in a variety of applications. We begin with an
important observation about eigenvalues.
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1.4.1 Observation. Let A 2 Mn. (a) The eigenvalues of A and AT are the
same. (b) The eigenvalues ofA� are the complex conjugates of the eigenvalues
of A.

Proof: Since det(tI�AT ) = det(tI�A)T = det(tI�A); we have pAT (t) =

pA(t), so pAT (�) = 0 if and only if pA(�) = 0. Similarly, det(�tI � A�) =
det[(tI � A)�] = det(tI �A), so pA�(�t ) = pA(t), and pA�(�� ) = 0 if and
only if pA(�) = 0.

Exercise. If x; y 2 Cn are both eigenvectors of A 2Mn corresponding to the
eigenvalue �, show that any nonzero linear combination of x and y is also an
eigenvector corresponding to �. Conclude that the set of all eigenvectors asso-
ciated with a particular � 2 �(A), together with the zero vector, is a subspace
of Cn.

Exercise. The subspace described in the preceding exercise is the null space of
A��I , that is, the solution set of the homogeneous linear system (A��I)x =
0. Explain why the dimension of this subspace is n� rank(A� �I).

1.4.2 De�nition. Let A 2 Mn. For a given � 2 �(A), the set of all vectors
x 2 Cn satisfying Ax = �x is called the eigenspace of A corresponding to
the eigenvalue �. Every nonzero element of this eigenspace is an eigenvector
of A corresponding to �.

Exercise. Show that the eigenspace of A corresponding to an eigenvalue � is
anA-invariant subspace, but anA-invariant subspace need not be an eigenspace
of A. Explain why a minimal A-invariant subspace (an A-invariant subspace
that contains no strictly lower-dimensional, nonzero A-invariant subspace)W
is the span of a single eigenvector of A, that is, dimW = 1.

1.4.3 De�nition. LetA 2Mn and let � be an eigenvalue ofA. The dimension
of the eigenspace of A corresponding to � is the geometric multiplicity of �.
The multiplicity of � as a zero of the characteristic polynomial of A is the al-
gebraic multiplicity of �. If the term multiplicity is used without quali�cation
in reference to �, it means the algebraic multiplicity. We say that � is simple if
its algebraic multiplicity is one; it is semisimple if its algebraic and geometric
multiplicities are equal.

It is very useful to be able to think of the geometric multiplicity of an eigen-
value � of A 2 Mn in more than one way: Since the geometric multiplicity
is the dimension of the nullspace of A� �I , it is equal to n� rank(A� �I).
It is also the maximum number of linearly independent eigenvectors associ-
ated with �. Theorems 1.2.18 and 1.3.7 both contain an inequality between the
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geometric and algebraic multiplicities of an eigenvalue, but from two different
viewpoints.

Exercise. Use Theorem 1.2.18 to explain why the algebraic multiplicity of an
eigenvalue is greater than or equal to its geometric multiplicity. If the algebraic
multiplicity is 1, why must the geometric multiplicity also be 1?

Exercise. Use Theorem 1.3.7 to explain why the geometric multiplicity of an
eigenvalue is less than or equal to its algebraic multiplicity. If the algebraic
multiplicity is 1, why must the geometric multiplicity also be 1?

Exercise. What are the algebraic and geometric multiplicities of the eigenvalue
0 of the matrix

�
0
0
2
0

�
?

1.4.4 De�nitions. Let A 2 Mn. We say that A is defective if the geometric
multiplicity of some eigenvalue of A is strictly less than its algebraic multi-
plicity. If the geometric multiplicity of each eigenvalue of A is the same as its
algebraic multiplicity, we say that A is nondefective. If each eigenvalue of A
has geometric multiplicity 1, we say that A is nonderogatory.

A matrix is diagonalizable if and only if it is nondefective; it has distinct
eigenvalues if and only if it is nonderogatory and nondefective.

1.4.5 Example. Even thoughA andAT have the same eigenvalues, their eigen-
vectors corresponding to a given eigenvalue can be very different. For exam-
ple, letA =

�
2
0
3
4

�
. Then the (one-dimensional) eigenspace ofA corresponding

to the eigenvalue 2 is spanned by
�
1
0

�
, while the corresponding eigenspace of

AT is spanned by
�

1
�3=2

�
.

1.4.6 De�nition. A nonzero vector y 2 Cn is a left eigenvector of A 2 Mn

corresponding to an eigenvalue � of A if y�A = �y�. If necessary for clarity,
we refer to the vector x in (1.1.3) as a right eigenvector; when the context does
not require distinction, we continue to call x an eigenvector.

Exercise. Show that a left eigenvector y corresponding to an eigenvalue � of
A 2Mn is a right eigenvector of A� corresponding to ��; also show that �y is a
right eigenvector of AT corresponding to �.

Exercise. Example (1.4.5) shows that a right eigenvector x of A 2 Mn need
not also be a left eigenvector. But if it is, the corresponding right and left
eigenvalues must be the same. Why? That is, if x 6= 0, Ax = �x, and
x�A = �x�, then why is � = �? Hint: Evaluate x�Ax in two ways.
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Exercise. SupposeA 2Mn is diagonalizable, S is nonsingular, and S�1AS =
� = diag(�1; : : : ; �n). Partition S = [x1 : : : xn] and S�� = [y1 : : : yn]

(0.2.5) according to their columns. The identity AS = S� tells us that each
column xj of S is a right eigenvector of A corresponding to the eigenvalue
�j . Explain why (S��)�A = �(S��)�, why each column yj of S�� is a left
eigenvector of A corresponding to the eigenvalue �j , why y�jxj = 1 for each
j = 1; : : : ; n, and why y�i xj = 0 whenever i 6= j.

One should not dismiss left eigenvectors as merely a parallel theoretical al-
ternative to right eigenvectors. Each type of eigenvector can convey different
information about a matrix, and it can be very useful to know how the two
types of eigenvectors interact. In the preceding exercise, we learned that a
diagonalizable A 2Mn has n pairs of non-orthogonal left and right eigenvec-
tors, and that left and right eigenvectors associated with different eigenvalues
are orthogonal. We next examine a version of these results for matrices that
are not necessarily diagonalizable.

1.4.7 Theorem. Let A 2Mn and nonzero vectors x; y 2 Cn be given.
(a) Suppose that Ax = �x, y�A = �y�, and � 6= �. Then y�x = 0.
(b) Suppose that Ax = �x, y�A = �y�, and y�x 6= 0. Then A is similar to�

� 0

0 B

�
for some B 2Mn�1 (1.4.8)

Conversely, if A is similar to a block matrix of the form (1.4.8), then it has a
non-orthogonal pair of left and right eigenvectors associated with the eigen-
value �.

Proof: (a) Let y be a left eigenvector of A corresponding to � and let x be a
right eigenvector of A corresponding to �. Manipulate y�Ax in two ways:

y�Ax = y�(�x) = �(y�x)

= (�y�)x = �(y�x)

Since � 6= �, �y�x = �y�x only if y�x = 0.
(b) Suppose that Ax = �x, y�A = �y�, and y�x 6= 0: If we replace x by
x=(y�x), we may assume that y�x = 1. Let the columns of S1 2 Mn;n�1
be any basis for the orthogonal complement of y (so y�S1 = 0) and consider
S = [x S1] 2 Mn. Let z = [z1 �

T ]T with � 2 Cn�1 and suppose Sz = 0.
Then

0 = y�Sz = y�(z1x+ S1�) = z1(y
�x) + (y�S1)� = z1
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so z1 = 0 and 0 = Sz = S1�, which implies that � = 0 since S1 has full
column rank. We conclude that S is nonsingular. Partition S�� = [� Z1] with
� 2 Cn and compute

In = S
�1S =

�
��

Z�1

� �
x S1

�
=

�
��x ��S1
Z�1x Z�1S1

�
=

�
1 0

0 In�1

�
which contains four identities. The identity ��S1 = 0 implies that � is orthog-
onal to the orthogonal complement of y, so � = �y for some scalar �. The
identity ��x = 1 tells us that ��x = (�y)�x = ��(y�x) = �� = 1, so � = y.
Using the identities ��S1 = y�S1 = 0 and Z�1x = 0 as well as the eigenvector
properties of x and y, compute the similarity

S�1AS =

�
y�

Z�1

�
A
�
x S1

�
=

�
y�Ax y�AS1
Z�1Ax Z�1AS1

�
=

�
(�y�)x (�y�)S1
Z�1 (�x) Z�1AS1

�
=

�
�(y�x) �(y�S1)

�(Z�1x) Z�1AS1

�
=

�
� 0

0 Z�1AS1

�
which veri�es that A is similar to a matrix of the form (1.4.8).
Conversely, suppose there is a nonsingular S such thatA = S([�]�B)S�1.

Let x be the �rst column of S, let y be the �rst column of S��, and partition
S = [x S1] and S�� = [y Z1]. The 1; 1 entry of the identity S�1S = I tells
us that y�x = 1; the �rst column of the identity

[Ax AS1] = AS = S([�]�B) = [�x S1B]

tells us that Ax = �x; and the �rst row of the identity�
y�A

Z�1A

�
= S�1A = ([�]�B)S�1 =

�
�y�

BZ�1

�
tells us that y�A = �y�.

The assertion in Theorem 1.4.7(a) is the principle of biorthogonality. One
might also ask what happens if left and right eigenvectors corresponding to the
same eigenvalue are either orthogonal or equal; these cases are discussed in
Theorem 2.4.11.1.
Eigenvectors transform under similarity in a simple way. The eigenvalues

are, of course, unchanged by similarity.

1.4.9 Theorem. Let A;B 2 Mn and suppose B = S�1AS for some nonsin-
gular S. If x 2 Cn is a right eigenvector of B corresponding to an eigenvalue
�, then Sx is a right eigenvector of A corresponding to �. If y 2 Cn is a
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left eigenvector of B corresponding to �, then S��y is a left eigenvector of A
corresponding to �.

Proof: If Bx = �x, then S�1ASx = �x, or A(Sx) = �(Sx). Since S is
nonsingular and x 6= 0, Sx 6= 0, and hence Sx is an eigenvector of A. If
y�B = �y�, then y�S�1AS = �y�, or (S��y)�A = �(S��y)�.

Information about eigenvalues of principal submatrices can re�ne the basic
observation that the algebraic multiplicity of an eigenvalue can not be less than
its algebraic multiplicity.

1.4.10 Theorem. Let A 2 Mn and � 2 C be given, and let k � 1 be a given
positive integer. Consider the following three statements:

(a) � is an eigenvalue of A with geometric multiplicity at least k.
(b) For each m = n � k + 1; : : : ; n, � is an eigenvalue of every m-by-m

principal submatrix of A.
(c) � is an eigenvalue of A with algebraic multiplicity at least k.

Then (a) implies (b), and (b) implies (c). In particular, the algebraic multi-
plicity of an eigenvalue is at least as great as its geometric multiplicity.

Proof: (a)) (b): Let � be an eigenvalue of A with geometric multiplicity at
least k, which means that rank(A� �I) � n� k. Supposem > n� k. Then
everym-by-m minor of A� �I is zero. In particular, every principalm-by-m
minor of A � �I is zero, so every m-by-m principal submatrix of A � �I is
singular. Thus, � is an eigenvalue of everym-by-m principal submatrix of A.
(b) ) (c): Suppose � is an eigenvalue of every m-by-m principal submatrix
of A for each m � n � k + 1. Then every principal minor of A � �I of
size at least n � k + 1 is zero, so each principal minor sum Ej(A � �I) = 0
for all j � n � k + 1: Then (1.2.13) and (1.2.11) ensure that p(i)A��I(0) = 0

for i = 0; 1; : : : ; k � 1. But pA��I(t) = pA(t + �), so p
(i)
A (�) = 0 for

i = 0; 1; : : : ; k � 1, that is, � is a zero of pA(t) with multiplicity at least k.

An eigenvalue � with geometric multiplicity one can have algebraic multi-
plicity two or more, but this can happen only if the left and right eigenvectors
associated with � are orthogonal. If � has algebraic multiplicity one, however,
then it has geometric multiplicity one and left and right eigenvectors associ-
ated with � can never be orthogonal. Our approach to these results relies on
the following lemma.
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1.4.11 Lemma. Let A 2 Mn, � 2 C, and nonzero vectors x; y 2 Cn be
given. Suppose that Ax = �x, y�A = �y�, and � has geometric multiplicity
one. Then there is a nonzero 
 2 C such that adj(�I �A) = 
xy�.

Proof: We have rank(�I � A) = n � 1 and hence rank adj(�I � A) = 1,
that is, adj(�I � A) = ��� for some nonzero �; � 2 Cn; see (0.8.2). But
(�I � A)(adj(�I � A)) = det(�I � A)I = 0, so (�I � A)��� = 0 and
(�I � A)� = 0, which implies that � = �x for some nonzero scalar �. Using
the identity (adj(�I�A))(�I�A) = 0 in a similar fashion, we conclude that
� = �y for some nonzero scalar �. Thus, adj(�I �A) = ��xy�.

1.4.12 Theorem. Let A 2 Mn, � 2 C, and nonzero vectors x; y 2 Cn be
given. Suppose that Ax = �x and y�A = �y�. (a) If � has algebraic multi-
plicity one, then y�x 6= 0. (b) If � has geometric multiplicity one, then it has
algebraic multiplicity one if and only if y�x 6= 0.

Proof: In both cases (a) and (b), � has geometric multiplicity one; the preced-
ing lemma tells us that there is a nonzero 
 2 C such that adj(�I�A) = 
xy�.
Then pA(�) = 0 and p0A(�) = tr adj(�I � A) = 
y�x; see (0.8.10.2). In (a)
we assume that the algebraic multiplicity is one, so p0A(�) 6= 0 and hence
y�x 6= 0. In (b) we assume that y�x 6= 0, so p0A(�) 6= 0 and hence the
algebraic multiplicity is one.

Problems

1. Let nonzero vectors x; y 2 Mn be given, let A = xy�, and let � = y�x.
Show that: (a) � is an eigenvalue ofA; (b) x is a right and y is a left eigenvector
ofA corresponding to �; and (c) if � 6= 0, then it is the only nonzero eigenvalue
of A (algebraic multiplicity = 1). Explain why any vector that is orthogonal to
y is in the null space ofA. What is the geometric multiplicity of the eigenvalue
0? Explain why A is diagonalizable if and only if y�x 6= 0.

2. Let A 2 Mn be skew-symmetric. Show that pA(t) = (�1)npA(�t) and
deduce that if � is an eigenvalue of A with multiplicity k then so is ��. If n
is odd, explain why A must be singular. Explain why every principal minor of
A with odd size is singular. Use the fact that a skew-symmetric matrix is rank
principal (0.7.6) to show that rankA must be even.

3. Suppose n � 2 and let T = [tij ] 2 Mn be upper triangular.(a) Let x be an
eigenvector of T corresponding to the eigenvalue tnn; explain why en is a left
eigenvector corresponding to tnn. If tii 6= tnn for each i = 1; : : : ; n� 1, show
that the last entry of x must be nonzero. (b) Let k 2 f1; : : : ; n�1g. Show that
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there is an eigenvector x of T corresponding to the eigenvalue tkk whose last
n� k entries of x are zero, that is, xT = [�T 0]T with � 2 Ck. If tii 6= tkk for
all i = 1; : : : ; k � 1, explain why the kth entry of x must be nonzero.

4. Suppose A 2 Mn is tridiagonal and has a zero main diagonal. Let S =
diag(�1; 1;�1; : : : ; (�1)n) and show that S�1AS = �A. If � is an eigen-
value ofA with multiplicity k, explain why�� is also an eigenvalue ofA with
multiplicity k. If n is odd, show that A is singular.

5. Consider the block triangular matrix

A =

�
A11 A12
0 A22

�
; Aii 2Mni ; i = 1; 2

If x 2 Cn1 is a right eigenvector of A11 corresponding to � 2 �(A11), and
if y 2 Cn2 is a left eigenvector of A22 corresponding to � 2 �(A22), show
that [x0 ] 2 C

n1+n2 is a right eigenvector, and
�
0
y

�
is a left eigenvector, of A

corresponding to � and �, respectively. Use this observation to show that the
eigenvalues of A are the eigenvalues of A11 together with those of A22.

6. Suppose A 2 Mn has an entry-wise positive left eigenvector and an entry-
wise positive right eigenvector, both corresponding to a given eigenvalue �
with geometric multiplicity 1. (a) Show that A has no entry-wise nonnegative
left or right eigenvectors corresponding to any eigenvalue different from �. (b)
If � has geometric multiplicity one, show that it has algebraic multiplicity one.

7. In this problem we outline a simple version of the power method for �nding
the largest modulus eigenvalue and an associated eigenvector of A 2 Mn.
Suppose that A 2 Mn has distinct eigenvalues �1; : : : ; �n and that there is
exactly one eigenvalue �n of maximum modulus �(A). If x(0) 2 Cn is not
orthogonal to a left eigenvector associated with �n, show that the sequence

x(k+1) =
1

(x(k)�x(k))1=2
Ax(k); k = 0; 1; 2; : : :

approaches an eigenvector of A and the ratios of a given nonzero entry in the
vectors Ax(k) and x(k) approach �n. Hint: Assume without loss of generality
that �n = 1 and let y(1); : : : ; y(n) be linearly independent eigenvectors corre-
sponding to �1; : : : ; �n. Write x(0) (uniquely: Why?) as x(0) = �1y(1)+� � �+
�ny

(n), with �n 6= 0. Then x(k) = ck(�1�k1y(1) + � � �+ �n�1�kn�1y(n�1) +
�ny

(n)) for some scalar ck 6= 0. Since j�ijk ! 0; i = 1; : : : ; n � 1, x(k)
converges to a scalar multiple of y(n).

8. Continue with the assumptions and notation of Problem 7. Further eigenval-
ues (and eigenvectors) of A can be calculated by combining the power method
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with de�ation, which delivers a square matrix of size one smaller. Let S 2Mn

be nonsingular and have as its �rst column an eigenvector y(n) associated with
the eigenvalue �n, which have been computed by the power method or other-
wise. Show that

S�1AS =

"
�n �
0 A1

#
- - - - - - - -

and that the eigenvalues of A1 2Mn�1 are �1; : : : ; �n�1. Another eigenvalue
may be calculated from A1 and the de�ation repeated.

9. Let A 2Mn have eigenvalues �1; : : : ; �n�1; 0, so that rank A � n� 1, and
suppose that the last row of A is a linear combination of the others.
(a) Partition

A =

�
A11 x

yT �

�
in which A11 2 Mn�1. Explain why there is a b 2 Cn�1 such that yT =

bTA11 and � = bTx. Interpret b in terms of a left eigenvector of A corre-
sponding to the eigenvalue 0. (b) Show that A11 + xbT 2Mn�1 has eigenval-
ues �1; : : : ; �n�1. This is another version of de�ation: it produces a matrix of
smaller size with the remaining eigenvalues. If one eigenvalue � ofA is known,
then the process described in this problem can be applied to P (A � �I)P�1,
for a suitable permutation P . Hint: Consider S�1AS with S =

�
I
bT

0
1

�
.

10. Let T 2 Mn be a nonsingular matrix whose columns are left eigenvectors
of A 2Mn. Show that the columns of T�� are right eigenvectors of A.

11. Suppose A 2 Mn is an unreduced upper Hessenberg matrix (0.9.9). Ex-
plain why rank(A � �I) � n � 1 for every � 2 C and deduce that every
eigenvalue of A has geometric multiplicity one, that is, A is nonderogatory.

12. Let � be an eigenvalue of A 2 Mn. (a) Show that every set of n � 1
columns of A � �I is linearly independent if and only if no eigenvector of A
associated with � has a zero entry. (b) If no eigenvector of A associated with
� has a zero entry, why must � have geometric multiplicity one?

13. Under the hypotheses of Lemma 1.4.10, and assuming that the eigenvalues
of A are �; �2; : : : ; �n and � 6= �i for all i = 2; : : : ; n, show that 
 = (� �
�2)(�� �3) � � � (�� �n)=y�x.

14. Let A 2 Mn and let t 2 C. Explain why (A � tI) adj(A � tI) =
adj(A� tI)(A� tI) = pA(t)I . Now suppose � is an eigenvalue of A. Show
that: (a) every nonzero column of adj(A��I) is an eigenvector ofA associated
with �; (b) every nonzero row of adj(A � �I) is the conjugate transpose of a
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left eigenvector ofA associated with �; (c) adj(A��I) 6= 0 if and only if � has
geometric multiplicity one; (d) If � is an eigenvalue of A =

�
a
c
b
d

�
, then each

nonzero column of
�
d��
�c

�b
a��

�
is an eigenvector of A associated with �; each

nonzero row is the conjugate transpose of a left eigenvector of A associated
with �.

15. Suppose that � is a simple eigenvalue of A 2 Mn, and suppose that
x; y; z; w 2 Cn, Ax = �x, y�A = �y�, y�z 6= 0, and w�x 6= 0. Show that
A��I +�zw� is nonsingular for all � 6= 0. Explain why it is possible to take
z = x. Hint: (A � �I + �zw�)u = 0 ) �(w�u)y�z = 0 ) w�u = 0 )
u = �x) w�x = 0.

16. Show that the complex tridiagonal Toeplitz matrix

A =

266664
a b

c a
. . .

. . . . . . b

c a

377775 2Mn; bc 6= 0 (1.4.13)

is diagonalizable and has spectrum �(A) = fa + 2
p
bc cos( ��n+1 ) : � =

1; : : : ; ng, in which Re
p
bc � 0 and Im

p
bc > 0 if bc is real and nega-

tive. Hint: Let �; x = [xi]
n
i=1 be an eigenvalue-eigenvector pair for A. Then

(A � �I)x = 0 ) cxk�1 + (a � �)xk + bxk+1 = 0 ) xk+1 +
a��
b xk +

c
bxk�1 = 0; k = 1; : : : ; n, which is a second order difference equation with
boundary conditions x0 = xn+1 = 0, and indicial equation t2+ a��

b t+
c
b = 0

with roots r1 and r2. The general solution of the difference equation is (a)
xk = �rk1 + �r

k
2 if r1 6= r2, or (b) xk = �rk1 + k�r

k
1 if r1 = r2; � and

� are determined by the boundary conditions. In either case, r1r2 = c=b (so
r1 6= 0 6= r2) and r1+r2 = �(a��)=b (so � = a+b(r1+r2)). If r1 = r2 then
0 = x0 = � and 0 = xn+1 = (n+1)�rn+11 ) x = 0. Thus, xk = �rk1 +�rk2
so 0 = x0 = � + � and 0 = xn+1 = �(rn+11 � rn+12 ) ) (r1=r2)

n+1 =

1 ) r1=r2 = e
2�i�
n+1 for some � 2 f1; : : : ; ng. Since r1r2 = c=b we have

r1 = �
p
c=b e

�i�
n+1 and r1 = �

p
c=b e

��i�
n+1 (same choice of signs). Thus,

� = a+ b(r1 + r2) = a� 2
p
bc cos( ��n+1 ).

17. If a = 2 and b = c = �1 in (1.4.13), show that �(A) = f4 sin2( ��
2(n+1) ) :

� = 1; : : : ; ng.
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similarity invariant, 70

rank
diagonalizable matrix, 84
similarity invariant, 70

rank-principal matrix, 84, 95
real part, 57
real representation, 85, 86
normal, 85

reducible
family, 75

right shift operator, 58
root
of an equation, 55

semisimple eigenvalue, 90
similar, 51
complex, 80
de�nition, 69
equivalence relation, 69
over C, 80
over R, 80
permutation, 69

real, 80
similarity
matrix, 69
uniqueness to diagonalize, 80

simple
eigenvalue, 90

simultaneously diagonalizable
commuting family, 77

simultaneously diagonizable, 73
spectral radius, 62
spectrum, 53
square root, 83
subspace
invariant, 74
nontrivial, 74
trivial, 74

trace
similarity invariant, 70
sum of eigenvalues, 60

tridiagonal matrix
eigenvalues, 98

Wronskian, 67

zero
of a function, 55


