
CHAPTER 3
Canonical forms for similarity, and triangular

factorizations

3.0 Introduction
yHow can we tell if two given matrices are similar? The two matrices

A =

2664
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

3775 and B =

2664
0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

3775 (3.0.0)

have the same eigenvalues, and hence they have the same characteristic poly-
nomial, trace, and determinant. They also have the same rank, but A2 = 0 and
B2 6= 0, so A and B are not similar.
One approach to determining whether given square complex matricesA and

B are similar would be to have in hand a set of special matrices of prescribed
form, and see if both given matrices can be reduced by similarity to the same
special matrix. If so, then A and B must be similar because the similarity
relation is transitive and re�exive. If not, then we would like to be able to
conclude that A and B are not similar. What sets of special matrices would be
suitable for this purpose?
Every square complex matrix is similar to an upper triangular matrix. How-

ever, two upper triangular matrices with the same main diagonals but some
different off-diagonal entries can still be similar (2.3.2b). Thus, we have a
uniqueness problem: if we reduce A and B to two unequal upper triangu-
lar matrices with the same main diagonal, we cannot conclude from this fact
alone that A and B are not similar.
The class of upper triangular matrices is too large for our purposes, but what

about the smaller class of diagonal matrices? Uniqueness is no longer an issue,

y Matrix Analysis, second edition by Roger A. Horn and Charles R. Johnson, copyright Cam-
bridge University Press 2009. June 8, 2009 version.
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186 Canonical forms for similarity, and triangular factorizations

but now we have an existence problem: Some similarity equivalence classes
contain no diagonal matrices.
The key to �nding a suitable set of special matrices turns out to be a deft

compromise between diagonal matrices and upper triangular matrices: A Jor-
dan matrix is a special block upper triangular form that can be achieved by
similarity for every complex matrix. Two Jordan matrices are similar if and
only if they have the same diagonal blocks, without regard to their ordering.
Moreover, no other matrix in the similarity equivalence class of a Jordan matrix
J has strictly fewer nonzero off-diagonal entries than J .
Similarity is only one of many equivalence relations of interest in matrix the-

ory; several others are listed in (0.11). Whenever we have an equivalence rela-
tion on a set of matrices, we want to be able to decide whether given matrices
A and B are in the same equivalence class. A classical and broadly successful
approach to this decision problem is to identify a set of representative matrices
for the given equivalence relation such that (a) there is a representative in each
equivalence class, and (b) distinct representatives are not equivalent. The test
for equivalence of A and B is to reduce each via the given equivalence to a
representative matrix and see if the two representative matrices are the same.
Such a set of representatives is a canonical form for the equivalence relation.
For example, the spectral theorem (2.5.3) provides a canonical form for the

set of normal matrices under unitary similarity: the diagonal matrices are a
set of representative matrices (we identify two diagonal matrices if one is a
permutation similarity of the other). Another example is the singular value
decomposition (2.6.3), which provides a canonical form forMn under unitary
equivalence: the diagonal matrices � = diag(�1; : : : ; �n) with �1 � � � � �
�n � 0 are the representative matrices.

3.1 The Jordan canonical form theorem
3.1.1 De�nition. A Jordan block Jk(�) is a k-by-k upper triangular matrix of
the form

Jk(�) =

2666664
� 1 0

� 1
. . . . . .

� 1

0 �

3777775 ; J1(�) = [�]; J2(�) =
�
� 1

0 �

�

(3.1.2)
The scalar � appears k times on the main diagonal; if k > 1, there are k � 1
entries �+1� in the superdiagonal; all other entries are zero. A Jordan matrix
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J 2Mn is a direct sum of Jordan blocks

J = Jn1(�1)�Jn2(�2)�� � ��Jnq (�q); n1+n2+ � � �+nq = n (3.1.3)

Neither the block sizes ni nor the scalars �i need be distinct.

The main result of this section is that every complex matrix is similar to an
essentially unique Jordan matrix. We proceed to this conclusion in three steps,
two of which have already been taken:

Step 1. Theorem 2.3.1 ensures that every complex matrix is similar to an up-
per triangular matrix whose eigenvalues appear on the main diagonal,
and equal eigenvalues are grouped together.

Step 2. Theorem 2.4.6.1 ensures that a matrix of the form described in Step
1 is similar to a block diagonal upper triangular matrix (2.4.6.2) in
which each diagonal block has equal diagonal entries.

Step 3. In this section, we show that an upper triangular matrix with equal
diagonal entries is similar to a Jordan matrix.

We are also interested in concluding that if a matrix is real and has only real
eigenvalues, then it can be reduced to a Jordan matrix via a real similarity. If a
real matrix A has only real eigenvalues, then (2.3.1) and (2.4.6.1) ensure that
there is a real similarity matrix S such that S�1AS is a (real) block diagonal
upper triangular matrix of the form (2.4.6.2). Thus, it suf�ces to show that a
real upper triangular matrix with equal main diagonal entries can be reduced
to a direct sum of Jordan blocks via a real similarity.
The following lemma is helpful in taking Step 3; its proof is an entirely

straightforward computation. The k-by-k Jordan block with eigenvalue zero is
called a nilpotent Jordan block.

3.1.4 Lemma. Let k � 2 be given. Let Ik�1 2 Mk�1 be an identity matrix,
let ei denote the ith standard unit basis vector, and let x 2 Ck be given. Then

JTk (0)Jk(0) =

�
0 0

0 Ik�1

�
and Jk(0)

p = 0 if p � k

Moreover, Jk(0)ei+1 = ei for i = 1; 2; : : : ; k � 1 and [I � JTk (0)Jk(0)]x =
(xT e1)e1.

We now address the issue in Step 3.

3.1.5 Theorem. Let A 2 Mn be strictly upper triangular. There is a nonsin-
gular S 2 Mn and there are integers n1; n2; : : : ; nm with n1 � n2 � � � � �
nm � 1 and n1 + n2 + � � �+ nm = n such that

A = S (Jn1(0)� Jn2(0)� � � � � Jnm(0))S�1 (3.1.6)
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If A is real, the similarity matrix S may be chosen to be real.

Proof: If n = 1; A = [0] and the result is trivial. We proceed by induction on
n. Assume that n > 1 and that the result has been proved for all strictly upper
triangular matrices of size less than n. Partition A =

h
0 aT

0 A1

i
, in which

a 2 Cn�1 and A1 2 Mn�1 is strictly upper triangular. By the induction
hypothesis, there is a nonsingular S1 2 Mn�1 such that S�11 A1S1 has the
desired form (3.1.6); that is,

S�11 A1S1 =

264 Jk1 0
. . .

0 Jks

375 = � Jk1 0

0 J

�
(3.1.7)

in which k1 � k2 � � � � � ks � 1; k1 + k2 + � � �+ ks = n� 1; Jki = Jki(0),
and J = Jk2 � � � � � Jks 2Mn�k1�1. No diagonal Jordan block in J has size
greater than k1, so Jk1 = 0. A computation reveals that�

1 0

0 S�11

�
A

�
1 0

0 S1

�
=

�
0 aTS1
0 S�11 A1S1

�
(3.1.8)

Partition aTS1 = [aT1 aT2 ] with a1 2 Ck1 and a2 2 Cn�k1�1, and write (3.1.8)
as �

1 0

0 S�11

�
A

�
1 0

0 S1

�
=

24 0 aT1 aT2
0 Jk1 0

0 0 J

35
Now consider the similarity24 1 �aT1 JTk1 0

0 I 0

0 0 I

3524 0 aT1 aT2
0 Jk1 0

0 0 J

3524 1 aT1 J
T
k1

0

0 I 0

0 0 I

35
=

24 0 aT1 (I � JTk1Jk1) aT2
0 Jk1 0

0 0 J

35 =
24 0 (aT1 e1)e

T
1 aT2

0 Jk1 0

0 0 J

35(3.1.9)
in which we use the identity (I � JTk Jk)x = (xT e1)e1. There are now two
possibilities, depending on whether aT1 e1 6= 0 or aT1 e1 = 0.
If aT1 e1 6= 0, then24 1=aT1 e1 0 0

0 I 0

0 0 (1=aT1 e1)I

3524 0 (aT1 e1)e
T
1 aT2

0 Jk1 0

0 0 J

3524 aT1 e1 0 0

0 I 0

0 0 aT1 e1I

35
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=

24 0 eT1 aT2
0 Jk1 0

0 0 J

35 � � ~J e1a
T
2

0 J

�

Notice that ~J =
h
0 eT1
0 Jk1

i
= Jk1+1(0). Since ~Jei+1 = ei for i = 1; 2; : : : ; k1,

a computation reveals that�
I e2a

T
2

0 I

� �
~J e1a

T
2

0 J

� �
I �e2aT2
0 I

�
=

�
~J � ~Je2aT2 + e1aT2 + e2aT2 J
0 J

�
=

�
~J e2a

T
2 J

0 J

�
We can proceed recursively to compute the sequence of similarities�
I ei+1a

T
2 J

i�1

0 I

� �
~J eia

T
2 J

i�1

0 J

� �
I �ei+1aT2 J i�1
0 I

�
=

�
~J ei+1a

T
2 J

i

0 J

�
;

for i = 2; 3; : : :. Since Jk1 = 0, after at most k1 steps in this sequence
of similarities, the off-diagonal term �nally vanishes. We conclude that A is
similar to

h
~J 0
0 J

i
, which is a strictly upper triangular Jordan matrix of the

required form.
If aT1 e1 = 0, then (3.1.9) shows that A is similar to24 0 0 aT2

0 ~Jk1 0

0 0 J

35
which is permutation similar to24 Jk1 0 0

0 0 aT2
0 0 J

35 (3.1.10)

By the induction hypothesis, there is a nonsingular S2 2 Mn�k1 such that
S�12

h
0 aT2
0 J

i
S2 = Ĵ 2 Mn�k1 is a Jordan matrix with zero main diagonal.

Thus, the matrix (3.1.10), and therefore A itself, is similar to
h
Jk1 0

0 Ĵ

i
,

which is a Jordan matrix of the required form, except that the diagonal Jordan
blocks might not be arranged in nonincreasing order of their size. A block
permutation similarity, if necessary, produces the required form.
Finally, observe that ifA is real then all the similarities in this proof are real,

so A is similar via a real similarity to a Jordan matrix of the required form.
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Theorem (3.1.5) essentially completes Step 3, as the general case is an easy
consequence of the nilpotent case. If A 2 Mn is an upper triangular matrix
with all diagonal entries equal to �, thenA0 = A��I is strictly upper triangu-
lar. If S 2Mn is nonsingular and S�1A0S is a direct sum of nilpotent Jordan
blocks Jni(0), as guaranteed by (3.1.5), then S�1AS = S�1A0S+�I is a di-
rect sum of Jordan blocks Jni(�) with eigenvalue �. We have now established
the existence assertion of the Jordan canonical form theorem:

3.1.11 Theorem. Let A 2 Mn be given. There is a nonsingular S 2 Mn,
positive integers q and n1; : : : ; nq with n1 + n2 + � � � + nq = n, and scalars
�1; : : : ; �q 2 C such that

A = S

264 Jn1(�1) 0
. . .

0 Jnq (�q)

375S�1 (3.1.12)

The Jordan matrix JA = Jn1(�1)� � � � � Jnq (�q) is uniquely determined by
A up to permutation of its direct summands. If A is real and has only real
eigenvalues, then S can be chosen to be real.

The Jordan matrix JA in the preceding theorem is the Jordan canonical form
of A.
Two facts provide the key to understanding the uniqueness assertion in the

Jordan canonical form theorem: (1) similarity of two matrices is preserved if
they are both translated by the same scalar matrix, and (2) rank is a similarity
invariant.
If A;B; S 2 Mn, S is nonsingular, and A = SBS�1, then for any � 2

C, A � �I = SBS�1 � �SS�1 = S(B � �I)S�1. Moreover, for every
k = 1; 2; : : : ; the matrices (A��I)k and (B��I)k are similar; in particular,
their ranks are equal. We focus on this assertion when B = J = Jn1(�1) �
� � � � Jnq (�q) is a Jordan matrix that is similar to A (the existence assertion
of (3.1.11)) and � is an eigenvalue of A. After a permutation of the diagonal
blocks of J (a permutation similarity), we may assume that J = Jm1

(�) �
� � � � Jmp

(�) � Ĵ , in which the Jordan matrix Ĵ is a direct sum of Jordan
blocks with eigenvalues different from �. Then A� �I is similar to

J � �I = (Jm1
(�)� �I)� � � � � (Jmp

(�)� �I)� (Ĵ � �I)
= Jm1

(0)� � � � � Jmp
(0)� (Ĵ � �I)

which is a direct sum of p nilpotent Jordan blocks of various sizes and a nonsin-
gular Jordan matrix Ĵ��I 2Mm, in whichm = n�(m1+ � � �+mp). More-
over, (A��I)k is similar to (J��I)k = Jm1

(0)k�� � ��Jmp
(0)k�(Ĵ��I)k



3.1 The Jordan canonical form theorem 191

for each k = 1; 2; : : :. Since the rank of a direct sum is the sum of the ranks of
the summands (0.9.2), we have

rank(A� �I)k = rank(J � �I)k

= rank Jm1(0)
k + � � �+ rank Jmp(0)

k + rank(Ĵ � �I)k

= rank Jm1
(0)k + � � �+ rank Jmp

(0)k +m (3.1.13)

for each k = 1; 2; : : :.
What is the rank of a power of a nilpotent Jordan block? Inspection of

(3.1.2) reveals that the �rst column of J`(0) is zero and its last `� 1 columns
are independent (the only nonzero entries are ones in the �rst superdiagonal),
so rank J`(0) = ` � 1. The only nonzero entries in J`(0)2 are ones in the
second superdiagonal, so its �rst two columns are zero, its last ` � 2 columns
are independent, and rank J`(0)2 = ` � 2. The ones move up one superdiag-
onal (so the number of zero columns increases by one and the rank drops by
one) with each successive power until J`(0)`�1 has just one nonzero entry (in
position 1; `) and rank J`(0)`�1 = 1 = ` � (` � 1). Of course, J`(0)k = 0

for all k = `; `+ 1; : : :. In general, we have rank J`(0)k = maxf`� k; 0g for
each k = 1; 2; : : :, and so

rank J`(0)
k�1 � rank J`(0)k =

�
1 if ` � k
0 if ` < k

, k = 1; 2; : : : (3.1.14)

in which we observe the standard convention that rank J`(0)0 = `.
Now let A 2Mn, let � 2 C, let k be a positive integer, let

rk(A; �) = rank(A� �I)k; r0(A; �) := n (3.1.15)

and de�ne

wk(A; �) = rk�1(A; �)� rk(A; �); w1(A; �) := n� r1(A; �) (3.1.16)

Exercise. If A 2 Mn and � 2 C is not an eigenvalue of A, explain why
wk(A; �) = 0 for all k = 1; 2; : : : :

Exercise. Consider the Jordan matrix

J = J3(0)� J3(0)� J2(0)� J2(0)� J2(0)� J1(0) (3.1.16a)

Verify that r1(J; 0) = 7, r2(J; 0) = 2, and r3(J; 0) = r4(J; 0) = 0. Also
verify thatw1(J; 0) = 6 is the number of blocks of size at least 1, w2(J; 0) = 5
is the number of blocks of size at least 2, w3(J; 0) = 2 is the number of
blocks of size at least 3, and w4(J; 0) = 0 is the number of blocks of size
at least 4. Observe that w1(J; 0) � w2(J; 0) = 1 is the number of blocks
of size 1, w2(J; 0) � w3(J; 0) = 3 is the number of blocks of size 2, and
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w3(J; 0) � w4(J; 0) = 2 is the number of blocks of size 3. This is not an
accident.

Use (3.1.13) and (3.1.14) to compute

wk(A; �) =
�
rank Jm1(0)

k�1 � rank Jm1(0)
k
�
+

� � �+
�
rank Jmp

(0)k�1 � rank Jmp
(0)k

�
= (1 ifm1 � k) + � � �+ (1 ifmp � k) (3.1.17)
= number of blocks with eigenvalue � that have size at least k

In particular, w1(A; �) is the number of Jordan blocks of A of all sizes that
have eigenvalue �, which is the geometric multiplicity of � as an eigenvalue of
A.
Using the characterization (3.1.17), we see that wk(A; �) � wk+1(A; �) is

the number of blocks with eigenvalue � that have size at least k but do not have
size at least k+1; this is the number of blocks with eigenvalue � that have size
exactly k.

Exercise. LetA;B 2Mn and � 2 C be given. IfA andB are similar, explain
why wk(A; �) = wk(B; �) for all k = 1; 2; : : : :

Exercise. Let A 2 Mn and � 2 C be given. Explain why w1(A; �) �
w2(A; �) � w3(A; �) � � � � , that is, the sequence w1(A; �); w2(A; �); : : : is
nonincreasing. Hint: wk(A; �)� wk+1(A; �) is always a nonnegative integer.
Why?

The Weyr characteristic of A 2 Mn associated with � 2 C is the sequence
of integers w1(A; �); w2(A; �); : : : de�ned by (3.1.16). We have just seen that
the structure of a Jordan matrix J that is similar to A is completely determined
by the Weyr characteristics of A associated with its distinct eigenvalues: If �
is an eigenvalue of A, and if J is a Jordan matrix that is similar to A, then the
number of Jordan blocks Jk(�) in J is exactly wk(A; �) � wk+1(A; �); k =
1; 2; : : :. This means that two essentially different Jordan matrices (that is, for
some eigenvalue, their respective lists of nonincreasingly ordered block sizes
associated with that eigenvalue are not identical) cannot both be similar to A
because their Weyr characteristics must be different. We have now proved the
uniqueness portion of the Jordan canonical form theorem (3.1.11) and a little
more:

3.1.18 Lemma. Let � be a given eigenvalue of A 2 Mn and let w1(A; �);
w2(A; �); : : : be the Weyr characteristic of A associated with �. The number
of blocks of the form Jk(�) in the Jordan canonical form of A is wk(A; �) �
wk+1(A; �), k = 1; 2; : : :. Two square complex matrices of the same size
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are similar if and only if they have the same eigenvalues, and the same Weyr
characteristics are associated with each eigenvalue.

Exercise. Let q denote the size of the largest Jordan block ofAwith eigenvalue
�, and consider the rank identity (3.1.13). Explain why rank(A � �I)k =
rank(A��I)k+1 for all k � q, wq(A; �) is the number of Jordan blocks of A
with eigenvalue � and maximum size q, and wk(A; �) � wk+1(A; �) = 0 for
all k > q. This integer q is called the index of � as an eigenvalue of A.

Exercise. Let A 2Mn and let � have index q as an eigenvalue of A . Explain
why (a) w1(A; �) is the geometric multiplicity of � (the number of Jordan
blocks with eigenvalue � in the Jordan canonical form of A); (b) w1(A; �) +
w2(A; �)+� � �+wq(A; �) is the algebraic multiplicity of � (the sum of the sizes
of all the Jordan blocks of A with eigenvalue �); (c) for each p = 2; 3; : : : q;

wp(A; �) + wp+1(A; �) + � � �+ wq(A; �) = rank(A� �I)p�1.

The Jordan structure of a given A 2 Mn can be completely speci�ed by
giving, for each distinct eigenvalue � of A, a list of the sizes of all the Jordan
blocks of A that have eigenvalue �. The nonincreasingly ordered list of sizes
of Jordan blocks of A with eigenvalue �

s1(A; �) � s2(A; �) � � � � � sw1(A;�)(A; �) > 0 = sw1(A;�)+1(A; �) = � � �
(3.1.19)

is called the Segre characteristic of A associated with the eigenvalue �. It is
convenient to de�ne sk(A; �) = 0 for all k > w1(A; �). Observe that s1(A; �)
is the index of � as an eigenvalue ofA (the size of the largest Jordan block ofA
with eigenvalue �) and sw1(A;�)(A; �) is the size of the smallest Jordan block
of A with eigenvalue �. For example, the Segre characteristic of the matrix
(3.1.16a) associated with the zero eigenvalue is 3; 3; 2; 2; 2; 1 (s1(J; 0) = 3

and s6(J; 0) = 1).
If sk = sk(A; �); k = 1; 2; : : : is the Segre characteristic ofA 2Mn associ-

ated with the eigenvalue � andw1 = w1(A; �), the part of the Jordan canonical
form that contains all the Jordan blocks of A with eigenvalue � is26664

Js1(�)

Js2(�)
. . .

Jsw1 (�)

37775 (3.1.20)

It is easy to derive the Weyr characteristic if the Segre characteristic is
known, and vice versa. For example, from the Segre characteristic 3; 3; 2; 2; 2; 1
we see that there are 6 blocks of size 1 or greater, 5 blocks of size 2 or greater,
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and 2 blocks of size 3 or greater: the Weyr characteristic is 6,5,2. Conversely
from the Weyr characteristic 6,5,2 we see that there are 6 � 5 = 1 blocks of
size 1, 5 � 2 = 3 blocks of size 2, and 2 � 0 = 2 blocks of size 3: the Segre
characteristic is 3; 3; 2; 2; 2; 1.
Our derivation of the Jordan canonical form is based on an explicit algo-

rithm, but it cannot be recommended for implementation in a software package
to compute Jordan canonical forms. A simple example illustrates the dif�culty:
If A� =

h
� 0
1 0

i
and � 6= 0, then A� = S�J�S

�1
� with S� =

h
0 �
1 1

i
and

J� =
h
0 0
0 �

i
. If we let � ! 0, then J� !

h
0 0
0 0

i
= J1(0) � J1(0),

but A� ! A0 =
h
0 0
1 0

i
, whose Jordan canonical form is J2(1). Small

variations in the entries of a matrix can result in major changes in its Jordan
canonical form. The root of the dif�culty is that rankA is not a continuous
function of the entries of A.
It is sometimes useful to know that every matrix is similar to a matrix of the

form (3.1.12) in which all the �+1� entries in the Jordan blocks are replaced
by any � 6= 0.

3.1.21 Corollary. Let A 2 Mn and a nonzero � 2 C be given. Then there
exists a nonsingular S(�) 2Mn such that

A = S(�)

264 Jn1(�1; �) 0
. . .

0 Jnk(�k; �)

375S(�)�1 (3.1.22)

in which n1 + n2 + � � �+ nk = n and

Jm(�; �) =

266664
� � 0

. . . . . .
. . . �

0 �

377775 2Mm

If A is real and has real eigenvalues, and if � 2 R, then S(�) may be taken to
be real.

Proof: First �nd a nonsingular matrix S1 2Mn such that S�11 AS1 is a Jordan
matrix of the form (3.1.3) (with a real S1 if A is real and has real eigenvalues).
Let D�;i = diag(1; �; �2; : : : ; �ni�1), de�ne D� = D�;1 � � � � � D�;q , and
compute D�1

� (S�11 AS1)D�. This matrix has the form (3.1.22), so S(�) =
S1D� meets the stated requirements.

Problems
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1. Supply the computational details to prove Lemma (3.1.4).

2. What are the Jordan canonical forms of the two matrices in (3.0.0)?

3. Suppose A 2 Mn has some non-real entries, but only real eigenvalues.
Show that A is similar to a real matrix. Can the similarity matrix ever be
chosen to be real?

4. Let A 2Mn be given. If A is similar to cA for some complex scalar c with
jcj 6= 1, show that �(A) = f0g and hence A is nilpotent. Conversely, if A is
nilpotent, show that A is similar to cA for all nonzero c 2 C.

5. Explain why every Jordan block Jk(�) has a one-dimensional eigenspace
associated with the eigenvalue �. Conclude that � has geometric multiplicity
one and algebraic multiplicity k as an eigenvalue of Jk(�).

6. Carry out the three steps in the proof of (3.1.11) to �nd the Jordan canonical
forms of �

1 1

1 1

�
and

24 3 1 2

0 3 0

0 0 3

35
Con�rm your answers by using (3.1.18).

7. Let A 2 Mn, let � be an eigenvalue of A, and let k 2 f1; : : : ; ng. Using
(3.1.15-16), explain why rk�1(�)�2rk(�)+rk+1(�) is the number of Jordan
blocks of A that have size k and eigenvalue �.

8. Let A 2 Mn be given. Suppose that rankA = r � 1 and A2 = 0. Use
the preceding problem or (3.1.18) to show that the Jordan canonical form of
A is J2(0) � � � � � J2(0) � 0n�2r (there are r 2-by-2 blocks). Compare with
Problem 23 in (2.6).

9. Let n � 3: Show that the Jordan canonical form of Jn(0)2 is Jm(0)�Jm(0)
if n = 2m is even, and it is Jm+1(0)� Jm(0) if n = 2m+ 1 is odd.

10. For any � 2 C and any positive integer k, show that the Jordan canonical
form of�Jk(�) is Jk(��). In particular, the Jordan canonical form of�Jk(0)
is Jk(0).

11. The information contained in theWeyr characteristic of a matrix associated
with a given eigenvalue can be presented as a dot diagram, sometimes called a
Ferrers diagram or Young diagram. For example, consider the Jordan matrix J
in (3.1.16a) and its Weyr characteristic wk = wk(J; 0); k = 1; 2; 3. Construct
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the dot diagram

w1 � � � � � �
w2 � � � � �
w3 � �

s1 s2 s3 s3 s5 s6

by puttingw1 dots in the �rst row,w2 dots in the second row, andw3 dots in the
third row. We stop with the third row since wk = 0 for all k � 4. Proceeding
from the left, the respective column lengths are 3; 3; 2; 2; 2; 1; which is the
Segre characteristic sk = sk(J; 0); k = 1; 2; : : : ; 6. That is, J has 2 Jordan
blocks of the form J3(0), 3 blocks of the form J2(0), and one block of the
form J1(0). Conversely, if one �rst constructs a dot diagram by putting s1 dots
in the �rst column, s2 dots in the second column, and so forth, then there are
w1 dots in the �rst row, w2 dots in the second row, and w3 dots in the third
row. In this sense, the Segre and Weyr characteristics are conjugate partitions
of their common sum n; either characteristic can be derived from the other via
a dot diagram. In general, for A 2 Mn and a given eigenvalue � of A, use
the Weyr characteristic to construct a dot diagram with wk(A; �) dots in row
k = 1; 2; : : : so long as wk(A; �) > 0. (a) Explain why there are sj(A; �) dots
in column j for each j = 1; 2; : : :. (b) Explain why one can also start with the
Segre characteristic, construct the columns of a dot diagram from it, and then
read off the Weyr characteristic from the rows.

12. Let A 2 Mn. Write wk = wk(A; �) and sk = sk(A; �) for the Weyr
and Segre characteristics of A associated with the eigenvalue �. Show that:
(a) swk � k if wk > 0; (b) k > swk+1 for all k; (c) wsk � k if sk > 0; (d)
k > wsk+1 for all k.

13. Let k and m be given positive integers and consider the block Jordan
matrix

J+k (�Im) :=

266664
�Im Im

�Im
. . .
. . . Im

�Im

377775 2Mkm

(a block k-by-k matrix). Compute the Weyr characteristic of J+k (�Im) and use
it to show that the Jordan canonical form of J+k (�Im) is Jk(�)� � � � � Jk(�)
(m summands).

14. Let A 2 Mn. Use (3.1.18) to show that A and AT are similar. Are A and
A� similar?
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15. Let n � 2, let x; y 2 Cn be given nonzero vectors, and let A = xy�.
Explain why the Jordan canonical form of A is B � 0n�2, in which B =h
y�x 0
0 0

i
if y�x 6= 0 and B = J2(0) if y�x = 0.

16. Suppose that � 6= 0 and k � 2. Then Jk(�)�1 is a polynomial in Jk(�)
(2.4.3.4). (a) Explain why Jk(�)�1 is an upper triangular Toeplitz matrix, all
of whose main diagonal entries are ��1. (b) Let [��1 a2 : : : an] be the �rst
row of Jk(�)�1. Verify that the 1; 2 entry of Jk(�)Jk(�)�1 is �a2 + ��1 and
explain why all the entries in the �rst superdiagonal of Jk(�)�1 are ���2;
in particular, these entries are all nonzero. (c) Show that rank(Jk(�)�1 �
��1I)k = n � k for k = 1; :::; n and explain why the Jordan canonical form
of Jk(�)�1 is Jk(��1). Hint: (3.1.18).

17. Suppose that A 2Mn is nonsingular. Show that A is similar to A�1 if and
only if for each eigenvalue � of A with � 6= �1, the number of Jordan blocks
of the form Jk(�) in the Jordan canonical form of A is equal to the number
of blocks of the form Jk(��1), that is, the blocks Jk(�) and Jk(��1) occur
in pairs if � 6= �1 (there is no restriction on the blocks with eigenvalues �1.
Hint: Problem 16.

18. Suppose that A 2 Mn is nonsingular. (a) If each eigenvalue of A is
either +1 or �1, explain why A is similar to A�1. (b) Suppose that there
are nonsingular B;C; S 2 Mn such that A = BC, B�1 = SBS�1, and
C�1 = SCS�1. Show that A is similar to A�1. Hint: Problem 17 and
(1.3.22).

19. Let x; y 2 Rn and t 2 R be given. De�ne

Ax;y;t =

24 1 xT t

0 In y

0 0 1

35 2Mn+2(R)

and letHn(R) = fAx;y;t : x; y 2 Rn and t 2 Rg. (a) Show thatAx;y;tA�;�;� =
Ax+�;y+�;t+� and (Ax;y;t)�1 = A�x;�y;�t. (b) Explain why Hn(R) is a
subgroup (called the nth Heisenberg group) of the group of upper triangular
matrices inMn+2(R) that have all main diagonal entries equal to +1. (c) Ex-
plain why: the Jordan canonical form of Ax;y;t is J3(1)� In�1 if xT y 6= 0; if
xT y = 0, it is either J2(1)� J2(1)� In�2 (x 6= 0 6= y), or J2(1)� In (x = 0
or y = 0 but not both), or In+2 (x = y = 0). Hint: (3.1.18). (d) Explain why
Ax;y;t is always similar to its inverse.

20. Let A 2 Mn and suppose that n > rankA = r � 1. If 0 is a semisimple
eigenvalue of A, show that A has a nonsingular r-by-r principal submatrix
(that is, A is rank principal (0.7.6)). Hint: Problem 16 in (1.3).
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21. Let A 2 Mn be an unreduced upper Hessenberg matrix (0.9.9). (a) For
each eigenvalue � of A, explain why w1(A; �) = 1 and A is nonderogatory.
(b) Suppose that A is diagonalizable (for example, A might be Hermitian and
tridiagonal). Explain why A has n distinct eigenvalues.

22. Let A 2 Mn(R) be tridiagonal. (a) If ai;i+1ai+1;i > 0 for all i =
1; : : : ; n�1, show thatA has n distinct real eigenvalues. Hint: Show that there
is a positive diagonalD such thatDAD�1 is symmetric and apply Problem 21.
(b) If ai;i+1ai+1;i � 0 for all i = 1; : : : ; n � 1, show that all the eigenvalues
of A are real. Hint: Perturb A and use continuity.

23. Let A = [aij ] 2Mn be tridiagonal with aii real for all i = 1; : : : ; n. (a) If
ai;i+1ai+1;i is real and positive for i = 1; : : : ; n�1, show thatA has n distinct
real eigenvalues. Hint: Proceed as in Problem 22; choose a positive diagonal
D such that DAD�1 is Hermitian. (b) If ai;i+1ai+1;i is real and nonnegative
for all i = 1; : : : ; n� 1, show that all the eigenvalues of A are real.

24. Consider the 4-by-4 matricesA = [Aij ]2i;j=1 andB = [Bij ]2i;j=1, in which
A11 = A22 = B11 = B22 = J2(0), A21 = B21 = 02, A12 =

h
0 1
1 1

i
, and

B12 =
h
1 1
1 0

i
. (a) For all k = 1; 2; : : :, show that Ak and Bk are 0 � 1

matrices (that is, every entry is 0 or 1) that have the same number of entries
equal to 1. (b) Explain why A and B are nilpotent and similar. What is their
Jordan canonical form? (c) Explain why two permutation similar 0�1matrices
have the same number of entries equal to 1. (d) Show that A and B are not
permutation similar. Hint: Consider the directed graphs of A and B (6.2).

Notes and Further Readings. Camille Jordan published his eponymous
canonical form in C. Jordan, Traité des Substitutions et des Équations Al-
gébriques, Gauthier-Villars, Paris, 1870; see §157. Our proof of (3.1.11) is
in the spirit of R. Fletcher and D. Sorensen, An Algorithmic Derivation of the
Jordan Canonical Form, Amer. Math. Monthly 90 (1983) 12�16. For a combi-
natorial approach, see R. Brualdi, The Jordan Canonical Form: An Old Proof,
Amer. Math. Monthly 94 (1987) 257-267.

3.2 The Jordan canonical form: some observations and applications
3.2.1 The structure of a Jordan matrix. The Jordan matrix

J =

264 Jn1(�1)
. . .

Jnk(�k)

375 ; n1 + n2 + � � �+ nk = n (3.2.1.1)
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has a de�nite structure that makes apparent certain basic properties of any
matrix that is similar to it.

1. The number k of Jordan blocks (counting multiple occurrences of the
same block) is the maximum number of linearly independent eigenvec-
tors of J .

2. The matrix J is diagonalizable if and only if k = n, that is, if and only
if all the Jordan blocks are 1-by-1.

3. The number of Jordan blocks corresponding to a given eigenvalue is
the geometric multiplicity of the eigenvalue, which is the dimension of
the associated eigenspace. The sum of the sizes of all the Jordan blocks
corresponding to a given eigenvalue is its algebraic multiplicity.

4. Let A 2 Mn be a given nonzero matrix, and suppose that � is an
eigenvalue of A. Using (3.1.14) and the notation of (3.1.15), we know
that there is some positive integer q such that

r1(A; �) > r2(A; �) > � � � > rq�1(A; �) > rq(A; �) = 0

This integer q is the index of � as an eigenvalue of A; it is also the size
of the largest Jordan block of A with eigenvalue �.

3.2.2 Linear systems of ordinary differential equations. One application
of the Jordan canonical form that is of considerable theoretical importance is
to the analysis of solutions of a system of �rst order linear ordinary differential
equations with constant coef�cients. Let A 2 Mn be given, and consider the
�rst-order initial value problem

x0(t) = Ax(t)

x(0) = x0 is given
(3.2.2.1)

in which x(t) = [x1(t); x2(t); : : : ; xn(t)]T , and the prime (0) denotes differen-
tiation with respect to t. If A is not a diagonal matrix, this system of equations
is coupled; that is, x0i(t) is related not only to xi(t) but to the other entries of
the vector x(t) as well. This coupling makes the problem hard to solve, but
if A can be transformed to diagonal (or almost diagonal) form, the amount of
coupling can be reduced or even eliminated and the problem may be easier to
solve. If A = SJS�1 and J is the Jordan canonical form of A, then (3.2.2.1)
becomes

y0(t) = Jy(t)

y(0) = y0 is given
(3.2.2.2)
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in which x(t) = Sy(t) and y0 = S�1x0. If the problem (3.2.2.2) can be
solved, then each entry of the solution x(t) to (3.2.2.1) is just a linear combi-
nation of the entries of the solution to (3.2.2.2), and the linear combinations
are given by S.
If A is diagonalizable, then J is a diagonal matrix, and (3.2.2.2) is just

an uncoupled set of equations of the form y0k(t) = �kyk(t), which have the
solutions yk(t) = yk(0)e

�kt. If the eigenvalue �k is real, this is a simple
exponential, and if �k = ak + ibk is not real, yk(t) = yk(0)e

akt[cos(bkt) +

i sin(bkt)] is an oscillatory term with a real exponential factor if ak 6= 0.
If J is not diagonal, the solution is more complicated but it can be described

explicitly. The entries of y(t) that correspond to distinct Jordan blocks in J are
not coupled, so it suf�ces to consider the case in which J = Jm(�) is a single
Jordan block. The system (3.2.2.2) is

y01(t) = �y1(t) + y2(t)

...
...

...
y0m�1(t) = �ym�1(t) + ym(t)

y0m(t) = �ym(t)

which can be solved in a straightforward way from the bottom up. Starting
with the last equation, we obtain

ym(t) = ym(0)e
�t

so that

y0m�1(t) = �ym�1(t) + ym(0)e
�t

This has the solution

ym�1(t) = e
�t[ym(0)t+ ym�1(0)]

which can now be used in the next equation. It becomes

y0m�2(t) = �ym�2(t) + ym(0)te
�t + ym�1(0)e

�t

which has the solution

ym�2(t) = e
�t[ym(0)

t2

2
+ ym�1(0)t+ ym�2(0)]

and so forth. Each entry of the solution has the form

yk(t) = e
�tqk(t) = e

�t
mX
i=k

yi(0)
ti�k

(i� k)!
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so qk(t) is an explicitly determined polynomial of degree at most m� k; k =
1; : : : ;m.
From this analysis, we conclude that the entries of the solution x(t) of the

problem (3.2.2.1) have the form

xj(t) = e
�1tp1(t) + e

�2tp2(t) + � � �+ e�ktpk(t)

in which �1; �2; : : : ; �k are the distinct eigenvalues of A and each pj(t) is
a polynomial whose degree is strictly less than the size of the largest Jordan
block corresponding to the eigenvalue �j (that is, strictly less than the index of
�j). Real eigenvalues are associated with terms that contain a real exponential
factor, while non-real eigenvalues are associated with terms that contain an
oscillatory factor and possibly also a real exponential factor.

3.2.3 Similarity of a matrix and its transpose. Let Km be the m-by-m re-
versal matrix (0.9.5.1), which is symmetric and involutory: Km = KT

m =

K�1
m .

Exercise. Verify that KmJm(�) = Jm(�)
TKm. Deduce that KmJm(�) is

symmetric and Jm(�) = K�1
m Jm(�)

TKm = KmJm(�)
TKm.

The preceding exercise shows that each Jordan block is similar to its trans-
pose via a reversal matrix. Therefore, if J is a given Jordan matrix (3.2.1.1),
then JT is similar to J via the symmetric involutory matrixK = Kn1 � � � � �
Knk : JT = KJK. If A = SJS�1, then J = S�1AS,

AT = S�TJTST = S�TKJKST = S�TK(S�1AS)KST

= (S�TKS�1)A(SKST )

and SKST is symmetric. The conclusion is that every square complex ma-
trix is similar to its transpose, and this similarity can be accomplished with a
symmetric matrix. If A is nonderogatory, we can say more: every similarity
between A and AT must be via a symmetric matrix; see (3.2.4.4).
Moreover, we can write

A = SJS�1 = (SKST )(S�TKJS�1)

in which KJ is symmetric. The conclusion is that every complex matrix is a
product of two symmetric matrices.
For any �eld F, it is also the case that every matrix inMn(F) is similar, via

some symmetric matrix inMn(F), to its transpose.
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3.2.4 Commutativity and nonderogatorymatrices. For any polynomial p(t)
and any A 2 Mn, p(A) always commutes with A. What about the converse?
If A;B 2Mn are given and if A commutes with B, is there some polynomial
p(t) such that B = p(A)? Not always, for if we take A = I , then A com-
mutes with every matrix and p(I) = p(1)I is a scalar matrix; no non-scalar
matrix can be a polynomial in I . The problem is that the form of A permits it
to commute with many matrices, but permits it to generate only a limited set
of matrices of the form p(A).
What can we say if A = Jm(�) is a single Jordan block of size 2 or greater?

Exercise. Let � 2 C and an integer m � 2 be given. Show that B 2 Mm

commutes with Jm(�) if and only if it commutes with Jm(0). Hint: Jm(�) =
�Im + Jm(0).

Exercise. Show that B =
h
b11 b12
b21 b22

i
2 M2 commutes with J2(0) if and

only if b21 = 0 and b11 = b22; this is the case if and only if B = b11I2 +

b12J2(0), which is a polynomial in J2(0).

Exercise. Show that B = [bij ] 2 M3 commutes with J3(0) if and only if B
is upper triangular, b11 = b22 = b33, and b12 = b23; that is, if and only if B
is an upper triangular Toeplitz matrix (0.9.7). This is the case if and only if
B = b11I3 + b12J3(0) + b13J3(0)

2, which is a polynomial in J3(0).

Exercise. What can you say aboutB = [bij ] 2M4 if it commutes with J4(0)?

3.2.4.1 De�nition. A square complex matrix is nonderogatory if each of its
eigenvalues has geometric multiplicity one.
Since the geometric multiplicity of a given eigenvalue of a Jordan matrix is

equal to the number of Jordan blocks corresponding to that eigenvalue, a ma-
trix is nonderogatory if and only if each of its distinct eigenvalues corresponds
to exactly one block in its Jordan canonical form. Examples of nonderogatory
matrices A 2 Mn are: any matrix with n distinct eigenvalues or any matrix
with only one eigenvalue, which has geometric multiplicity one (that is, A is
similar to a single Jordan block). A scalar matrix is the antithesis of a non-
derogatory matrix.

Exercise. If A 2Mn is nonderogatory, why is rankA � n� 1?

3.2.4.2 Theorem. Suppose that A 2 Mn is nonderogatory. If B 2 Mn com-
mutes with A, then there is a polynomial p(t) of degree at most n�1 such that
B = p(A).

Proof: Let A = SJAS�1 be the Jordan canonical form of A. If BA = AB,
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then BSJAS�1 = SJAS
�1B and hence (S�1BS)JA = J(S�1BS). If we

can show that S�1BS = p(JA), then B = Sp(JA)S
�1 = p(SJAS

�1) =

p(A) is a polynomial in A. Thus, it suf�ces to assume that A is itself a Jordan
matrix.
Assume that (a) A = Jn1(�1) � � � � � Jnk(�k), in which �1; �2; : : : ; �k

are distinct, and (b) A commutes with B. If we partition B = [Bij ]
k
i;j=1

conformally with J , then (2.4.4.2) ensures that B = B11 � � � � �Bkk is block
diagonal. Moreover, BiiJni(0) = Jni(0)Bii for each i = 1; 2; : : : ; k. A
computation reveals that each Bii must be an upper triangular Toeplitz matrix
(0.9.7), that is,

Bii =

2666664
b
(i)
1 b

(i)
2 � � � b

(i)
ni

. . . . . .
...

. . . b
(i)
2

b
(i)
1

3777775 (3.2.4.3)

which is a polynomial in Jni(0), and hence also a polynomial in Jni(�):

Bii = b
(i)
1 Ini + b

(i)
2 Jni(0) + � � �+ b(i)ni Jni(0)

ni�1

= b
(i)
1 (Jni(�)� �iIni)0 + b

(i)
2 (Jni(�)� �iIni)1 + � � �+ b(i)ni (Jni(�)� �iIni)

ni�1

If we can construct polynomials pi(t) of degree at most n�1with the property
that pi(Jnj (�j)) = 0 for all i 6= j, and pi(Jni(�i)) = Bii, then

p(t) = p1(t) + � � �+ pk(t)

ful�lls the assertions of the theorem. De�ne

qi(t) =

kY
j=1
j 6=i

(t� �j)nj ; degree qi(t) = n� ni

and observe that qi(Jnj (�j)) = 0whenever i 6= j because (Jnj (�j)��jI)nj =
0. The upper triangular Toeplitz matrix qi(Jni(�i)) is nonsingular because its
main diagonal entries qi(�i) are nonzero.
The key to our construction of the polynomials pi(t) is observing that the

product of two upper triangular Toeplitz matrices is upper triangular Toeplitz,
and the inverse of a nonsingular upper triangular Toeplitz matrix has the same
form (0.9.7). Thus, [qi(Jni(�i))]�1Bii is an upper triangular Toeplitz matrix,
which is therefore a polynomial in Jni(�i):

[qi(Jni(�i))]
�1Bii = ri(Jni(�i))
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in which ri(t) is a polynomial of degree at most ni � 1. The polynomial
pi(t) = qi(t)ri(t) has degree at most n� 1,

pi(Jnj (�j)) = qi(Jnj (�j))ri(Jnj (�j)) = 0 whenever i 6= j

and

pi(Jni(�i)) = qi(Jni(�i))ri(Jni(�i))

= qi(Jni(�i))(qi(Jni(�i))]
�1Bii) = Bii

There is a converse to the preceding theorem; see Problem 2.
An illustrative application of (3.2.4.2) is the following strengthening of (3.2.3)

in a special case.
3.2.4.4 Corollary. Let A;B; S 2 Mn be given and suppose that A is non-
derogatory.
(a) If AB = BAT then B is symmetric.
(b) If S is nonsingular and AT = S�1AS, then S is symmetric.

Proof: (a) There is a symmetric nonsingularR 2Mn such thatAT = RAR�1

(3.2.3), so AB = BAT = BRAR�1 and hence A(BR) = (BR)A. Then
(3.2.4.2) ensures that there is a polynomial p(t) such that BR = p(A). Com-
pute RBT = (BR)T = p(A)T = p(AT ) = p(RAR�1) = Rp(A)R�1 =

R(BR)R�1 = RB. Since R is nonsingular, it follows that BT = B. (b) If
AT = S�1AS then SAT = AS, so (a) ensures that S is symmetric.

3.2.5 Convergent matrices. A matrix A 2 Mn with the property that all
entries of Am tend to zero as m ! 1 is said to be convergent. Convergent
matrices play an important role in the analysis of algorithms in numerical linear
algebra. If A is a diagonal matrix, then A is convergent if and only if all
the eigenvalues of A have modulus strictly less than 1; the same is true of
non-diagonalizable matrices, but a careful analysis is required to come to this
conclusion.
If A = SJAS�1 is the Jordan canonical form of A, then Am = SJmA S

�1,
so Am ! 0 as m ! 1 if and only if JmA ! 0 as m ! 1. Since JA is a
direct sum of Jordan blocks, it suf�ces to consider the behavior of powers of
a single Jordan block Jk(�) = �Ik + Jk(0), which we can compute using the
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binomial theorem. We have Jk(0)m = 0 for allm � k, so

Jk(�)
m = (�I + Jk(0))

m =
mX
j=0

�
m

m� j

�
�m�jJk(0)

j

=
k�1X
j=0

�
m

m� j

�
�m�jJk(0)

j

for all m � k. The diagonal entries of Jk(�)m are all equal to �m, so
Jk(�)

m ! 0 implies that �m ! 0, which means that j�j < 1. Conversely, if
j�j < 1, it suf�ces to prove that�

m

m� j

�
�m�j ! 0 asm!1 for each j = 0; 1; 2; : : : ; k � 1

There is nothing to prove if � = 0 or j = 0, so suppose that 0 < j�j < 1 and
j � 1; compute����� m

m� j

�
�m�j

���� = ����m(m� 1)(m� 2) � � � (m� j + 1)�mj!�j

���� � ����mj�m

j!�j

����
It suf�ces to show thatmj j�jm ! 0 asm!1. One way to see this is to take
logarithms and observe that j logm +m log j�j ! �1 as m ! 1 because
log j�j < 0 and l'Hopital's rule ensures that (logm)=m! 0 asm!1.
The preceding argument makes essential use of the Jordan canonical form of

A to show thatAm ! 0 asm!1 if and only if all the eigenvalues ofA have
modulus strictly less than 1. Another proof, which is completely independent
of the Jordan canonical form, is given in (5.6.12).

3.2.6 The geometric multiplicity�algebraic multiplicity inequality. The geo-
metric multiplicity of an eigenvalue � of a given A 2 Mn is the number of
Jordan blocks of A corresponding to �. This number is less than or equal to
the sum of the sizes of all the Jordan blocks corresponding to �; this sum is
the algebraic multiplicity of �. Thus, the geometric multiplicity of an eigen-
value is not greater than its algebraic multiplicity. We have already discussed
this fundamental inequality from very different points of view: see (1.2.18),
(1.3.7), and (1.4.10).

3.2.7 Diagonalizable + nilpotent: the Jordan decomposition. For any Jor-
dan block, we have the identity Jk(�) = �Ik + Jk(0), and Jk(0)k = 0. Thus,
any Jordan block is the sum of a diagonal matrix and a nilpotent matrix.
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More generally, a Jordan matrix (3.2.1.1) can be written as J = D +N , in
which D is a diagonal matrix whose main diagonal is the same as that of J ,
and N = J �D. The matrix N is nilpotent, and Nk = 0 if k is the size of the
largest Jordan block in J , which is the index of 0 as an eigenvalue of N .
Finally, if A 2 Mn and A = SJAS

�1 is its Jordan canonical form, then
A = S(D + N)S�1 = SDS�1 + SNS�1 � AD + AN , in which AD is
diagonalizable and AN is nilpotent. Moreover, ADAN = ANAD because
bothD andN are conformal block diagonal matrices, and the diagonal blocks
in D are scalar matrices. Of course, AD and AN also commute with A =

AD +AN .
The preceding discussion establishes the existence of a Jordan decomposi-

tion: any square complex matrix is a sum of two commuting matrices, one of
which is diagonalizable and the other is nilpotent. For the uniqueness of the
Jordan decomposition, see Problem 18.

3.2.8 The Jordan canonical form of a direct sum. Let Ai 2 Mni be given
for i = 1; : : : ;m and suppose that each Ai = SiJiS�1i , in which each Ji is a
Jordan matrix. Then the direct sum A = A1�� � ��Am is similar to the direct
sum J = J1 � � � � � Jm via S = S1 � � � � � Sm. Moreover, J is a direct sum
of direct sums of Jordan blocks, so it is a Jordan matrix and hence uniqueness
of the Jordan canonical form ensures that it is the Jordan canonical form of A.

3.2.9 An optimality property of the Jordan canonical form. The Jordan
canonical form of a matrix is a direct sum of upper triangular matrices that have
nonzero off-diagonal entries only in the �rst superdiagonal, so it has many zero
entries. However, among all the matrices that are similar to a given matrix, the
Jordan canonical form need not have the smallest number of nonzero entries.
For example,

A =

2664
0 0 0 �1
1 0 0 0

0 1 0 2

0 0 1 0

3775 (3.2.9.1)

has 5 nonzero entries, but its Jordan canonical form J = J2(1)� J2(�1) has
6 nonzero entries. However, A has 5 nonzero off-diagonal entries, while J has
only 2 nonzero off-diagonal entries. We now explain why no matrix similar to
A can have fewer than 2 nonzero off-diagonal entries.
3.2.9.2 Observation. Suppose that B = [bij ] 2 Mm has fewer than m � 1
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nonzero off-diagonal entries. Then there exists a permutation matrix P such
that PTBP = B1 �B2 in which each Bi 2Mni and each ni � 1.
Why is this? Here is an informal argument that can be made precise: Con-

sider m islands C1; : : : ; Cm located near each other in the sea. There is a
footbridge between two different islands Ci and Cj if and only if i 6= j and
either bij 6= 0 or bji 6= 0. Suppose that C1; Cj2 ; : : : ; Cjv are all the differ-
ent islands that one can walk to starting from C1. The minimum number of
bridges required to link up all the islands ism� 1. We are assuming that there
are fewer than m � 1 bridges, so � < m. Relabel all the islands (1 through
m again) in any way that gives the new labels 1; 2; : : : ; � to C1; Cj2 ; : : : ; Cjv .
Let P 2Mm be the permutation matrix corresponding to the relabeling. Then
PTBP = B1 � B2, in which B1 2 M� . The direct sum structure re�ects
the fact that no bridge joins any of the �rst (relabeled) � islands to any of the
remaining n� � islands.
We say that a given B 2 Mm is indecomposable under permutation sim-

ilarity if there is no permutation matrix P such that PTBP = B1 � B2, in
which each Bi 2 Mni and each ni � 1. Then (3.2.9.2) says that if B 2 Mm

is indecomposable under permutation similarity, it has at leastm� 1 nonzero
off-diagonal entries.
3.2.9.3 Observation. Any given B 2 Mn is permutation similar to a direct
sum of matrices that are indecomposable under permutation similarity.

Proof: Consider the �nite set S = fPTBP : P 2 Mn is a permutation
matrixg. Some of the elements of S are block diagonal (take P = In, for
example). Let q be the largest positive integer such that B is permutation
similar to B1 � � � � � Bq, each Bi 2 Mni , and each ni � 1; maximality
of q ensures that no direct summand Bi is decomposable under permutation
similarity.

The number of nonzero off-diagonal entries in a square matrix is not changed
by a permutation similarity, so we can combine the two preceding observations
to obtain a lower bound on the number of Jordan blocks in the Jordan canonical
form of a matrix.
3.2.9.4 Observation. Suppose that a given B 2 Mn has p nonzero off-
diagonal entries, and that its Jordan canonical form JB contains r Jordan
blocks. Then r � n� p.

Proof: Suppose that B is permutation similar to B1�� � ��Bq, in which each
Bi 2 Mni is indecomposable under permutation similarity, and each ni � 1.
The number of nonzero off-diagonal entries in Bi is at least ni � 1, so the
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number of nonzero off-diagonal entries in B is at least (n1� 1)+ � � �+ (nq �
1) = n � q. That is, p � n � q, so q � n � p. But (3.2.8) ensures that JB
contains at least q Jordan blocks, so r � q � n� p.

Our �nal observation is that the number of nonzero off-diagonal entries in
an n-by-n Jordan matrix J = Jn1(�1)� � � � � Jnr (�r) is exactly (n1 � 1) +
� � �+ (nr � 1) = n� r.
3.2.9.5 Theorem. Let A;B 2 Mn be given. Suppose that B has exactly p
nonzero off-diagonal entries and is similar to A. Let JA be the Jordan canoni-
cal form ofA and suppose that JA consists of r Jordan blocks. Then p � n�r,
which is the number of nonzero off-diagonal entries of JA.

Proof: SinceB is similar toA, JA is also the Jordan canonical form ofB, and
(3.2.9.4) ensures that r � n� p, so p � n� r.

3.2.10 The index of an eigenvalue of a block upper triangular matrix. The
index of an eigenvalue � of A 2 Mn (the index of � in A) is, equivalently, (a)
the size of the largest Jordan block of A with eigenvalue � or (b) the smallest
value ofm = 1; 2; : : : ; n such that rank(A��I)m = rank(A��I)m+1 (and
hence rank(A��I)m = rank(A��I)m+k for all k = 1; 2; : : :). If the index
of � inA11 2Mn1 is �1 and the index of � inA22 2Mn2 is �2, then the index
of � in the direct sum A11 �A22 is maxf�1; �2g.

Exercise. Consider A =
h
J2(0) I2
0 J2(0)

T

i
, so the index of the eigenvalue 0

in each diagonal block is 2. Show that the index of 0 as an eigenvalue of A is
4.

If � is an eigenvalue of A11 or A22 in the block upper triangular matrix
A =

h
A11 A12

0 A22

i
, and if A12 6= 0, what can we say about the index of �

as an eigenvalue of A? For convenience, take � = 0. Let the index of � in
A11 2 Mn1 be �1 and let the index of � in A22 2 Mn2 be �2. Any power of
A is block upper triangular,

Am =

�
Am11

Pm
k=0A

k
11A12A

m�k
22

0 Am22

�
the rank of Am is at least the sum of the ranks of its diagonal blocks (0.9.4),
and we have the lower bound

rankA�1+�2+1 � rankA�1+�2+111 + rankA�1+�2+122

= rankA�111 + rankA
�2
22
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Now compute

A�1+�2 =

�
A�1+�211

P�1+�2
k=0 Ak11A12A

�1+�2�k
22

0 A�1+�222

�
=

�
A�111 0

0 0

� �
A�211

P�2
k=0A

k
11A12A

�2�k
22

0 0

�
+

�
0
P�1�1

k=0 A
k
11A12A

�1�k
22

0 0

� �
0 0

0 A�222

�
The basic rank inequalities (0.4.5c,d) now imply the upper bound

rankA�1+�2 � rank

�
A�111 0

0 0

�
+ rank

�
0 0

0 A�222

�
= rankA�111 + rankA

�2
22

Combining our upper and lower bounds gives

rankA�1+�2 � rankA�111 + rankA
�2
22 � rankA�1+�2+1

� rankA�1+�2

which tells us that rankA�1+�2 = rankA�1+�2+1. The conclusion is that the
index of 0 in A is at most �1 + �2. An induction permits us to extend this
conclusion to any block upper triangular matrix.
Theorem 3.2.10.1. Let A = [Aij ]

p
i;j=1 2 Mn be block upper triangular, so

each Aii is square and Aij = 0 for all i > j. Suppose that the index of � as an
eigenvalue of each diagonal block Aii is �i; i = 1; : : : ; p. Then the index of �
as an eigenvalue of A is at most �1 + � � �+ �p.

Exercise. Provide details for the induction required to prove the preceding the-
orem.

Corollary 3.2.10.2. Let � 2 C, let A =
h
A11 A12

0 �In2

i
, and suppose that

A11 2 Mn1 is diagonalizable. Then every Jordan block of A with eigenvalue
different from � is 1-by-1, and every Jordan block of A with eigenvalue � is
either 1-by-1 or 2-by-2.

3.2.11 AB vs. BA. If A 2 Mm;n and B 2 Mn;m, (1.3.22) ensures that the
nonzero eigenvalues of AB and BA are the same, including their multiplici-
ties. In fact, we can make a much stronger statement: the nonsingular parts of
the Jordan canonical forms of AB and BA are identical.
Theorem 3.2.11.1. Suppose that A 2 Mm;n and B 2 Mn;m. For each
nonzero eigenvalue � of AB and for each k = 1; 2; : : :, the respective Jordan
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canonical forms of AB and BA contain the same number of Jordan blocks
Jk(�).

Proof: In the proof of Theorem (1.3.22), we found that C1 =
�
AB
B

0
0n

�
and

C2 =
�
0m
B

0
BA

�
are similar. Let � 6= 0 be given and let k be any given positive

integer. First observe that the row rank of

(C1 � �Im+n)k =
�
(AB � �Im)k 0

F (��In)k
�

is n+ rank((AB � �Im)k), then observe that the column rank of

(C2 � �Im+n)k =
�
(��Im)k 0

F (BA� �In)k
�

ism+rank((BA��In)k). But (C1��Im+n)k is similar to (C2��Im+n)k,
so their ranks are equal, that is,

rank((AB � �Im)k) = rank((BA� �In)k) +m� n

for each k = 1; 2; : : :, which implies that

rank((AB � �Im)k�1)� rank((AB � �Im)k)
= rank((BA� �In)k�1)� rank((BA� �In)k)

for each k = 1; 2; : : :. Thus, the respective Weyr characteristics of AB and
BA associated with any given nonzero eigenvalue � of AB are identical, so
(3.1.18) ensures that their respective Jordan canonical forms contain exactly
the same number of blocks Jk(�) for each k = 1; 2; : : :.

3.2.12 The Drazin inverse A singular matrix does not have an inverse, but
several types of generalized inverse are available, each of which has some (but
of course not all) features of the ordinary inverse. The generalized inverse that
we consider in this section is the Drazin inverse.
3.2.12.1 De�nition. Let A 2Mn and suppose that

A = S

�
B 0

0 N

�
S�1 (3.2.12.2)

in which S and B are square and nonsingular, and N is nilpotent. The direct
summand B is absent if A is nilpotent; N is absent if A is nonsingular. The
Drazin inverse of A is

AD = S

�
B�1 0

0 0

�
S�1 (3.2.12.3)
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Every A 2 Mn has a representation of the form (3.2.12.2): use the Jordan
canonical form (3.1.12) in whichB is a direct sum of all the nonsingular Jordan
blocks of A and N is a direct sum of all the nilpotent blocks.
In addition to (3.2.12.2), suppose that A is represented as

A = T

�
C 0

0 N 0

�
T�1 (3.2.12.4)

in which T and C are square and nonsingular, andN 0 is nilpotent. Then An =
S
h
Bn 0
0 0

i
S�1 = T

h
Cn 0
0 0

i
T�1, so rankAn = rankBn = rankB

is the size of B since it is nonsingular; for the same reason, it is also the
size of C. We conclude that B and C have the same size, and hence N and
N 0 have the same size. Since A = S

h
B 0
0 N

i
S�1 = T

h
C 0
0 N 0

i
T�1, it

follows thatR
h
B 0
0 N

i
=
h
C 0
0 N 0

i
R, in whichR = T�1S. PartitionR =

[Rij ]
2
i;j=1 conformally with

h
B 0
0 N

i
. Then (2.4.4.2) ensures that R12 =

0 and R21 = 0, so R = R11 � R22, R11 and R22 are nonsingular, C =

R11BR
�1
11 , N 0 = R22NR

�1
22 , and T = SR�1. Finally, compute the Drazin

inverse using (3.2.12.4):

T

�
C�1 0

0 0

�
T�1 = SR�1

" �
R11BR

�1
11

��1
0

0 0

#
RS�1

= S

�
R�111 0

0 R�122

� �
R11B

�1R�111 0

0 0

� �
R11 0

0 R22

�
S�1

= S

�
B�1 0

0 0

�
S�1 = AD

We conclude that the Drazin inverse is well de�ned by (3.2.12.3).

Exercise. Explain why AD = A�1 if A is nonsingular.

Let q be the index of the eigenvalue 0 of A and consider the three identities

AX = XA (3.2.12.5)
Aq+1X = Aq (3.2.12.6)
XAX = X (3.2.12.7)

Exercise. Use (3.2.12.2) and (3.2.12.3) to explain why A and X = AD sat-
isfy the preceding three identities if and only if A =

h
B 0
0 N

i
and X =h

B�1 0
0 0

i
satisfy them. Verify that they do.

There is a converse to the result in the preceding exercise: If X satis�es
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(3.2.12.5-7), thenX = AD. To verify this assertion, proceed as in the Exercise
to replace A by

h
B 0
0 N

i
and partition the unknown matrix X = [Xij ]

2
i;j=1

conformally. We must show that X11 = B�1 and that X12, X21, and X22
are zero blocks. Combining the �rst identity (3.2.12.5) with (2.4.4.2) ensures
that X12 = 0 and X21 = 0; in addition, NX22 = X22N . The second identity
(3.2.12.6) says that

h
Bq+1 0
0 0

i h
X11 0
0 X22

i
=
h
Bq 0
0 0

i
, soBq+1X11 =

Bq, BX11 = I , and X11 = B�1. The third identity (3.2.12.7) ensures that

X22 = X22NX22 = NX
2
22 (3.2.12.8)

which implies that Nq�1X22 = N
q�1NX2

22 = N
qX2

22 = 0, so Nq�1X22 =

0. Using (3.2.12.8) again, we see thatNq�2X22 = N
q�2NX2

22 = (N
q�1X22)X22 =

0, so Nq�2X22 = 0. Continuing this argument reveals that Nq�3X22 =

0; : : : ; NX22 = 0, and �nally X22 = 0.
Our last observation is that the Drazin inverse AD is a polynomial in A.

Exercise. Represent A as in (3.2.12.2). According to (2.4.3.4) there is a poly-
nomial p(t) such that p(Bq+1) = (Bq+1)�1. Let g(t) = tqp(tq+1). Verify
that g(A) = AD.

Exercise. Let A 2 Mn and suppose � is a nonzero eigenvalue of A. If x 6= 0
and Ax = �x, explain why ADx = ��1x.

Problems

1. Let F = fA� : � 2 Ig � Mn be a given family of matrices, indexed
by the index set I, and suppose there is a nonderogatory matrix A0 2 F such
that A�A0 = A�A0 for all � 2 I. Show that for every � 2 I there is a
polynomial p�(t) of degree at most n� 1 such that A� = p�(A0), and hence
F is a commuting family.

2. Let A 2 Mn. If every matrix that commutes with A is a polynomial in A,
show thatA is nonderogatory. Hint: Why does it suf�ce to consider the case in
which A is a Jordan matrix? Suppose that A = Jk(�) � J`(�) � J , in which
J is either empty or is a Jordan matrix and k; ` � 1. For any polynomial
p(t) the leading k + ` diagonal entries of p(A) are all equal to p(�). But
�Ik � I` � In�k�` commutes with A.

3. Let A 2 Mn. Show that there is a bounded set containing all of the entries
of the family fAm : m = 1; 2; : : :g (that is, A is power-bounded) if and only if
every eigenvalue � of A satis�es (a) j�j � 1 and (b) if j�j = 1 then no Jordan
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block of A with eigenvalue � has size greater than 1 (that is, every eigenvalue
with modulus 1 is semisimple). Hint: J2(�)m =

h
�m m
1 �m

i
.

4. Suppose A 2Mn is singular and let r = rankA. In Problem 28 of (2.4) we
learned that there is a polynomial of degree r + 1 that annihilates A. Provide
details for the following argument to show that h(t) = pA(t)=tn�r�1 is such a
polynomial. Let the Jordan canonical form ofA be J�Jn1(0)�� � ��Jnk(0),
in which the Jordan matrix J is nonsingular. Let � = n1 + � � � + nk and
let nmax = maxi ni be the index of the eigenvalue zero. (a) Explain why
pA(t) = p1(t)t

� , in which p1(t) is a polynomial and p1(0) 6= 0. (b) Show that
p(t) = p1(t)t

nmax annihilates A, so pA(t) = (p1(t)tnmax)t��nmax (c) Explain
why k = n� r, � � nmax � k � 1 = n� r � 1, and h(A) = 0.

5. What is the Jordan canonical form of A =
h
i 1
1 �i

i
?

6. The linear transformation d=dt : p(t)! p0(t) acting on the vector space of
all polynomials with degree at most 3 has the basis representation2664

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

3775
in the basis B = f1; t; t2; t3g. What is the Jordan canonical form of this
matrix?

7. What are the possible Jordan forms of a matrix A 2Mn such that A3 = I?

8. What are the possible Jordan canonical forms for a matrix A 2 M6 with
characteristic polynomial pA(t) = (t+ 3)4(t� 4)2?

9. Suppose that k � 2. Explain why the Jordan canonical form of adjJk(�) is
Jk(�

k�1) if � 6= 0, and it is J2(0)� 0k�2 if � = 0.

10. Suppose that the Jordan canonical form of a given nonsingular A 2Mn is
Jn1(�1)� � � � � Jnk(�k). Explain why the Jordan canonical form of adjA is
Jn1(�1)� � � � � Jnk(�k), in which each �i = �ni�1i

Q
j 6=i �

nj
j , i = 1; : : : ; k.

11. Suppose that the Jordan canonical form of a given singular A 2 Mn is
Jn1(�1) � � � � � Jnk�1(�k�1) � Jnk(0). Explain why the Jordan canonical
form of adjA is J2(0)�0n�2 if nk � 2, and it is

Qk�1
i=1 �

ni
i �0n�1 if nk = 1;

the former case is characterized by rankA < n � 1 and the latter case is
characterized by rankA = n� 1.

12. Explain why adjA = 0 if the Jordan canonical form of A contains two or
more singular Jordan blocks.
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13. Let A 2Mn and B;C 2Mm be given. Show that
h
A 0
0 B

i
2Mn+m is

similar to
h
A 0
0 C

i
if and only if B is similar to C.

14. Let B;C 2Mm and a positive integer k be given. Show that

B � � � � �B| {z }
k summands

and C � � � � � C| {z }
k summands

are similar if and only if B and C are similar.

15. Let A 2Mn and B;C 2Mm be given. Show that

A�B � � � � �B| {z }
k summands

and A� C � � � � � C| {z }
k summands

are similar if and only if B and C are similar. Hint: Use the two preceding
problems.

16. Let A 2 Mn have Jordan canonical form Jn1(�1) � � � � � Jnk(�k). If A
is nonsingular, show that the Jordan canonical form of A2 is Jn1(�

2
1) � � � � �

Jnk(�
2
k); that is, the Jordan canonical form of A2 is composed of precisely

the same collection of Jordan blocks as A, but the respective eigenvalues are
squared. However, the Jordan canonical form of Jm(0)2 is not Jm(02) ifm �
2; explain.

17. Let A 2 Mn be given. Show that rankA = rankA2 if and only if the
geometric and algebraic multiplicities of the eigenvalue � = 0 are equal; that
is, if and only if all the Jordan blocks corresponding to � = 0 (if any) in the
Jordan canonical form ofA are 1-by-1. Explain whyA is diagonalizable if and
only if rank(A� �I) = rank(A� �I)2 for all � 2 �(A).

18. Let A 2 Mn be given. In (3.2.7) we used the Jordan canonical form to
write A as a sum of two commuting matrices, one of which is diagonalizable
and the other is nilpotent: the Jordan decomposition A = AD +AN . The goal
of this problem is to show that the Jordan decomposition is unique. That is,
suppose that (a) A = B+C, (b) B commutes with C, (c) B is diagonalizable,
and (d) C is nilpotent; we claim that B = AD and C = AN . It is helpful
to use the fact that there are polynomials p(t) and q(t) such that AD = p(A)
and AN = q(A); see Problem 14(d) in Section 6.1 of [HJ]. Provide details
for the following: (a) B and C commute with A. (b) B and C commute with
AD and AN . (c) B and AD are simultaneously diagonalizable, so AD � B
is diagonalizable. (d) C and AN are simultaneously upper triangularizable,
so C � AN is nilpotent. (e) AD � B = C � AN is both diagonalizable and
nilpotent, so it is a zero matrix. The (uniquely determined) matrixAD is called
the diagonalizable part of A; AN is the nilpotent part of A.



3.2 The Jordan canonical form: some observations and applications 215

19. Let A 2 Mn be given and let � be an eigenvalue of A. (a) Prove that
the following two assertions are equivalent: (i) Every Jordan block of A with
eigenvalue � has size two or greater; (ii) Every eigenvector ofA corresponding
to � is in the range of A � �I . (b) Prove that the following �ve assertions
are equivalent: (i) Some Jordan block of A is 1-by-1; (ii) There is a nonzero
vector x such that Ax = �x but x is not in the range of A � �I; (iii) There
is a nonzero vector x such that Ax = �x but x is not orthogonal to the null
space of A� � ��I; (iv) There are nonzero vectors x and y such that Ax = �x,
y�A = �y�, and x�y 6= 0; (v) A is similar to [�] � B for some B 2 Mn�1.
Hint: (1.4.7).

20. Let A;B 2 Mn be given. Show that AB is similar to BA if and only
rank(AB)k = rank(BA)k for each k = 1; 2; : : : ; n.

21. Let A =
h
J2(0) 0

xT 0

i
2M3 with xT = [1 0], and let B = I2 � [0] 2M3.

Show that the Jordan canonical form of AB is J3(0), while that of BA is
J2(0)� J1(0).

22. Let A 2 Mn. Show that both AAD and I � AAD are projections (idem-
potents), and that AAD(I �AAD) = 0.

23. Let A 2 Mn and let q be the index of 0 as an eigenvalue of A. Show that
AD = limt!0(A

k+1 + tI)�1Ak for any k � q.

24. Let A;B 2 Mn, let D = AB � BAT , and suppose that AD = DAT .
Let �1; : : : ; �d be the distinct eigenvalues of A. (a) (an analog of Problem
12(c) in (2.4)) If A is diagonalizable, show that D = 0, that is, AB = BAT .
Hint: Let A = S�S�1 with � = �1In1 � � � � � �dInd ; let D = S�1DS and
B = S�1BS�T . Then �D = D� and D = �B � B�. Conclude that D
and B are block diagonal conformal to � and D = 0. (b) Suppose that A is
nonderogatory. Then (3.2.4.4) ensures that D is symmetric. In addition, show
that rankD � n� d, so the geometric multiplicity of 0 as an eigenvalue ofD
is at least d. Hint: Let A = SJS�1 with J = Jn1(�1) � � � � � Jnd(�d); let
D = S�1DS and B = S�1BS�T . Then JD = DJT and D = JB � BJT .
Conclude that D = D1 � � � � �Dd and B = B1 � � � � � Bd are block diagonal
conformal to J , JiDi = DiJTi , and Di = JiBi � BiJTi for each i = 1; : : : ; d
(Ji := Jni(�i)). Let JTi = SiJiS

�1
i . Then Ji(DiSi) = (DiSi)Ji, and

(DiSi) = Ji(BiSi)� (BiSi)Ji. Invoke Jacobson's lemma.

25. Let A 2Mn be given and suppose that A2 is nonderogatory. Explain why:
(a) A is nonderogatory; (b) If � is a nonzero eigenvalue of A, then �� is not
an eigenvalue ofA; (c) IfA is singular, then 0 has algebraic multiplicity one as
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an eigenvalue of A; (d) rankA � n � 1; (e) There is a polynomial p(t) such
that A = p(A2).

26. Let A;B 2 Mn be given and suppose that A2 is nonderogatory. If AB =
BTA and BA = ABT , show that B is symmetric. Hint: Show that (B �
BT )A = 0 and explain why rank(B �BT ) � 1. See Problem 27 in (2.6).

Notes and Further Readings. For a detailed discussion of the optimality prop-
erty (3.2.9.4) and a characterization of the case of equality, see R. Brualdi, P.
Pei, and X. Zhan, An extremal sparsity property of the Jordan canonical form,
Linear Algebra Appl. 429 (2008) 2367-2372. Problem 21 illustrates that the
nilpotent Jordan structures of AB and BA need not be the same, but in the
following sense they cannot differ by much: If m1 � m2 � � � � are the sizes
of the nilpotent Jordan blocks of AB while n1 � n2 � � � � are the sizes of
the nilpotent Jordan blocks of BA (append zero sizes to one list or the other,
if necessary to achieve lists of equal length) then jmi � nij � 1 for all i.
For a discussion and proof, see C. Johnson and E. Schreiner, The relationship
between AB and BA, Amer. Math. Monthly 103 (1996) 578-582.

3.3 The minimal polynomial and the companion matrix
A polynomial p(t) is said to annihilate A 2 Mn if p(A) = 0. The Cayley�
Hamilton theorem (2.4.2) guarantees that for each A 2 Mn there is a monic
polynomial pA(t) of degree n (the characteristic polynomial) such that pA(A) =
0. Of course, there may be a monic polynomial of degree n�1 that annihilates
A, or one of degree n� 2 or less. Of special interest is a monic polynomial of
minimum degree that annihilates A. It is clear that such a polynomial exists;
the following theorem says that it is unique.

3.3.1 Theorem. Let A 2 Mn be given. There exists a unique monic poly-
nomial qA(t) of minimum degree that annihilates A. The degree of qA(t) is
at most n. If p(t) is any monic polynomial such that p(A) = 0, then qA(t)
divides p(t), that is, p(t) = h(t)qA(t) for some monic polynomial h(t).

Proof: The set of monic polynomials that annihilate A contains pA(t), which
has degree n. Let m = minfk : p(t) is a monic polynomial of degree k
and p(A) = 0g; necessarily m � n. If p(t) is any monic polynomial that
annihilates A, and if q(t) is a monic polynomial of degree m that annihilates
A, then the degree of p(t) ism or greater. The Euclidean algorithm ensures that
there is a monic polynomial h(t) and a polynomial r(t) of degree strictly less
thanm such that p(t) = q(t)h(t)+r(t). But 0 = p(A) = q(A)h(A)+r(A) =
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0h(A) + r(A), so r(A) = 0. If r(t) is not the zero polynomial, we could
normalize it and obtain a monic annihilating polynomial of degree less thanm,
which would be a contradiction. We conclude that r(t) is the zero polynomial,
so q(t) divides p(t) with quotient h(t). If there are two monic polynomials
of minimum degree that annihilate A, this argument shows that each divides
the other; since the degrees are the same, one must be a scalar multiple of the
other. But since both are monic, the scalar factor must be +1 and they are
identical.

3.3.2 De�nition. Let A 2 Mn be given. The unique monic polynomial qA(t)
of minimum degree that annihilates A is called the minimal polynomial of A.

3.3.3 Corollary. Similar matrices have the same minimal polynomial.

Proof: If A;B; S 2 Mn and if A = SBS�1, then qB(A) = qB(SBS�1) =
SqB(B)S

�1 = 0, so qB(t) is a monic polynomial that annihilatesA and hence
the degree of qA(t) is less than or equal to the degree of qB(t). But B =

S�1AS, so the same argument shows that the degree of qB(t) is less than or
equal to the degree of qA(t). Thus, qA(t) and qB(t) are monic polynomials of
minimum degree that annihilate A, so (3.3.1) ensures that they are identical.

Exercise. Consider A = J2(0) � J2(0) 2 M4 and B = J2(0) � 02 2 M4.
Explain why A and B have the same minimal polynomial but are not similar.

3.3.4 Corollary. For eachA 2Mn, the minimal polynomial qA(t) divides the
characteristic polynomial pA(t). Moreover, qA(�) = 0 if and only if � is an
eigenvalue of A, so every root of pA(t) = 0 is a root of qA(t) = 0.

Proof: Since pA(A) = 0, the fact that there is a polynomial h(t) such that
pA(t) = h(t)qA(t) follows from (3.2.1). This factorization makes it clear
that every root of qA(t) = 0 is a root of pA(t) = 0, and hence every root
of qA(t) = 0 is an eigenvalue of A. If � is an eigenvalue of A, and if x is
an associated eigenvector, then Ax = �x and 0 = qA(A)x = qA(�)x; so
qA(�) = 0 since x 6= 0.

The preceding corollary shows that if the characteristic polynomial pA(t)
has been completely factored as

pA(t) =
dY
i=1

(t� �i)si ; 1 � si � n; s1 + s2 + � � �+ sd = n
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with �1; �2; : : : ; �d distinct, then the minimal polynomial qA(t) must have the
form

qA(t) =
dY
i=1

(t� �i)ri ; 1 � ri � si

In principle, this gives an algorithm for �nding the minimal polynomial of a
given matrix A:

1. First compute the eigenvalues ofA, together with their algebraic multi-
plicities, perhaps by �nding the characteristic polynomial and factoring
it completely. By some means, determine the factorization (3.3.5a).

2. There are �nitely many polynomials of the form (3.3.5b). Starting with
the product in which all ri = 1, determine by explicit calculation the
product of minimal degree that annihilates A; it is the minimal polyno-
mial.

Numerically, this is not a good algorithm if it involves factoring the char-
acteristic polynomial of a large matrix, but it can be very effective for hand
calculations involving small matrices of simple form. Another approach to
computing the minimal polynomial that does not involve knowing either the
characteristic polynomial or the eigenvalues is outlined in Problem 5.
There is an intimate connection between the Jordan canonical form of A 2

Mn and the minimal polynomial ofA. Suppose thatA = SJS�1 is the Jordan
canonical form ofA, and suppose �rst that J = Jn(�) is a single Jordan block.
The characteristic polynomial of A is (t � �)n, and since (J � �I)k 6= 0 if
k < n, the minimal polynomial of J is also (t� �)n. However, if

J =

�
Jn1(�) 0

0 Jn2(�)

�
2Mn

with n1 � n2, then the characteristic polynomial of J is still (t � �)n, but
now (J � �I)n1 = 0 and no lower power vanishes. The minimal polynomial
of J is therefore (t � �)n1 . If there are more Jordan blocks with eigenvalue
�, the conclusion is the same: The minimal polynomial of J is (t � �)r, in
which r is the size of the largest Jordan block corresponding to �. If J is a
general Jordan matrix, the minimal polynomial must contain a factor (t��i)ri
for each distinct eigenvalue �i, and ri must be the size of the largest Jordan
block corresponding to �i; no smaller power annihilates all the Jordan blocks
corresponding to �i, and no greater power is needed. Since similar matrices
have the same minimal polynomial, we have proved the following theorem.
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3.3.6 Theorem. LetA 2Mn be a given matrix whose distinct eigenvalues are
�1; �2; : : : ; �d. The minimal polynomial of A is

qA(t) =
dY
i=1

(t� �i)ri (3.3.7)

in which ri is the size of the largest Jordan block of A corresponding to the
eigenvalue �i.

In practice, this result is not very helpful in computing the minimal poly-
nomial since it is usually harder to determine the Jordan canonical form of a
matrix than it is to determine its minimal polynomial. Indeed, if only the eigen-
values of a matrix are known, its minimal polynomial can be determined by
simple trial and error. There are important theoretical consequences, however.
Since a matrix is diagonalizable if and only if all its Jordan blocks have size 1,
a necessary and suf�cient condition for diagonalizability is that all ri = 1 in
(3.3.7).

3.3.8 Corollary. Let A 2Mn have distinct eigenvalues �1; �2; : : : ; �d and let

q(t) = (t� �1)(t� �2) � � � (t� �d) (3.3.9)

Then A is diagonalizable if and only if q(A) = 0.

This criterion is actually useful for determining if a given matrix is diago-
nalizable, provided that we know its distinct eigenvalues: form the polynomial
(3.3.9) and see if it annihilates A. If it does, it must be the minimal polyno-
mial of A, since no lower-order polynomial could have as zeros all the distinct
eigenvalues of A. If it does not annihilate A, then A is not diagonalizable. It is
sometimes useful to have this result formulated in several equivalent ways:

3.3.10 Corollary. Let A 2 Mn and let qA(t) be its minimal polynomial. The
following are equivalent:

(a) qA(t) has distinct linear factors.
(b) Every eigenvalue of A has multiplicity 1 as a root of qA(t) = 0.
(c) For every eigenvalue � of A, q0A(t) 6= 0.
(d) A is diagonalizable.

We have been considering the problem of �nding, for a given A 2 Mn, a
monic polynomial of minimum degree that annihilates A. But what about the
converse? Given a monic polynomial

p(t) = tn + an�1t
n�1 + an�2t

n�2 + � � �+ a1t+ a0 (3.3.11)
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is there a matrix A for which p(t) is the minimal polynomial? If so, the size of
A must be at least n-by-n. Consider

A =

26666664

0 �a0
1 0 �a1
1
. . .

...
. . . 0 �an�2

0 1 �an�1

37777775 2Mn (3.3.12)

and observe that
Ie1 = e1 = A0e1
Ae1 = e2 = Ae1
Ae2 = e3 = A2e1
Ae3 = e4 = A3e1
...

...
...

Aen�1 = en = An�1e1

In addition,

Aen = �an�1en � an�2en�1 � � � � � a1e2 � a0e1
= �an�1An�1e1 � an�2An�2e1 � � � � � a1Ae1 � a0e1 = Ane1
= [An � p(A)]e1

Thus,

p(A)e1 = (a0e1 + a1Ae1 + a2A
2e1 + � � �+ an�1An�1e1) +Ane1

= [p(A)�An]e1 + [An � p(A)]e1 = 0

Furthermore, p(A)ek = p(A)Ak�1e1 = Ak�1p(A)e1 = Ak�10 = 0 for each
k = 1; 2; : : : ; n. Since p(A)ek = 0 for every basis vector ek, we conclude that
p(A) = 0. Thus p(t) is a monic polynomial of degree n that annihilates A. If
there were a polynomial q(t) = tm + bm�1t

m�1 + � � � + b1t + b0 of lower
degreem < n that annihilates A, then

0 = q(A)e1 = A
me1 + bm�1A

m�1e1 + � � �+ b1Ae1 + b0e1
= em+1 + bm�1em + � � �+ b1e2 + b0e1 = 0

which is impossible since fe1; e2; : : : ; em+1g is linearly independent. We con-
clude that nth degree polynomial p(t) is a monic polynomial of minimum de-
gree that annihilatesA, so it is the minimal polynomial ofA. The characteristic
polynomial pA(t) is also a monic polynomial of degree n that annihilates A,
so (3.3.1) ensures that p(t) is also the characteristic polynomial of the matrix
(3.3.12).
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3.3.13 De�nition. The matrix (3.3.12) is the companion matrix of the polyno-
mial (3.3.11).

We have proved the following:

3.3.14 Theorem. Every monic polynomial is both the minimal polynomial
and the characteristic polynomial of its companion matrix.

If the minimal polynomial of A 2 Mn has degree n, then the exponents in
(3.3.7) satisfy r1+� � �+rd = n; that is, the largest Jordan block corresponding
to each eigenvalue is the only Jordan block corresponding to each eigenvalue.
Such a matrix is nonderogatory. In particular, every companion matrix is non-
derogatory. A nonderogatory matrixA 2Mn need not be a companion matrix,
of course, but A and the companion matrix C of the characteristic polynomial
of A have the same Jordan canonical form (one block Jri(�i) corresponding
to each distinct eigenvalue �i), so A is similar to C.

Exercise. Provide details for a proof of the following theorem.

3.3.15 Theorem. Let A 2Mn have minimal polynomial qA(t) and character-
istic polynomial pA(t). The following are equivalent:

(a) qA(t) has degree n.
(b) pA(t) = qA(t).
(c) A is nonderogatory.
(d) A is similar to the companion matrix of pA(t).

Problems

1. Let A;B 2 M3 be nilpotent. Show that A and B are similar if and only if
A and B have the same minimal polynomial. Is this true inM4?

2. Suppose A 2 Mn has distinct eigenvalues �1; �2; : : : ; �d. Explain why
the minimal polynomial ofA (3.3.7) is determined by the following algorithm:
For each i = 1; 2; : : : ; d compute (A � �iI)k for k = 1; 2; : : : ; n. Let ri be
the smallest value of k for which rank(A� �iI)k = rank(A� �iI)k+1.

3. Use (3.3.10) to show that every idempotent matrix is diagonalizable. Hint:
Show that t2 � t = t(t� 1) annihilates A. What is the minimal polynomial of
A? What can you say if A is tripotent (A3 = A)? What if Ak = A?

4. If A 2 Mn and Ak = 0 for some k > n, use properties of the minimal
polynomial to explain why Ar = 0 for some r � n.

5. Show that the following application of the Gram�Schmidt process permits
the minimal polynomial of a given A 2 Mn to be computed without knowing
either the characteristic polynomial of A or any of its eigenvalues.
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(a) Let the mapping T :Mn ! Cn
2

be de�ned as follows: For anyA 2Mn

partitioned according to columns as A = [a1a2 : : : an], let T (A) denote the
unique vector in Cn

2

whose �rst n entries are the entries of the �rst column
a1, whose entries from n + 1 to 2n are the entries of the second column a2,
and so forth. Show that this mapping T is an isomorphism (linear, one-to-one,
and onto) of the vector spacesMn and Cn

2

.
(b) Consider the vectors

v0 = T (I); v1 = T (A); v2 = T (A
2); : : : ; vk = T (A

k); : : :

in Cn
2

for k = 0; 1; 2; : : : ; n. Use the Cayley�Hamilton theorem to show that
fv0; v1; : : : ; vng is a dependent set.
(c) Apply the Gram�Schmidt process to the set fv0; v1; : : : ; vng in the given

order until it stops by producing a �rst zero vector. Why must a zero vector be
produced?
(d) If the Gram�Schmidt process produces a �rst zero vector at the kth step,

argue that k � 1 is the degree of the minimal polynomial of A.
(e) If the kth step of the Gram�Schmidt process produces the vector �0v0+

�1v1 + � � �+ �k�1vk�1 = 0, show that

T�1(�0v0 + �1v1 + � � �+ �k�1vk�1)
= �0I + �1A+ �2A

2 + � � �+ �k�1Ak�1 = 0

and conclude that qA(t) = (�k�1tk�1 + � � �+ �2t2 + �1t+ �0)=�k�1 is the
minimal polynomial of A. Why is �k�1 6= 0?

6. Carry out the computations required by the algorithm in Problem 5 to deter-
mine the minimal polynomials of

�
1
0
1
2

�
,
�
1
0
1
1

�
, and

�
1
0
0
1

�
.

7. Consider A =
�
0
0
1
0

�
and B =

�
0
0
0
1

�
to show that the minimal polynomials

of AB and BA need not be the same. However, if C;D 2 Mn, why must the
characteristic polynomials of CD and DC be the same?

8. Let Ai 2 Mni ; i = 1; 2; : : : ; k and let qAi
(t) be the minimal polynomial of

each Ai. Show that the minimal polynomial of A = A1� � � � �Ak is the least
common multiple of qA1

(t); : : : ; qAk
(t). This is the unique monic polynomial

of minimum degree that is divisible by each qi(t). Use this result to give a
different proof for (1.3.10).

9. If A 2 M5 has characteristic polynomial pA(t) = (t � 4)3(t + 6)2 and
minimal polynomial qA(t) = (t � 4)2(t + 6), what is the Jordan canonical
form of A?
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10. Show by direct computation that the polynomial (3.3.11) is the charac-
teristic polynomial of the companion matrix (3.3.12). Hint: Use cofactors to
compute the determinant.

11. Let A 2 Mn be the companion matrix (3.3.12) of the polynomial p(t) in
(3.3.11). LetKn be the n-by-n reversal matrix. LetA2 = KnAKn,A3 = AT ,
and A4 = KnA

TKn. (a) Write A2; A3, and A4 as explicit arrays like the
one in (3.3.12). (b) Explain why p(t) is both the minimal and characteristic
polynomial of A2; A3, and A4, each of which is encountered in the literature
as an alternative de�nition of companion matrix.

12. Show that there is no real 3-by-3 matrix whose minimal polynomial is
x2 + 1, but that there is a real 2-by-2 matrix as well as a complex 3-by-3
matrix with this property. Hint: Use (3.3.4).

13. Explain why any n complex numbers can be the eigenvalues of an n-by-n
companion matrix. However, the singular values of a companion matrix are
subject to some very strong restrictions. Write the companion matrix (3.3.12)
as a block matrix A =

h
0

In�1

�
�

i
, in which � = �a0 and � = [�a1 : : : �

an�1]
T 2 Cn�1. Verify that A�A =

h
In�1
��

�
s

i
, in which s = ja0j2 + ja1j2 +

� � � + jan�1j2. Let �1 � � � � � �n denote the ordered singular values of A.
Use (1.2.20) to show that �2 = � � � = �n�1 = 1 and

�21; �
2
n =

1

2

�
s+ 1�

p
(s+ 1)2 � 4ja0j2

�
14. Use the example in the exercise preceding (3.3.4) to show that there are
nonsimilar A;B 2 Mn such that for every polynomial p(t), p(A) = 0 if and
only if p(B) = 0.

15. Let A 2 Mn be given, and let P (A) = fp(A) : p(t) is a polynomial}.
Show that P (A) is a subspace of Mn and that it is even a subalgebra of Mn.
Explain why the dimension of P (A) is the degree of the minimal polynomial
of A.

16. Let A;B 2 Mn. Suppose that pA(t) = pB(t) = qA(t) = qB(t). Explain
why A and B are similar. Use this fact to show that the alternative forms for
the companion matrix noted in Problem 11 are all similar to (3.3.12).

17. Explain why any matrix that commutes with a companion matrix C must
be a polynomial in C.

18. Newton's identities (2.4.18-19) can be proved by applying standard matrix
analytic identities to the companion matrix. Adopt the notation of Problems
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3 and 9 in (2.4) and let A 2 Mn be the companion matrix of p(t) = tn +

an�1t
n�1+ � � �+a1t+a0. Provide details for the following: (a) Since p(t) =

pA(t), we have p(A) = 0 and 0 = tr(Akp(A)) = �n+k + an�1�n+k�1 +

� � �+ a1�k+1+ a0�k for k = 0; 1; 2; : : :, which is (2.4.19). (b) Use (2.4.13) to
show that

tr(adj(tI �A)) = ntn�1 + trAn�2tn�2 + � � �+ trA1t+ trA0 (3.3.13)

and use (2.4.17) to show that trAn�k�1 = �k+an�1�k�1+� � �+an�k+1�1+
nan�k, which is the coef�cient of tn�k�1 in the right-hand side of (3.3.13) for
k = 1; : : : ; n � 1. Use (0.8.10.2) to show that tr(adj(tI � A)) = ntn�1 +

(n � 1)an�1tn�2 + � � � + 2a2t + a1, so (n � k)an�k is the coef�cient of
tn�k�1 in the left-hand side of (3.3.13) for k = 1; : : : ; n � 1. Conclude that
(n�k)an�k = �k+an�1�k�1+� � �+an�k+1�1+nan�k for k = 1; : : : ; n�1,
which is equivalent to (2.4.17).

19. Let A;B 2 Mn and let C = AB � BA be their commutator. In Problem
12 of (2.4) we learned that if C commutes with either A or B, then Cn = 0.
If C commutes with both A and B, show that Cn�1 = 0. What does this say
if n = 2? Hint: Suppose Cn�1 6= 0 and use (3.2.4.2).

20. Let A;B 2 Mn be companion matrices (3.3.12) and let � 2 C. (a) Show
that � is an eigenvalue of A if and only if x� = [1 � �2 : : : �n�1]T is an
eigenvector of AT . (b) If � is an eigenvalue of A, show that every eigenvector
of AT associated with � is a scalar multiple of x�. Deduce that every eigen-
value of A has geometric multiplicity one. (c) Explain why AT and BT have
a common eigenvector if and only if they have a common eigenvalue. (d) If A
commutes with B, why must A and B have a common eigenvalue?

21. Let n � 2, let Cn be the companion matrix (3.3.12) of p(t) = tn + 1, let
Ln 2Mn be the strictly lower triangular matrix whose entries below the main
diagonal are all equal to +1, let En = Ln �LTn , and let �k = �

n (2k+ 1); k =

0; 1; : : : ; n� 1. Provide details for the following proof that the spectral radius
of En is cot �

2n . (a) The eigenvalues of Cn are �k = e
i�k ; k = 0; 1; : : : ; n� 1

with respective associated eigenvectors xk = [1 �k : : : �
n�1
k ]T . (b) En =

Cn+C
2
n+ � � �+Cn�1n has eigenvectors xk; k = 0; 1; : : : ; n�1with respective

associated eigenvalues

�k + �
2
k + � � �+ �n�1k =

�k � �nk
1� �k

=
1 + �k
1� �k

=
e�i�k=2 + ei�k=2

e�i�k=2 � ei�k=2 = i cot
�k
2

for k = 0; 1; : : : ; n� 1. (c) �(En) = cot �
2n .
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22. Let A 2 Mn. Explain why the degree of the minimal polynomial of A is
at least rankA+ 1, and show by example that this lower bound on the degree
is best possible: for each r = 1; : : : ; n�1 there is some A 2Mn such that the
degree of qA(t) is rankA+ 1. Hint: Problem 4 in (3.2).

23. Show that a companion matrix is diagonalizable if and only if it has distinct
eigenvalues.

24. LetA 2Mn be a companion matrix (3.3.12). Show that: (a) If n = 2, then
A is normal if and only if ja0j = 1 and a1 = �a0a1; it is unitary if and only if
ja0j = 1 and a1 = 0. (b) If n � 3, then A is normal if and only if ja0j = 1 and
a1 = � � � = an�1 = 0, that is, if and only if pA(t) = tn � c and jcj = 1; (c)
If n � 3 and A is normal, then A is unitary and there is a ' 2 [0; 2�=n) such
that the eigenvalues of A are ei'e2�ik=n; k = 0; 1; : : : ; n� 1.

25. If a0 6= 0, show that the inverse of the companion matrix A in (3.3.12) is

A�1 =

266666664

�a1
a0

1 0 � � � 0
�a2
a0

0 1 0
...

...
. . . . . .

�an�1
a0

0
. . . 1

�1
a0

0 � � � � � � 0

377777775
(3.3.14)

and that its characteristic polynomial is

tn +
a1
a0
tn�1 + � � �+ an�1

a0
t+

1

a0
=
tn

a0
pA(

1

t
) (3.3.15)

26. This problem is a generalization of Problem 16 in (2.4). Let �1; : : : ; �d be
the distinct eigenvalues of A 2 Mn, let qA(t) = (t � �1)�1 � � � (t � �d)�d be
the minimal polynomial of A. For i = 1; : : : ; d, let qi(t) = qA(t)=(t � �i)
and let �i denote the number of blocks J�i(�i) in the Jordan canonical form
of A. Show that: (a) For each i = 1; : : : ; d, qi(A) 6= 0, each of its nonzero
columns is an eigenvector of A associated with �i, and each of its nonzero
rows is the complex conjugate of a left eigenvector of A associated with �i;
(b) for each i = 1; : : : ; d, qi(A) = XiY �i , in which Xi; Yi 2Mn;�i each have
rank �i, AXi = �iXi, and Y �i A = �iY �i ; (c) rank qi(A) = �i; i = 1; : : : ; d;
(d) If �i = 1 for some i = 1; : : : ; d, then there exists a polynomial p(t) such
that rank p(A) = 1; (e) If A is nonderogatory, then there is a polynomial p(t)
such that rank p(A) = 1; (f) The converse of the assertion in (d) is correct as
well�can you prove it? Hint: (�iI �A)qi(A) = qA(A).
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27. The nth order linear homogeneous ordinary differential equation

y(n) + an�1y
(n�1) + an�2y

(n�2) + � � �+ a1y0 + a0y = 0

for a complex-valued function y(t) of a real parameter t can be transformed
into a �rst order homogeneous system of ordinary differential equations x0 =
Ax;A 2 Mn; x = [x1 : : : xn]

T by introducing auxiliary variables x1 =
y; x2 = y

0; : : : ; xn = y
(n�1). Perform this transformation and show that AT

is the companion matrix (3.3.12).

28. Suppose that K 2Mn is an involution. Explain why K is diagonalizable,
and why K is similar to Im � (�In�m) for some m 2 f0; 1; : : : ; ng. Hint:
K2 = I , so there are three possibilities for the minimal polynomial ofK.

29. Suppose that A;K 2Mn,K is an involution, and A = KAK. Show that:
(a) there is some m 2 f0; 1; : : : ; ng and matrices A11 2 Mm, A22 2 Mn�m
such that A is similar to A11�A22 andKA is similar to A11� (�A22); (b) �
is an eigenvalue of A if and only if either +� or �� is an eigenvalue of KA;
(c) if A 2Mn is centrosymmetric (0.9.10) andK = Kn is the reversal matrix
(0.9.5.1), then � is an eigenvalue of A if and only if either +� or �� is an
eigenvalue of KnA, which presents the rows of A in reverse order. Hint: Let
K = SDS�1 with D = Im � (�In�m) and let A = S�1AS = [Aij ]

2
i;j=1.

ThenKA is similar to DA and A = DAD ) A12 = 0 and A22 = 0.

30. Suppose that A;K 2 Mn, K is an involution, and A = �KAK. Show
that: (a) there is some m 2 f0; 1; : : : ; ng and matrices A12 2 Mm;n�m,
A21 2 Mn�m;m such that A is similar to B =

h
0m
A21

A12

0n�m

i
and KA is similar

to
h
0m
�A21

A12

0n�m

i
; (b)A is similar to iKA, so � is an eigenvalue ofA if and only

if i� is an eigenvalue ofKA; (c) if A 2Mn is skew-centrosymmetric (0.9.10)
andKn is the reversal matrix (0.9.5.1), thenA is similar to iKnA (thus, � is an
eigenvalue of A if and only if i� is an eigenvalue of KnA, which presents the
rows of A in reverse order). Hint: Let T = iIm� In�m and compute TBT�1.

3.4 The real Jordan and Weyr canonical forms
In this section we discuss a real version of the Jordan canonical form for real
matrices, as well as an alternative to the Jordan canonical form for complex
matrices that is especially useful in problems involving commutativity.

3.4.1 The real Jordan canonical form Suppose that A 2 Mn(R), so any
nonreal eigenvalues must occur in complex conjugate pairs. We have rank(A�
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�I)k = rank (A� �I)k = rank(A� �I)k = rank(A� ��I)k for any � 2 C
and all k = 1; 2; : : : ; so theWeyr characteristics ofA associated with any com-
plex conjugate pair of eigenvalues are the same (that is, wk(A; �) = wk(A; ��)
for all k = 1; 2; : : :). Lemma 3.1.18 ensures that the Jordan structure of
A corresponding to any eigenvalue � is the same as the Jordan structure of
A corresponding to the eigenvalue �� (that is, sk(A; �) = sk(A; ��) for all
k = 1; 2; : : :). Thus, all the Jordan blocks of A of all sizes with nonreal
eigenvalues occur in conjugate pairs of equal size.
For example, if � is a nonreal eigenvalue of A 2 Mn(R), and if k blocks

J2(�) are in the Jordan canonical form of A, then there are k blocks J2(��) as
well. The block matrix

�
J2(�) 0

0 J2(��)

�
=

26664
� 1 0 0

0 � 0 0
- - - - - - - - - - - - - - -
0 0 �� 1

0 0 0 ��

37775
is permutation-similar (interchange rows and columns 2 and 3) to the block
matrix 26664

� 0 1 0

0 �� 0 1
- - - - - - - - - - - - - - -
0 0 � 0

0 0 0 ��

37775 =
�
D(�) I2
0 D(�)

�

in which D(�) =
h
� 0
0 ��

i
2M2.

In general, any Jordan matrix of the form�
Jk(�) 0

0 Jk(��)

�
2M2k (3.4.1.1)

is permutation similar to the block upper triangular matrix26666664

D(�) I2
D(�) I2

. . . . . .
. . . I2

D(�)

37777775 2M2k (3.4.1.2)

which has k 2-by-2 blocksD(�) on the main block diagonal and k � 1 blocks
I2 on the block superdiagonal.
Let � = a + ib; a; b 2 R. A computation reveals that D(�) is similar to a
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real matrix

C(a; b) :=

�
a b

�b a

�
= SD(�)S�1 (3.4.1.3)

in which S =
h
�i �i
1 �1

i
and S�1 = 1

2i

h
�1 i
�1 �i

i
. Moreover, every block

matrix of the form (3.4.1.2) with a nonreal � is similar to a real block matrix
of the form

Ck(a; b) :=

26666664

C(a; b) I2
C(a; b) I2

. . . . . .
. . . I2

C(a; b)

37777775 2M2k (3.4.1.4)

via the similarity matrix S � � � � � S (k direct summands). Thus, every block
matrix of the form (3.4.1.1) is similar to the matrix Ck(a; b) in (3.4.1.4). These
observations lead us to the real Jordan canonical form theorem.
3.4.1.5 Theorem. Each A 2 Mn(R) is similar via a real similarity to a real
block diagonal matrix of the form26666666664

Cn1(a1; b1)
. . .

Cnp(ap;bp)

Jm1
(�1)

. . .
Jmr (�r)

37777777775
(3.4.1.6)

in which �k = ak+ibk, k = 1; 2; : : : ; p, are nonreal eigenvalues ofA, each ak
and bk is real and bk > 0, and �1; : : : ; �r are real eigenvalues of A. Each real
block triangular matrix Cnk(ak; bk) 2 M2nk is of the form (3.4.1.4) and cor-
responds to a pair of conjugate Jordan blocks Jnk(�k); Jnk( ��k) 2 Mnk with
nonreal �k in the Jordan canonical form (3.1.12) of A. The real Jordan blocks
Jmk

(�k) in (3.4.6) are the Jordan blocks in (3.1.12) that have real eigenvalues.

Proof: We have shown that A is similar to (3.4.1.6) over C. Theorem 1.3.28
ensures that A is similar to (3.4.6) overR.

The block matrix (3.4.1.6) is the real Jordan canonical form of A.

3.4.2 The Weyr canonical form The Weyr characteristic (3.1.16) played a
key role in our discussion of uniqueness of the Jordan canonical form. It can
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also be used to de�ne a canonical form for similarity that has certain advan-
tages over the Jordan form.
Suppose that q is the index of an eigenvalue � of A 2 Mn, and let wk =

wk(A; �); k = 1; 2; : : : be the Weyr characteristic of A associated with �. The
Weyr blockWA(�) of A associated with � is the upper triangular q-by-q block
bidiagonal matrix

WA(�) =

26666664

�Iw1 G1;2
�Iw2 G2;3

. . . . . .
. . . Gq�1;q

�Iwq

37777775 (3.4.2.1)

in which

Gi;i+k :=

�
Iwi+k
0

�
2Mwi;wi+k ; k = 1; 2; : : :

Notice that rankGi;i+k = wi+k.
For example, the Weyr characteristic of the Jordan matrix J in (3.1.16a)

associated with the eigenvalue 0 is w1 = 6; w2 = 5; w3 = 2, so

WJ(0) =

24 06 G6;5
05 G5;2

02

35 (3.4.2.2)

Exercise. Let � be an eigenvalue of A 2 Mn. Explain why the size of the
Weyr blockWA(�) is the algebraic multiplicity of �; which is the sum of the
sizes of all the Jordan blocks of A with eigenvalue �.

The Weyr block WA(�) in (3.4.2.1) may be thought of as a q-by-q block
matrix analog of a Jordan block. The number of diagonal blocks (the parameter
q) is the index of � (rather than its algebraic multiplicity), the diagonal blocks
are scalar matrices �I (rather than scalars) with nonincreasingly ordered sizes,
and the superdiagonal blocks are full-column-rank blocks

h
I
0

i
(rather than

1s) whose sizes are dictated by the sizes of the diagonal blocks.

Exercise. For the Weyr block (3.4.2.2), show by explicit calculation that

WJ(0)
2 =

24 06 06;5 G6;2
05 05;2

02

35
andWJ(0)

3 = 0. Explain why rankWJ(0) = 7 = w2+w3 and rankWJ(0)
2 =
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2 = w3, and why the Weyr characteristic ofWJ(0) is 6; 5; 2. Deduce that J is
similar to WJ(0). In fact, J is similar to WJ(0) via a permutation similarity.
Describe it.

Exercise. The size of the Weyr blockWA(�) in (3.4.2.1) isw1+w2+� � �+wq.
Explain why rank(WA(�)� �I) = w2 + � � �+ wq.

Exercise. Verify that Gk�1;kGk;k+1 = Gk�1;k+1, that is,�
Iwk

0wk�1�wk;wk

� �
Iwk+1

0wk�wk+1;wk+1

�
=

�
Iwk+1

0wk�1�wk+1;wk+1

�
Using the preceding exercise, we �nd that (WA(�)� �I)2 =266666664

0w1 0 G1;3

0w2 0
. . .

0w3
. . . Gq�2;q
. . . 0

0wq

377777775
so rank(WA(�)��I)2 = w3+ � � �+wq. Moving from one power to the next,
each nonzero superdiagonal block Gk�p;k 2 Mwk�p;wk , k = p + 1; : : : ; q

in (WA(�) � �I)p moves up one block row into a higher superdiagonal of
(WA(�) � �I)p+1 whose blocks are Gk�p�1;k 2 Mwk�p�1;wk ; k = p +

2; : : : ; q. In particular, rank(WA(�)��I)p = wp+1+ � � �+wq; k = 1; 2; : : :.
Observe that rank(WA(�) � �I)p�1 � rank(WA(�) � �I)p = wp, so the
Weyr characteristic ofWA(�) associated with � is w1; w2; : : : ; wq; this is also
the Weyr characteristic of A associated with �.
A Weyr matrix is a direct sum of Weyr blocks with distinct eigenvalues.
We can now state theWeyr canonical form theorem:

3.4.2.3 Theorem. Let A 2 Mn be given, let �1; : : : ; �d be its distinct eigen-
values in any prescribed order, let wk(A; �j); k = 1; 2; : : : ; be the Weyr char-
acteristic ofA associated with the eigenvalue �j ; j = 1; : : : ; d, and letWA(�j)

be the Weyr block (3.4.2.1) for j = 1; 2; : : : ; d. Then there is a nonsingular
S 2Mn such that

A = S

264 WA(�1) 0
. . .

0 WA(�d)

375S�1
The Weyr matrixWA = WA(�1)� � � � �WA(�d) is uniquely determined by
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A up to permutation of its direct summands. If A is real and has only real
eigenvalues, then S can be chosen to be real.

Proof: The preceding observations show thatWA and A have identical Weyr
characteristics associated with each of their distinct eigenvalues. Lemma 3.1.18
ensures thatWA andA are similar (and thatWA is unique up to permutation of
its direct summands) since they are both similar to the same Jordan canonical
form. If A and all its eigenvalues are real, thenWA is real and (1.3.28) ensures
that A is similar toWA via a real similarity.

The Weyr matrixWA =WA(�1)�� � ��WA(�d) in the preceding theorem
is the Weyr canonical form of A. The Weyr and Jordan canonical formsWA

and JA contain the same information aboutA, but presented differently. Given
one form, one can use the information incorporated into it to write down the
other. Moreover,WA is permutation similar to JA and vice versa.

Exercise. Let A 2 Mn be given. Verify that the Jordan and Weyr canonical
forms of A have the same number of nonzero entries.

Exercise. Let �1; : : : ; �d be the distinct eigenvalues of A 2 Mn. (a) If A is
nonderogatory, explain why: (i) w1(A; �i) = 1 for each i = 1; : : : ; d; (ii)
in each Weyr block WA(�i); i = 1; : : : ; d, every diagonal and superdiagonal
sub-block of (3.4.2.1) is 1-by-1; (iii) The Weyr canonical form of A is the
same matrix as its Jordan canonical form. (b) If w1(A; �i) = 1 for each
i = 1; : : : ; d, why mustA be nonderogatory? Hint: w1(A; �i) is the geometric
multiplicity of �i.

Exercise. Let �1; : : : ; �d be the distinct eigenvalues of A 2 Mn. (a) If A is
diagonalizable, explain why: (i) w2(A; �i) = 0 for all i = 1; : : : ; d; (ii) each
Weyr block WA(�i); i = 1; : : : ; d (3.4.2.1) consists of a single block, which
is a scalar matrix; (iii) the Weyr canonical form of A is the same matrix as its
Jordan canonical form. (b) If w2(A; �i) = 0 for some i, why is w1(A; �i)
equal to the algebraic multiplicity of �i (it is always equal to the geometric
multiplicity)? (c) If w2(A; �i) = 0 for all i = 1; : : : ; d, why must A be
diagonalizable?

Exercise. Let �1; : : : ; �d be the distinct eigenvalues ofA 2Mn. Explain why:
For each i = 1; : : : ; d there are at most p Jordan blocks of A with eigenvalue
�i if and only if w1(A; �i) � p for each i = 1; : : : ; d, which is equivalent to
requiring that every diagonal block of everyWeyr blockWA(�i) (3.4.2.1) is at
most p-by-p.

In (3.2.4) we investigated the set of matrices that commute with a single
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given nonderogatory matrix. The key to understanding the structure of this set
is the following observation: a matrix A commutes with a single Jordan block
if and only if A is an upper triangular Toeplitz matrix (3.2.4.3). Thus, a matrix
commutes with a nonderogatory Jordan matrix J if and only if it is a direct
sum (conformal to J) of upper triangular Toeplitz matrices; in particular, it is
upper triangular. The Jordan and Weyr canonical forms of a nonderogatory
matrix A are identical; they are not the same if A is derogatory, and there is
an important difference in how the matrices that commute with them can be
described.

Exercise. Let J = J2(�) � J2(�). Show that: (a)WJ =
h
�I2 I2
02 �I2

i
; (b) a

matrix commutes with J if and only if it has the form
h
B C
D E

i
in which each

of B;C;D;E 2 M2 is upper triangular Toeplitz; (c) a matrix commutes with
WJ if and only if it has the block upper triangular form

h
B C
0 B

i
, in which

B;C 2M2.

A matrix that commutes with a derogatory Jordan matrix need not be block
upper triangular. However, the preceding exercise suggests that the situation
might be different for a derogatory Weyr block. The following lemma identi-
�es the feature of a Weyr block that forces any matrix that commutes with it to
have a block upper triangular structure.
3.4.2.4 Lemma. Let � 2 C and positive integers n1 � n2 � � � � � nk � 1 be
given. Consider the upper triangular and identically partitioned matrices

F = [Fij ]
k
i;j=1 =

266664
�In1 F12 F

�In2
. . .
. . . Fk�1;k

�Ink

377775 2Mn

and

F 0 = [F 0ij ]
k
i;j=1 =

266664
�In1 F 012 F

�In2
. . .
. . . F 0k�1;k

�Ink

377775 2Mn

Assume that all of the superdiagonal blocks F 0i;i+1 have full column rank. If
A 2Mn andAF = F 0A, thenA is block upper triangular conformal to F and
F 0. If, in addition, A is normal, then A is block diagonal conformal to F and
F 0.
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Proof: Partition A = [Aij ]
k
i;j=1 conformally to F and F 0. Our strategy is

to inspect corresponding blocks of the identity AF = F 0A in a particular
order. In block position k � 1; 1 we have �Ak�1;1 = �Ak�1;1 + F 0k�1;kAk1,
so F 0k�1;kAk1 = 0 and hence Ak1 = 0 since F 0k�1;k has full column rank. In
block position k�2; 1 we have �Ak�2;1 = �Ak�2;1+F 0k�2;k�1Ak�1;1 (since
Ak1 = 0), so F 0k�2;k�1Ak�1;1 = 0 and Ak�1;1 = 0. Proceeding upward in
the �rst block column ofA and using at each step the fact that the lower blocks
in that block column have been shown to be zero blocks, we �nd that Ai1 = 0
for each i = k; k � 1; : : : ; 2. Now inspect block position k � 1; 2 and proceed
upward in the same fashion to show that Ai2 = 0 for each i = k; k� 1; : : : ; 3.
Continuing this process left to right and bottom to top, we �nd that A is block
upper triangular conformal to F and F 0. If A is normal and block triangular,
(2.5.2) ensures that it is block diagonal.

3.4.2.5 Corollary. Let A 2 Mn be given, let �1; : : : ; �d be its distinct eigen-
values in any prescribed order, let wk(A; �j); k = 1; 2; : : : ; be the Weyr char-
acteristic ofA associated with the eigenvalue �j ; j = 1; : : : ; d, and letWA(�j)

be the Weyr block (3.4.2.1) for j = 1; 2; : : : ; d. Let S 2 Mn be nonsingular
and such that A = S(WA(�1) � � � � �WA(�d))S

�1. Suppose that B 2 Mn

and AB = BA. Then (1) S�1BS = B(1)� � � � �B(k) is block diagonal con-
formal to WA(�1) � � � � �WA(�d), and (2) each matrix B(`) is block upper
triangular conformal to the partition (3.4.2.1) of the Weyr blockWA(�`).

Proof: The assertion (1) follows from the basic result (2.4.4.2); the assertion
(2) follows from the preceding lemma.

Any matrix that commutes with a Weyr matrix is block upper triangular, but
we can say a little more. Consider once again the Jordan matrix J in (3.1.16a),
whose Weyr canonical form WJ = WJ(0) is (3.4.2.2). In order to expose
certain identities among the blocks of a (necessarily block upper triangular)
matrix that commutes withWJ , we impose a �ner partition onWJ . Letmk =

wk�1�wk; k = 1; 2; 3, so eachmk is the number of Jordan blocks of size k in
J : m3 = 2,m2 = 3, andm1 = 1. We have w1 = m3 +m2 +m1 = 6, w2 =
m3+m2 = 5, andw3 = m3 = 2. Now re-partitionWJ (3.4.2.2) with diagonal
block sizes 2; 3; 1; 2; 3; 2�this is known as the standard partition: the coarsest
partition of a Weyr block such that every diagonal block is a scalar matrix
(square) and every off-diagonal block is either an identity matrix (square) or
a zero matrix (not necessarily square). In the standard partition, WJ has the
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form

WJ =

266666664

02 0 0 I2 0 0

03 0 0 I3 0

01 0 0 0

02 0 I2
03 0

02

377777775
(3.4.2.6)

Although the diagonal blocks in a Weyr block (3.4.2.1) are arranged in nonin-
creasing order of size, after imposing the standard partition the new, smaller,
diagonal blocks need not occur in nonincreasing order of size. A computation
reveals that N commutes with WJ if and only if it has the following block
structure, conformal to that of (3.4.2.6):

N =

266666664

B C F D F F
F F E F F

G 0 F F
B C D

F E

B

377777775
(3.4.2.7)

in which there are no constraints on the entries of theF blocks. It is easier to
see how the equalities among the blocks of (3.4.2.7) are structured if we col-
lapse its standard partition to the coarser partition of (3.4.2.2): N = [Nij ]

3
i;j=1

with N11 2Mw1 =M6, N22 2Mw2 =M5, and N33 2Mw3 =M2. Then

N33 = [B] ; N23 =

�
D

E

�
; N22 =

�
B C

0 F

�
;

N12 =

24 D F
E F
0 F

35 ; N11 =

24 B C F
0 F F
0 0 F

35
that is,

N22 =

�
N33 F
0 F

�
; N11 =

�
N22 F
0 F

�
; N12 =

�
N23 F
0 F

�
The pattern

Ni�1;j�1 =

�
Nij F
0 F

�
(3.4.2.8)

permits us to determine all the equalities among the blocks in the standard
partition (including the positions of the off-diagonal zero block(s)) starting
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with the blocks in the last block column and working backwards up their block
diagonals.
One �nal structural simpli�cation of (3.4.2.7) is available to us. LetU3;�3 2

Mm3
, U2;�2 2Mm2

, andU1;�1 2Mm1
be unitary and upper triangular ma-

trices (2.3.1) such that B = U3�3U�3 , F = U2�2U�2 , and G = U1�1U�1 (the
last factorization is trivial in this case). Let

U = U3 � U2 � U1 � U3 � U2 � U3

Then

N 0 := U�NU =

266666664

�3 C 0 F D0 F F
�2 F E0 F F

�1 0 F F
�3 C 0 D0

�2 E0

�3

377777775
(3.4.2.9)

is upper triangular, in which C 0 = U�3CU2,D0 = U�3DU3, and E0 = U�2EU3.
The equalities among the blocks of N 0 on and above the block diagonal are
the same as those of N . Moreover,WJ is unchanged after a similarity via U :
U�WJU =WJ .
We can draw a remarkable conclusion from the preceding example. Suppose

that: A 2M13 has the Jordan canonical form (3.1.16a); F = fA;B1; B2; : : :g
is a commuting family; and S 2M13 is nonsingular and S�1AS =WA is the
Weyr canonical form (3.4.2.11). Then S�1FS = fWA; S

�1B1S; S
�1B2S; : : :g

is a commuting family. Since each matrix S�1BiS commutes with WA, it
has the block upper triangular form (3.4.2.7) in the standard partition. Thus,
for each j = 1; : : : ; 6 the diagonal blocks in position j; j of all the matrices
S�1BiS constitute a commuting family, which can be upper triangularized by
a single unitary matrix Uj (2.3.3). For each i = 1; 2; : : : the diagonal blocks of
S�1BiS in positions (1; 1), (4; 4), and (6; 6) are constrained to be the same,
so we may (and do) insist that U1 = U4 = U6. For the same reason, we insist
that U2 = U5. Let U = U1�� � ��U6. Then each U�(S�1BiS)U is upper tri-
angular and has the form (3.4.2.9), and U�S�1ASU = U�WAU = WA. The
conclusion is that there is a simultaneous similarity of the commuting family
fA;B1; B2; : : :g (via T = SU , that is, F ! T�1FT ) that reduces A to Weyr
canonical form and reduces every Bi to the upper triangular form (3.4.2.9).
All the essential features of the general case are captured in the preceding

example, and by following its development one can prove the following theo-
rem.
3.4.2.10 Theorem. Let �1; : : : ; �d be the distinct eigenvalues of a given A 2
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Mn in any prescribed order, let their respective indices be q1; : : : ; qd, and let
their respective algebraic multiplicities be p1; : : : ; pd. For each i = 1; : : : ; d,
let w1(A; �i); : : : ; wqi(A; �i) be the Weyr characteristic of A associated with
�i and letWA(�i) be the Weyr block (3.4.2.1) of A associated with �i. Let

WA =WA(�1)� � � � �WA(�d) (3.4.2.11)

be the Weyr canonical form of A, and let A = SWAS
�1. Then

(1) Suppose that B 2 Mn commutes with A. Then S�1BS = B(1) � � � � �
B(d) is block diagonal conformal to WA. For each ` = 1; : : : ; d, partition
B(`) = [B

(`)
ij ]

q`
i;j=1 2 Mp` , in which each B

(`)
jj 2 Mwj(A;�`), j = 1; : : : ; q`.

In this partition, B(`) is block upper triangular conformal to WA(�`) and its
blocks along the kth block superdiagonal are related by the identities

B
(`)
j�k�1;j�1 =

"
B
(`)
j�k;j F
0 F

#
;

k = 0; 1; : : : ; q` � 1;
j = q`; q` � 1; : : : ; k + 1

(3.4.2.12)

(2) Let F = fA;A1; A2; : : :g � Mn be a commuting family. There is a
nonsingular T 2 Mn such that T�1FT = fWA; T

�1A1T; T
�1A2T; : : :g is

an upper triangular family. Each matrix T�1AiT is block diagonal conformal
to (3.4.2.11). If the diagonal block of T�1AiT corresponding to WA(�`) is
partitioned with diagonal block sizes w1(A; �`); w2(A; �`); : : : ; wq`(A; �`),
then its blocks along its kth block superdiagonal are related by identities of the
form (3.4.2.12).

3.4.3 The unitaryWeyr form Theorem 3.4.2.3 and theQR factorization im-
ply a re�nement of Schur's unitary triangularization theorem (2.3.1) that incor-
porates the block structure of the Weyr canonical form.
3.4.3.1 Theorem. Let �1; : : : ; �d be the distinct eigenvalues of a given A 2
Mn in any prescribed order, let q1; : : : ; qd be their respective indices, and let
q = q1 + � � �+ qd. Then A is unitarily similar to an upper triangular matrix of
the form

F =

26666664

�1In1 F12 F13 � � � F1p
�2In2 F23 � � � F2p

�3In3
. . .

...
. . . Fp�1;p

�pInp

37777775 (3.4.3.2)

in which (a) �1 = � � � = �q1 = �1;�q1+1 = � � � = �q1+q2 = �2; : : : ;
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�p�qd+1 = � � � = �p = �d; (b) For each j = 1; : : : ; d the qj integers
ni; : : : ; ni+qj�1 for which �i = � � � = �i+qj�1 = �j are the Weyr character-
istic of �j as an eigenvalue of A, that is, ni = w1(A; �j) � � � � � ni+qj�1 =
wqj (A; �j); (c) if �i = �i+1 then ni � ni+1, Fi;i+1 2 Mni;ni+1 is upper
triangular, and its diagonal entries are real and positive.
IfA 2Mn(R) and if �1; : : : ; �d 2 R, thenA is real orthogonally similar to

a real matrix F of the form (3.4.3.2) that satis�es conditions (a), (b), and (c).
The matrix F in (3.4.3.2) is determined by A up to the following equiva-

lence: If A is unitarily similar to a matrix F 0 of the form (3.4.3.2) that sat-
is�es the conditions (a), (b), and (c), then there is a block diagonal unitary
matrix U = U1 � � � � � Up conformal to F such that F 0 = UFU�, that is,
F 0ij = U

�
i FijUj , i � j, i; j = 1; : : : ; p.

Proof: Let S 2Mn be nonsingular and such that

A = SWAS
�1 = S(WA(�1)� � � � �WA(�d))S

�1

Let S = QR be a QR factorization (2.1.14), so Q is unitary, R is upper tri-
angular with positive diagonal entries, and A = Q(RWAR

�1)Q� is unitarily
similar to the upper triangular matrix RWAR

�1. Partition R = [Rij ]
d
i;j=1

conformally toWA and compute

RWAR
�1 =

264 R11W (A; �1)R
�1
11 F

. . .
RddW (A; �d)R

�1
dd

375
It suf�ces to consider only the diagonal blocks, that is, matrices of the form
TW (A; �)T�1. The matrix T is upper triangular with positive diagonal en-
tries; we partition T = [Tij ]qi;j=1 and T�1 = [T ij ]

q
i;j=1 conformally toW (A; �),

whose diagonal block sizes are w1 � � � � � wq � 1. The diagonal blocks of
TW (A; �)T�1 are Tii�IwiT ii = �Iwi since T ii = T�1ii (0.9.10); the super-
diagonal blocks are TiiGi;i+1T i+1;i+1 + �(TiiT i;i+1 + Ti;i+1T i+1;i+1) =
TiiGi;i+1T

i+1;i+1 (the term in parentheses is the (i; i + 1) block entry of
TT�1 = I). If we partition Tii =

h
C F
0 D

i
with C 2 Mwi (C is upper

triangular with positive diagonal entries), then

TiiGi;i+1T
i+1;i+1 =

�
C F
0 D

� �
Iwi+1
0

�
T�1i+1;i+1 =

�
CT�1i+1;i+1

0

�
is upper triangular and has positive diagonal entries, as asserted.
If A is real and has real eigenvalues, (2.3.1), (3.4.2.3), and (2.1.14) ensure
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that the reductions in the preceding argument (as well as theQR factorization)
can be achieved with real matrices.
Finally, suppose that V1; V2 2 Mn are unitary, A = V1FV

�
1 = V2F

0
V �2 ,

and both F and F 0 satisfy the conditions (a), (b), and (c). Then (V �2 V1)F =

F
0
(V �2 V1), so (3.4.2.4) ensures that V �2 V1 = U1 � � � � � Up is block diagonal

conformal with F and F 0, that is, V1 = V2(U1 � � � � � Up) and F 0 = UFU�.

The following corollary illustrates how (3.4.3.1) can be used.
3.4.3.3 Corollary. Let A 2Mn be given and suppose that A2 = A. Let

�1 � � � � � �g > 1 � �g+1 � � � � � �r > 0 = �r+1 = � � �

be the singular values of A, so r = rankA and g is the number of singular
values of A that are greater than 1. Then A is unitarily similar to�

1 (�21 � 1)1=2
0 0

�
� � � � �

�
1 (�2g � 1)1=2
0 0

�
� Ir�g � 0n�r�g

Proof: The minimal polynomial of A is qA(t) = t(t � 1), so A is diag-
onalizable; its distinct eigenvalues are �1 = 1 and �2 = 0; their respec-
tive indices are q1 = q2 = 1; and their respective Weyr characteristics are
w1(A; 1) = r = trA and w1(A; 0) = n � r. Theorem 3.4.3.1 ensures that
A is unitarily similar to F =

h
Ir F12
0 0n�r

i
and that F12 is determined up to

unitary equivalence. Let h = rankF12 and let F12 = V �W � be a singular
value decomposition: V 2 Mr andW 2 Mn�r are unitary, and � 2 Mr;n�r
is diagonal with diagonal entries s1 � � � � � sh > 0 = sh+1 = � � � . Then F
is unitarily similar (via V �W ) to

h
Ir �
0 0n�r

i
, which is permutation similar

to

C =

�
1 s1
0 0

�
� � � � �

�
1 sh
0 0

�
� Ir�h � 0n�r�h

The singular values ofC (and hence also ofA) are (s21+1)1=2; : : : ; (s2h+1)1=2

together with r � h ones and n � r � h zeroes. It follows that h = g and
si = (�

2
i � 1)1=2; i = 1; : : : ; g.

Exercise. Provide details for the preceding proof. Explain why two involutory
matrices of the same size are unitarily similar if and only if they are unitarily
equivalent, that is, if and only if they have the same singular values.

Problems

1. Suppose that A 2 Mn(R) and A2 = �In. Show that n must be even, and
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that there is a nonsingular S 2Mn(R) such that

S�1AS =

�
0 �In=2
In=2 0

�
Hint: What is the real Jordan canonical form of A?

In the following three problems, for a given A 2 Mn, C(A) = fB 2 Mn :

AB = BAg denotes the centralizer of A: the set of matrices that commute
with A.
2. Explain why C(A) is an algebra.

3. Let J 2 M13 be the matrix in (3.1.16a). (a) Use (3.4.2.7) to show that
dim C(J) = 65. (b) Show that w1(J; 0)2 + w2(J; 0)2 + w3(J; 0)2 = 65.

4. Let the distinct eigenvalues of A 2 Mn be �1; : : : ; �d with respective in-
dices q1; : : : ; qd. (a) Show that dim C(A) =

Pd
j=1

Pqj
i=1 wi(A; �j)

2. Hint:
Use (3.4.2.10) and the identities (3.4.2.12). (b) Show that dim C(A) � n, with
equality if and only if A is nonderogatory. Hint: wi(A; �j)2 � wi(A; �j).
(c) Let the Segre characteristic of each eigenvalue �j of A be si(A; �j); i =
1; : : : ; w1(A; �j). It is known that dim C(A) =

Pd
j=1

Pw1(A;�)
i=1 (2i�1)si(A; �j);

see Problem 9 in Section 4.4 of [HJ]. Explain why

dX
j=1

qX
i=1

wi(A; �)
2 =

dX
j=1

w1(A;�j)X
i=1

(2i� 1)si(A; �j)

Verify this identity for the matrix in (3.1.16a).

5. Let A 2 Mn be given and suppose that A2 = 0, that is, A is self-
annihilating. Let r = rankA and let �1 � � � � � �r be the positive singular
values of A. Show that A is unitarily similar to�

0 �1
0 0

�
� � � � �

�
0 �r
0 0

�
� 0n�2r

Explain why two self-annihilating matrices of the same size are unitarily simi-
lar if and only if they have the same singular values, that is, if and only if they
are unitarily equivalent. Hint: Use (3.4.3.1) as in (3.4.3.3); the unitary Weyr
form of A is again block 2-by-2, but now F12 has full column rank.

6. Show thatA 2M2(R) is similar to
h

1 1
�1 1

i
if and only ifA =

h
1 + � (1 + �2)=�
�� 1� �

i
for some �; � 2 R with � 6= 0.

Further Readings. Eduard Weyr announced his eponymous characteristic and
canonical form in E. Weyr, Répartition des matrices en espèces et formation
de toutes les espèces, C. R. Acad. Sci. Paris 100 (1885) 966-969. For an
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exposition of the Weyr characteristic and canonical form see H. Shapiro, The
Weyr characteristic, Amer. Math. Monthly 196 (1999) 919-929; for technical
details (in particular, for a proof of (3.4.2.10)) see V. Sergeichuk, Canonical
matrices for linear matrix problems, Linear Algebra Appl. 317 (2000) 53-102.

3.5 Triangular factorizations
If a linear systemAx = b has a nonsingular triangular (0.9.3) coef�cient matrix
A 2 Mn, computation of the unique solution x is remarkably easy. If, for ex-
ample, A = [aij ] is upper triangular and nonsingular, then all aii 6= 0 and one
can employ back substitution: annxn = bn determines xn; an�1;n�1xn�1 +
an�1;nxn = bn�1 then determines xn�1 since xn is known and an�1;n�1 6= 0;
proceeding in the same fashion upward through successive rows of A one de-
termines xn�2; xn�3; : : : ; x2; x1.

Exercise. Describe forward substitution as a solution technique for Ax = b if
A 2Mn is nonsingular and lower triangular.

If A 2 Mn is not triangular, one can still use forward and back substitution
to solve Ax = b provided that A is nonsingular and can be factored as A =

LU , in which L is lower triangular and U is upper triangular: First use forward
substitution to solve Ly = b, and then use back substitution to solve Ux = y.

3.5.1 De�nition. Let A 2Mn. A presentation A = LU , in which L 2Mn is
lower triangular and U 2Mn is upper triangular, is called an LU factorization
of A.

3.5.2 Lemma. Suppose that A 2 Mn and that A = LU is an LU factoriza-
tion. For any block 2-by-2 partition

A =

�
A11 A12
A21 A22

�
; L =

�
L11 0

L21 L22

�
; U =

�
U11 U12
0 U22

�
with A11; L11; U11 2Mk; k � n, we have

A11 = L11U11
A12 = L11U12; A21 = L21U11
A22 = L21U12 + L22U22

Consequently, each leading principal submatrix of A has an LU factorization
in which the factors are the corresponding leading principal submatrices of L
and U .

Exercise. Verify (3.5.2) by carrying out the partitioned multiplication.
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3.5.3 Theorem. Let A 2Mn be given. Then:
(a) A has an LU factorization in which L is nonsingular if and only if A has
the row inclusion property: for each i = 1; :::; n � 1, A[fi + 1; 1; :::; ig] is a
linear combination of the rows of A[f1; :::; ig].
(b) A has an LU factorization in which U is nonsingular if and only if A has
the column inclusion property: for each j = 1; :::; n� 1, A[f1; :::; j; j +1g] is
a linear combination of the columns of A[f1; :::; jg].

Proof: If A = LU , then A[f1; :::; i + 1g] = L[f1; :::; i + 1g]U [f1; :::; i +
1g]. Thus, to verify the necessity of the row inclusion property, it suf�ces to
take i = k = n � 1 in the partitioned presentation given in (3.5.2). Since
L is nonsingular and triangular, L11 is also nonsingular and we have A21 =
L21U11 = L21L

�1
11 L11U11 =

�
L21L

�1
11

�
A11, which veri�es the row inclusion

property.
Conversely, if A has the row inclusion property we may construct induc-

tively an LU factorization with nonsingular L as follows (the cases n = 1; 2

are easily veri�ed): Suppose that A11 = L11U11, L11 is nonsingular, and the
row vectorA21 is a linear combination of the rows ofA11. Then there is a vec-
tor y such that A21 = yTA11 = yTL11U11, and we may take U12 = L�111 A12,
L21 = y

TL11, L22 = 1, and U22 = A22 � L21U12 to obtain an LU factoriza-
tion of A in which L is nonsingular.
The assertions about the column inclusion property follow from considering

an LU factorization of AT .

Exercise. Consider the matrix Jn 2 Mn, all of whose entries are 1. Find an
LU factorization of Jn in which L is nonsingular. With this factorization in
hand, Jn = JTn = UTLT is an LU factorization of Jn in which the upper
triangular factor is nonsingular.

Exercise. Show that the row inclusion property is equivalent to the following
formally-stronger property: For each i = 1; :::; n � 1, every row of A[fi +
1; :::; ng; f1; :::; ig] is a linear combination of the rows of A[f1; :::; ig]. What
is the corresponding statement for column inclusion?

Exercise. Characterize the square matrices that haveLU factorizations in which
L may be taken to be nonsingular, or in which U may be taken to be nonsin-
gular, but not necessarily both.

If A 2Mn, rankA = k, and detA[f1; :::; jg] 6= 0, j = 1; :::; k, then A has
both the row inclusion and column inclusion properties. The following result
follows from (3.5.3).
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3.5.4 Corollary. Suppose that A 2 Mn and rank A = k. If A[f1; : : : ; jg] is
nonsingular for all j = 1; : : : ; k, thenA has an LU factorization. Furthermore,
either factor may be chosen to be nonsingular; both L and U are nonsingular
if and only if k = n, that is, if and only if A and all of its leading principal
submatrices are nonsingular.

3.5.5 Example. Not every matrix has an LU factorization. If A =
h
0 1
1 0

i
could be written as A = LU =

h
l11 0
l21 l22

i h
u11 u12
0 u22

i
, then l11u11 = 0

implies that one of L or U is singular; but LU = A is nonsingular.

Exercise. Explain why a nonsingular matrix that has a singular leading princi-
pal submatrix cannot have an LU factorization.

Exercise. Verify that

A =

24 0 0 0

0 0 1

0 1 0

35 =
24 0 0 0

1 0 0

0 1 1

3524 0 0 1

0 1 0

0 0 0

35
has an LU factorization even though A has neither the row nor column inclu-
sion property. However, A is a principal submatrix of a 4-by-4 matrix

Â =
h
A e1
0 0

i
=
h

0 Â12

Â21 0

i
; Â12 =

h
0 1
1 0

i
; Â21 =

h
0 1
0 0

i
that does not have an LU factorization. Verify this by considering the block
factorization in (3.5.2) with k = 2: Â12 = L11U12 implies that L11 is nonsin-
gular, and hence 0 = L11U11 implies that U11 = 0, which is inconsistent with
L21U11 = Â21 6= 0.

Exercise. Consider A =
h
1 0
a 1

i h
0 1
0 2� a

i
and explain why an LU fac-

torization need not be unique even if the diagonal entries of L are required to
be 1.

It is now clear that an LU factorization of a given matrix need not be unique,
and it may or may not exist. Much of the trouble arises from singularity, either
of A or of its leading principal submatrices. Using the tools of (3.5.2) and
(3.5.3), however, we can give a full description in the nonsingular case, and we
can impose a normalization that makes the factorization unique.

3.5.6 Corollary. Suppose that A 2 Mn is nonsingular. Then A has an LU
factorization A = LU if and only if A[f1; : : : ; jg] is nonsingular for all j =
1; : : : ; n. Moreover, A may be factored as A = L0DU 0 in which L0 2 Mn is
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lower triangular and U 0 2 Mn is upper triangular, every diagonal entry of L0

and U 0 is equal to 1, and D is a nonsingular diagonal matrix determined by

detD[f1; : : : ; jg] = detA [f1; : : : ; jg]; j = 1; : : : ; n

The factors L0; U 0, and D are uniquely determined by A.

Exercise. Use (3.5.2), (3.5.3), and prior exercises to provide details for a proof
of the preceding corollary.

Exercise. If A 2 Mn has an LU factorization with L = [`ij ] and U = [uij ],
show that `11u11 = det[Af1g] and `iiuii detA[f1; :::; i�1g] = detA[f1; :::; ig];
i = 2; :::; n.

Returning to the solution of the linear systemAx = b, suppose thatA 2Mn

cannot be factored as LU , but can be factored as PLU , in which P 2Mn is a
permutation matrix, and L and U are lower and upper triangular, respectively.
This amounts to a reordering of the equations in the linear system prior to
factorization. In this event, solution of Ax = b is still quite simple via Ly =
PT b and Ux = y. It is worth knowing that any nonsingular A 2 Mn may
be so factored and that L may be taken to be nonsingular. The solutions of
Ax = b are the same as those of Ux = L�1PT b.

3.5.7 Lemma. Let A 2 Mk be nonsingular. Then there is a permutation ma-
trix P 2Mk such that det(PTA)[f1; : : : ; jg] 6= 0, j = 1; : : : ; k.

Proof: The proof is by induction on k. If k = 1 or 2, the result is clear by
inspection. Suppose that it is valid up to and including k � 1. Consider a non-
singular A 2Mk and delete its last column. The remaining k� 1 columns are
linearly independent and hence they contain k � 1 linearly independent rows.
Permute these rows to the �rst k� 1 positions and apply the induction hypoth-
esis to the nonsingular upper (k � 1)-by-(k � 1) submatrix. This determines a
desired overall permutation P , and PTA is nonsingular.

3.5.8 Theorem. For each A 2 Mn there is a permutation matrix P 2 Mn, a
nonsingular lower triangular L 2 Mn, and an upper triangular U 2 Mn such
that A = PLU .

Proof: If we show that there is a permutation matrix Q such that QA has the
row inclusion property, then (3.5.3) ensures that QA = LU with L nonsingu-
lar, so A = PLU for P = QT .
If A is nonsingular, the desired permutation is guaranteed by (3.5.7). If

rankA = k < n, �rst permute the rows of A so that the �rst k are linearly
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independent. It follows that A[fi + 1g; f1; :::; ig] is a linear combination of
the rows of A[f1; :::; ig]; i = k; :::; n� 1. If A[f1; :::; kg] is nonsingular, apply
(3.5.7) again to further permute the rows so that A[f1; :::; kg], and thus A,
has the row inclusion property. If rankA[f1; :::; kg] = ` < k, treat it in the
same way that we have just treated A, and obtain row inclusion for the indices
i = `; :::; n � 1. Continue in this manner until either the upper left block is
0, in which case we have row inclusion for all indices, or it is nonsingular, in
which case one further permutation completes the argument.

Exercise. Show that each A 2 Mn may be written A = LUQ, in which L is
lower triangular, U is upper triangular and nonsingular, andQ is a permutation
matrix.

Problems

1. The theory developed in this section deals with a factorization A = LU ,
with L lower triangular and U upper triangular. Discuss a parallel theory of
A = UL factorization, noting that the factors may be different.

2. Describe how Ax = b may be solved if A is presented as A = QR, in
which Q is unitary and R is upper triangular (2.1.14).

3. Show that A 2 Mn may be written as A = LP0U , in which L 2 Mn is
nonsingular and lower triangular, U 2Mn is nonsingular and upper triangular,
and P0 is a sub-permutation matrix [a permutation matrix with as many of the
1's replaced by 0's as the rank of A is less than n]. Hint: Use elementary row
and column operations.

4. If the leading principal minors of A 2 Mn are all nonzero, describe how
an LU factorization of A may be obtained by using type 3 elementary row
operations to zero out entries below the diagonal.

5. (Lanczos tridiagonalization algorithm.) Let A 2 Mn and x 2 Cn be
given. De�ne X = [x Ax A2x : : : An�1x]. The columns of X are said
to form a Krylov sequence. Assume that X is nonsingular. (a) Show that
X�1AX is a companion matrix (3.3.12) for the characteristic polynomial of
A. (b) If R 2 Mn is any given nonsingular upper triangular matrix and S �
XR, show that S�1AS is in upper Hessenberg form. (c) Let y 2 Cn and
de�ne Y = [y A�y (A�)2y : : : (A�)n�1y]. Suppose that Y is nonsingular
and that Y �X can be written as LDU , in which L is lower triangular and
U is upper triangular and nonsingular, and D is diagonal and nonsingular.
Show that there exist nonsingular upper triangular matrices R and T such that
(XR)�1 = T �Y � and such that T �Y �AXR is tridiagonal and similar to A.
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(d) If A 2 Mn is Hermitian, use these ideas to describe an algorithm that
produces a tridiagonal Hermitian matrix that is similar to A.

6. Explain why the n; n entry of a given A 2Mn has no in�uence on whether
it has an LU factorization, or has one with L nonsingular, or has one with U
nonsingular.

7. Show that Cn = [1=max fi; jg] 2 Mn(R) has an LU decomposition of
the form Cn = LnLTn , in which the entries of the lower triangular matrix Ln
are `ij = 1=max fi; jg for i � j. Conclude that detLn = (1=n!)2.

8. Show that the condition �A[f1; : : : ; jg] is nonsingular for all j = 1; : : : ; n�
in (3.5.6) may be replaced with the condition �A[fj; : : : ; ng] is nonsingular for
all j = 1; : : : ; n�.

9. Let A 2 Mn(R) be the symmetric tridiagonal matrix (0.9.10) with all
main diagonal entries equal to +2 and all entries in the �rst superdiagonal and
subdiagonal equal to �1. Consider

L =

26666664

1

� 1
2 1

� 2
3

. . .

. . . 1

�n�1
n 1

37777775 ; U =
26666664
2 �1

3
2 �1

. . . . . .
n
n�1 �1

n+1
n

37777775
Show that A = LU and detA = n + 1. The eigenvalues of A are �k =
4 sin2 k�

2(n+1) , k = 1; : : : ; n (see Problem 17 in (1.4)). Notice that �1(A)! 0

and �n(A)! 4 as n!1, and detA = �1 � � ��n !1.

10. Suppose that A 2 Mn is symmetric and that all its leading principal
submatrices are nonsingular. Show that there is a nonsingular lower triangular
L such that A = LLT , that is, A has an LU factorization in which U = LT .

Further Reading. Problem 5 is adapted from [Ste], where additional informa-
tion about the numerical applications of LU factorizations may be found.
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companion matrix, 220
alternative forms, 223
common eigenvector, 224
eigenvectors, 224
inverse, 225
Newton's identities, 223
singular values, 223

conjugate partition, 196
convergent matrix, 204
coupled equations, 199

decoupled equations, 200
diagonalizable
part, 214

dot diagram, 195
Drazin inverse, 210
characterized by 3 identities, 211
limit, 215
polynomial in A, 212
projections, 215
reciprocal eigenvalues, 212

eigenvalue
semisimple, 212

eigenvalues
semisimple, 197

eigenvector
companion matrix, 224

Euclidean algorithm, 216

Ferrers diagram, 195
forward substitution, 240

generalized inverse, 210
geometric-algebraic multiplicity inequality,

205
Gram-Schmidt process
minimal polynomial, 221

group
Heisenberg, 197

Heisenberg group, 197
Hessenberg
diagonalizable, 198
unreduced, 198

idempotent, 215, 221
unitary similarity canonical form, 238

indecomposable
permutation similarity, 207

index of an eigenvalue, 193, 199, 208
block upper triangular matrix, 209

inverse
matrix similar to its, 197
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involution, 226
unitary similarity canonical form, 238

Jacobson's lemma, 215
Jordan block, 186
inverse, 197

Jordan canonical form, 190
AB vs. BA, 210
of a direct sum, 206
optimality, 208
real, 228
theorem, 190

Jordan decomposition
diagonalizable part, 214
existence, 206
nilpotent part, 214
uniqueness, 214

Krylov sequence, 244

Lanczos tridiagonalization, 244
least common multiple, 222
LU factorization, 240
nonexistence, 242
PLU factorization, 243
tridiagonal matrix, 245
uniqueness, 243

matrix
companion, 220
convergent, 204
idempotent, 221
nonderogatory, 202
power-bounded, 212
self-annihilating, 195, 239
sub-permutation, 244
tripotent, 221

minimal polynomial
direct sum, 222
Gram-Schmidt process, 221

Newton's identities, 223
nilpotent
part, 214

nonderogatory, 202
matrix commutes with, 202
similar to transpose, 204

ordinary differential equations, 199, 226
oscillatory solutions, 200

partition
standard, 234

permutation similar
Weyr and Jordan forms, 231

PLU factorization, 243
polynomial

annihilating, 216
rank p(A) = 1, 225

power-bounded matrix, 212
prime, 199
projection, 215

rank-principal matrix, 197
real Jordan canonical form, 228
row inclusion property, 241

second differrences, 195
Segre characteristic, 193, 196
self-annihilating matrix, 195
unitary similarity canonical form, 239

semisimple
eigenvalue, 212

semisimple eigenvalue, 197
similarity
matrix and its transpose, 201, 204

singular values
companion matrix, 223

skew-centrosymmetric, 226
spectral radius, 224
standard partition, 234
sub-permutation matrix, 244
symmetric matrix
product of two, 201

transpose
matrix similar to its transpose, 201, 204

tridiagonal matrix
determinant, 245
distinct eigenvalues, 198
eigenvalues, 245
LU factorization, 245
real eigenvalues, 198

tridiagonalization
Lanczos, 244

tripotent, 221

unitary
Weyr form, 236
Weyr form, commutes with, 232

Weyr block, 229
Weyr canonical form, 231
commuting family, 236
Jordan block, 231
nonderogatory matrix, 231
theorem, 230
unitary, 236
unitary, commutes with, 232

Weyr characteristic, 192, 196
Weyr matrix, 230
commutes with, 233, 236

Young diagram, 195


