CHAPTER 3

Canonical forms for similarity, and triangular
factorizations

3.0 Introduction

1THow can we tell if two given matrices are similar? The two matrices

010 0 010 0
000 0 0010

A=1 0 o o 1| = B= 0 0 0 (3.0.0)
000 0 000 0

have the same eigenvalues, and hence they have the same characteristic poly-
nomial, trace, and determinant. They also have the same rank, but A?> = 0 and
B? # 0, s0 A and B are not similar.

One approach to determining whether given square complex matrices A and
B are similar would be to have in hand a set of special matrices of prescribed
form, and see if both given matrices can be reduced by similarity to the same
special matrix. If so, then A and B must be similar because the similarity
relation is transitive and reflexive. If not, then we would like to be able to
conclude that A and B are not similar. What sets of special matrices would be
suitable for this purpose?

Every square complex matrix is similar to an upper triangular matrix. How-
ever, two upper triangular matrices with the same main diagonals but some
different off-diagonal entries can still be similar (2.3.2b). Thus, we have a
uniqueness problem: if we reduce A and B to two unequal upper triangu-
lar matrices with the same main diagonal, we cannot conclude from this fact
alone that A and B are not similar.

The class of upper triangular matrices is too large for our purposes, but what
about the smaller class of diagonal matrices? Uniqueness is no longer an issue,
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186 Canonical forms for similarity, and triangular factorizations

but now we have an existence problem: Some similarity equivalence classes
contain no diagonal matrices.

The key to finding a suitable set of special matrices turns out to be a deft
compromise between diagonal matrices and upper triangular matrices: A Jor-
dan matrix is a special block upper triangular form that can be achieved by
similarity for every complex matrix. Two Jordan matrices are similar if and
only if they have the same diagonal blocks, without regard to their ordering.
Moreover, no other matrix in the similarity equivalence class of a Jordan matrix
J has strictly fewer nonzero off-diagonal entries than J.

Similarity is only one of many equivalence relations of interest in matrix the-
ory; several others are listed in (0.11). Whenever we have an equivalence rela-
tion on a set of matrices, we want to be able to decide whether given matrices
A and B are in the same equivalence class. A classical and broadly successful
approach to this decision problem is to identify a set of representative matrices
for the given equivalence relation such that (a) there is a representative in each
equivalence class, and (b) distinct representatives are not equivalent. The test
for equivalence of A and B is to reduce each via the given equivalence to a
representative matrix and see if the two representative matrices are the same.
Such a set of representatives is a canonical form for the equivalence relation.

For example, the spectral theorem (2.5.3) provides a canonical form for the
set of normal matrices under unitary similarity: the diagonal matrices are a
set of representative matrices (we identify two diagonal matrices if one is a
permutation similarity of the other). Another example is the singular value
decomposition (2.6.3), which provides a canonical form for M,, under unitary
equivalence: the diagonal matrices ¥ = diag(o1,...,0,) withoy; > -+ >
o, > 0 are the representative matrices.

3.1 The Jordan canonical form theorem

3.1.1 Definition. A Jordan block Ji,()) is a k-by-k upper triangular matrix of
the form

Al 0
Al
Al
BN = S R
Al
0 A
(3.1.2)

The scalar A appears & times on the main diagonal; if £ > 1, there are k — 1
entries “+1” in the superdiagonal; all other entries are zero. A Jordan matrix
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J € M, is a direct sum of Jordan blocks
J = Jn (M) @ Tny(X2) DD T, (Ag), ny+ng+---+ny =mn (3.1.3)
Neither the block sizes n; nor the scalars \; need be distinct.

The main result of this section is that every complex matrix is similar to an
essentially unique Jordan matrix. We proceed to this conclusion in three steps,
two of which have already been taken:

Step 1. Theorem 2.3.1 ensures that every complex matrix is similar to an up-
per triangular matrix whose eigenvalues appear on the main diagonal,
and equal eigenvalues are grouped together.

Step 2. Theorem 2.4.6.1 ensures that a matrix of the form described in Step
1 is similar to a block diagonal upper triangular matrix (2.4.6.2) in
which each diagonal block has equal diagonal entries.

Step 3. In this section, we show that an upper triangular matrix with equal
diagonal entries is similar to a Jordan matrix.

We are also interested in concluding that if a matrix is real and has only real
eigenvalues, then it can be reduced to a Jordan matrix via a real similarity. If a
real matrix A has only real eigenvalues, then (2.3.1) and (2.4.6.1) ensure that
there is a real similarity matrix .S such that S~ AS is a (real) block diagonal
upper triangular matrix of the form (2.4.6.2). Thus, it suffices to show that a
real upper triangular matrix with equal main diagonal entries can be reduced
to a direct sum of Jordan blocks via a real similarity.

The following lemma is helpful in taking Step 3; its proof is an entirely
straightforward computation. The k-by-k Jordan block with eigenvalue zero is
called a nilpotent Jordan block.

3.1.4 Lemma. Let k£ > 2 be given. Let I;,_; € Mj_; be an identity matrix,
let e; denote the ith standard unit basis vector, and let z € CF be given. Then
T 0 0 .
Ji. (0)J(0) = and Jp(0)’ =0 if p>k
0 Ix_:

Moreover, J;(0)e;41 = e; fori = 1,2,...,k — Land [I — JL(0)J,(0)]z =
(zTey)er.

We now address the issue in Step 3.

3.1.5 Theorem. Let A € M, be strictly upper triangular. There is a nonsin-
gular S € M, and there are integers n1,no, ..., Ny, Withng > ng > -+ >
Ny > 1and nq +ng + - - - + Ny, = 1 such that

A=5(Jn, (0)® Jp,(0) & - & Jy, (0) ST (3.1.6)
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If A is real, the similarity matrix .S may be chosen to be real.

Proof: 1If n =1, A = [0] and the result is trivial. We proceed by induction on
n. Assume that n > 1 and that the result has been proved for all strictly upper
triangular matrices of size less than n. Partition A = [ 8 ZTI }, in which

a € C" 1and A; € M,_; is strictly upper triangular. By the induction
hypothesis, there is a nonsingular S; € M,_; such that S 1 4, has the
desired form (3.1.6); that is,
Ik, 0
SflAlsl = = |:
0 Jk,

(3.1.7)

Jr, 0
0 J

inwhichky > ko> > ks > 1, k1 + kot -+ ks =n—1,J;, = Ji, (0),
and J = Ji, @B Jx, € My _k,—1. No diagonal Jordan block in J has size
greater than ky, so J*1 = 0. A computation reveals that

1 0 1o 0 a'5
A = 1.
[0 511} [0 51} [0 511A151} G189
Partition a”'S; = [aT al] with a; € C** and ay € C" %171, and write (3.1.8)
as

T T
10 10 0 ar
0 st |4 o s |70 I O
! ! 0o 0 J
Now consider the similarity
(1 —afJL 0 0 af af 1 afJL 0
0 I 0 0 Ji, O 0 I 0
L 0 0 1 0 0 J 0 0 1
[0 af (I—JLJx) af 0 (afer)el af
= | o i, 0o l=|0 g 0 |(3.1.9
L0 0 J 0 0 J
in which we use the identity (I — J! Jy)x = (27e1)e;. There are now two

possibilities, depending on whether al e; # 0 or af'e; = 0.
Ifale; # 0, then

1/ate; 0 0 0 (aier)e; ay ate; 0 0
0o I 0 0 Ji 0 0 I 0
0 0 (1/afe)r 0 0 J 0 0 afer



3.1 The Jordan canonical form theorem 189

T T .
0 e a3 J el
=0 Jy, 0 |= 0 J
0o o J
Notice that J = { 8 j;T } = Jg,+1(0). Since jeiﬂ =e;fori=1,2,.. .,kl,l
a computation reveals that
I egal J eral I —egal _ J —jegaQT + e1al + eqalJ
0 I 0o J 0 1 N 0 J
_ J eaal J
N 0 J

We can proceed recursively to compute the sequence of similarities

l: I ei+1a§JFl :| |: j eiaQTJifl :| l: I —€i+1agﬂji71 :l _ |: j ei+1a2TJi :| I

0 1 0 J 0 1 0 J
for i = 2,3,.... Since J¥ = 0, after at most k; steps in this sequence
of similarities, the off-diagonal term finally vanishes. We conclude that A is
similar to { ‘é 3 }, which is a strictly upper triangular Jordan matrix of the

required form.
If al'e; = 0, then (3.1.9) shows that A is similar to

[0 0 af 7
0 Jy, 0
Lo 0 J

which is permutation similar to

Je, 00
0 0 of (3.1.10)
0 0 J

By the induction hypothesis, there is a nonsingular So € M,,_j, such that
T 2 . . . . .
52_1 [ 0 a }Sg = J € M,,_k, is a Jordan matrix with zero main diagonal.

0o J
Thus, the matrix (3.1.10), and therefore A itself, is similar to [ ng 2 ],

which is a Jordan matrix of the required form, except that the diagonal Jordan
blocks might not be arranged in nonincreasing order of their size. A block
permutation similarity, if necessary, produces the required form.

Finally, observe that if A is real then all the similarities in this proof are real,

so A is similar via a real similarity to a Jordan matrix of the required form.
O
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Theorem (3.1.5) essentially completes Step 3, as the general case is an easy
consequence of the nilpotent case. If A € M,, is an upper triangular matrix
with all diagonal entries equal to A, then Ag = A — A is strictly upper triangu-
lar. If S € M,, is nonsingular and S~ A,S is a direct sum of nilpotent Jordan
blocks J,,, (0), as guaranteed by (3.1.5), then S~1AS = S71AyS + A1 is a di-
rect sum of Jordan blocks J,,, (A) with eigenvalue A. We have now established
the existence assertion of the Jordan canonical form theorem:

3.1.11 Theorem. Let A € M, be given. There is a nonsingular S € M,,
positive integers ¢ and ny, ...,n, with ny + ng + - - - + ny, = n, and scalars
A1y ..., Aq € C such that

Iny (A1) 0
A=8 St (3.1.12)
0 Jn,(Aq)

The Jordan matrix J4 = Jp, (A1) @ - @ Jy, (A,) is uniquely determined by
A up to permutation of its direct summands. If A is real and has only real
eigenvalues, then S can be chosen to be real.

The Jordan matrix .J 4 in the preceding theorem is the Jordan canonical form
of A.

Two facts provide the key to understanding the uniqueness assertion in the
Jordan canonical form theorem: (1) similarity of two matrices is preserved if
they are both translated by the same scalar matrix, and (2) rank is a similarity
invariant.

If A,B,S € M,, S is nonsingular, and A = SBS~!, then for any )\ €
C,A— X = SBS™! — \SS™! = S(B — A\I)S~!. Moreover, for every
k=1,2,...,the matrices (A — A )* and (B — \I)* are similar; in particular,
their ranks are equal. We focus on this assertion when B = J = J,,, (A1) &
o+ @ Jy, (Aq) is a Jordan matrix that is similar to A (the existence assertion
of (3.1.11)) and X is an eigenvalue of A. After a permutation of the diagonal
blocks of J (a permutation similarity), we may assume that J = J,,,(\) &
D I, () @ J, in which the Jordan matrix .J is a direct sum of Jordan
blocks with eigenvalues different from A. Then A — A[ is similar to

J=MN = (Jny(\) =A@+ @® (Jm, (\) = ) @ (J — \I)
J’"ll (0) DD ']mp (0) ©® (j — )\I)
which is a direct sum of p nilpotent Jordan blocks of various sizes and a nonsin-

gular Jordan matrix J — \I € M,,, in whichm = n— (m1+---+mp). More-
over, (A—AI)" is similar to (J—A\)* = Jp,, (0)*®- - @ Jp,, (0)F B (J = AI)F



3.1 The Jordan canonical form theorem 191

foreach k = 1,2, .. .. Since the rank of a direct sum is the sum of the ranks of
the summands (0.9.2), we have

rank(A — AXI)¥ = rank(J — )"
= rank J, (0)F + - 4 rank J,,,, (0)F + rank(.J — AI)F
= rank Jy,, (0)F +--- +rank J,, (0)¥+m  (3.1.13)

foreachk =1,2,....

What is the rank of a power of a nilpotent Jordan block? Inspection of
(3.1.2) reveals that the first column of J;(0) is zero and its last £ — 1 columns
are independent (the only nonzero entries are ones in the first superdiagonal),
so rank Jy(0) = ¢ — 1. The only nonzero entries in J;(0)? are ones in the
second superdiagonal, so its first two columns are zero, its last £ — 2 columns
are independent, and rank .J;(0)> = ¢ — 2. The ones move up one superdiag-
onal (so the number of zero columns increases by one and the rank drops by
one) with each successive power until .J,(0)*~! has just one nonzero entry (in
position 1, ¢) and rank J;(0)*~* = 1 = ¢ — (¢ — 1). Of course, J,(0)¥ = 0
forall k = ¢,¢+1,.... In general, we have rank J;(0)¥ = max{¢ — k, 0} for
eachk =1,2,...,and so

1if¢ >k

vitr =g E=L2. (L1

rank J;(0)F~1 — rank J,(0)F = {
in which we observe the standard convention that rank .J,(0)° = £.
Now let A € M, let A € C, let k be a positive integer, let
(A, N) = rank(A — AD*, 7o(A,N) :=n (3.1.15)
and define
wi(A, ) =11 (A N) —re(A0),  wi(AN) i =n—ri (AN (3.1.16)

Exercise. If A € M,, and A € C is not an eigenvalue of A, explain why
wi(A, ) =0forallk =1,2,....

Exercise. Consider the Jordan matrix

Verify that 71 (J,0) = 7, r2(J,0) = 2, and r3(J,0) = 74(J,0) = 0. Also
verify that wy (J, 0) = 6 is the number of blocks of size at least 1, wy(J,0) =5
is the number of blocks of size at least 2, w3(J,0) = 2 is the number of
blocks of size at least 3, and wy(J,0) = 0 is the number of blocks of size
at least 4. Observe that wy(J,0) — wa(J,0) = 1 is the number of blocks
of size 1, wz(J,0) — w3(J,0) = 3 is the number of blocks of size 2, and
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w3 (J,0) — w4(J,0) = 2 is the number of blocks of size 3. This is not an
accident.

Use (3.1.13) and (3.1.14) to compute

wip(A,\) = (rankJy, (0)"' — rank J,,, (0)%) +
-+ + (rank J,,, (0)*7! — rank J,, (0)¥)
= ifmy > k) +- -+ (Litm, > k) (3.1.17)

= number of blocks with eigenvalue A that have size at least k&

In particular, w; (A, A) is the number of Jordan blocks of A of all sizes that
have eigenvalue A, which is the geometric multiplicity of A as an eigenvalue of
A.

Using the characterization (3.1.17), we see that wy, (A, \) — wi41(A, A) is
the number of blocks with eigenvalue A that have size at least k£ but do not have
size at least k + 1; this is the number of blocks with eigenvalue ) that have size
exactly k.

Exercise. Let A, B € M, and A € C be given. If A and B are similar, explain
why w (A4, \) = wi(B,A) forallk =1,2,....

Exercise. Let A € M, and A € C be given. Explain why wq(A4,\) >
wa(A, ) > ws(A,\) > ---, that is, the sequence w1 (A, ), wa (A, N),... s
nonincreasing. Hint: wi(A, \) — wgy1(A, \) is always a nonnegative integer.
Why?

The Weyr characteristic of A € M, associated with A € C is the sequence
of integers w1 (A, \), wa(A4, A), ... defined by (3.1.16). We have just seen that
the structure of a Jordan matrix .J that is similar to A is completely determined
by the Weyr characteristics of A associated with its distinct eigenvalues: If A
is an eigenvalue of A, and if J is a Jordan matrix that is similar to A, then the
number of Jordan blocks Jj(A) in J is exactly wy (A4, \) — wir1(A,A), k =
1,2, .... This means that two essentially different Jordan matrices (that is, for
some eigenvalue, their respective lists of nonincreasingly ordered block sizes
associated with that eigenvalue are not identical) cannot both be similar to A
because their Weyr characteristics must be different. We have now proved the
uniqueness portion of the Jordan canonical form theorem (3.1.11) and a little
more:

3.1.18 Lemma. Let \ be a given eigenvalue of A € M,, and let wy (A4, \),
wa (A, N), ... be the Weyr characteristic of A associated with A\. The number
of blocks of the form Jj () in the Jordan canonical form of A is wy (A, A) —
wrt1(A,A), K = 1,2,.... Two square complex matrices of the same size
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are similar if and only if they have the same eigenvalues, and the same Weyr
characteristics are associated with each eigenvalue.

Exercise. Let q denote the size of the largest Jordan block of A with eigenvalue
A, and consider the rank identity (3.1.13). Explain why rank(A — A\I)* =
rank(A — AI)**1 forall k > ¢, w,(A, \) is the number of Jordan blocks of A
with eigenvalue A and maximum size ¢, and wg (A, \) — wi41(A, ) = 0 for
all £ > ¢. This integer q is called the index of A as an eigenvalue of A.

Exercise. Let A € M, and let X have index ¢ as an eigenvalue of A . Explain
why (a) wi(A4, ) is the geometric multiplicity of A (the number of Jordan
blocks with eigenvalue X in the Jordan canonical form of A); (b) wi(A, A) +
wa (A, N)+- - -+wy (A, A) is the algebraic multiplicity of A (the sum of the sizes
of all the Jordan blocks of A with eigenvalue \); (¢) for each p = 2,3,...¢,
wyp(A, N) + wpr1(A,N) + -+ wy (A, \) = rank(A — AI)P~L.

The Jordan structure of a given A € M,, can be completely specified by
giving, for each distinct eigenvalue A of A, a list of the sizes of all the Jordan
blocks of A that have eigenvalue A. The nonincreasingly ordered list of sizes
of Jordan blocks of A with eigenvalue \

s1(A,A) 2 s2(A,A) 2 -+ = sy a0 (A, A) > 0= sy, an41(AA) =+
(3.1.19)
is called the Segre characteristic of A associated with the eigenvalue A. It is
convenient to define si (A, A) = 0 forall k > wq(A, \). Observe that s1(A, \)
is the index of A as an eigenvalue of A (the size of the largest Jordan block of A
with eigenvalue \) and s, (4,1) (4, A) is the size of the smallest Jordan block
of A with eigenvalue A. For example, the Segre characteristic of the matrix
(3.1.16a) associated with the zero eigenvalue is 3,3,2,2,2,1 (s1(J,0) = 3
and s¢(J,0) = 1).
If s = si(A,A), k =1,2,...1s the Segre characteristic of A € M, associ-
ated with the eigenvalue A and wy = wy (4, A), the part of the Jordan canonical
form that contains all the Jordan blocks of A with eigenvalue A is

JSl (A)

Jay (A
*) (3.1.20)

Jsu, (A)

It is easy to derive the Weyr characteristic if the Segre characteristic is
known, and vice versa. For example, from the Segre characteristic 3, 3,2, 2,2, 1|
we see that there are 6 blocks of size 1 or greater, 5 blocks of size 2 or greater,
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and 2 blocks of size 3 or greater: the Weyr characteristic is 6,5,2. Conversely
from the Weyr characteristic 6,5,2 we see that there are 6 — 5 = 1 blocks of
size 1, 5 — 2 = 3 blocks of size 2, and 2 — 0 = 2 blocks of size 3: the Segre
characteristic is 3, 3,2, 2,2, 1.

Our derivation of the Jordan canonical form is based on an explicit algo-
rithm, but it cannot be recommended for implementation in a software package
to compute Jordan canonical forms. A simple example illustrates the difficulty:

A= [ § §]ande#0, then A = SJos; with s, = [ § ] and
J. = [ 00 ]. If we let ¢ — 0, then J, — [ 00 } = J1(0) @ J,(0),

€

but A, — Ay = { (1) g ], whose Jordan canonical form is J2(1). Small
variations in the entries of a matrix can result in major changes in its Jordan
canonical form. The root of the difficulty is that rank A is not a continuous
function of the entries of A.

It is sometimes useful to know that every matrix is similar to a matrix of the
form (3.1.12) in which all the “+1” entries in the Jordan blocks are replaced

by any € # 0.

3.1.21 Corollary. Let A € M,, and a nonzero ¢ € C be given. Then there
exists a nonsingular S(e) € M,, such that

Jnl ()\1,6) 0
A= 5(e) S(e)~? (3.1.22)
0 Jnk ()\k,e)
in whichny +n9 +---+ng = n and
A€ 0
Jm(/\,é) = h B € M,,

o

0 A

If A is real and has real eigenvalues, and if € € R, then S(e) may be taken to
be real.

Proof: First find a nonsingular matrix S; € M,, such that S| 1 AS; is a Jordan
matrix of the form (3.1.3) (with a real S; if A is real and has real eigenvalues).
Let D.; = diag(l,¢,€2,...,e" 1), define D. = D1 & --- ® D, 4, and
compute D (S;*AS;)D,. This matrix has the form (3.1.22), so S(¢) =
51D, meets the stated requirements. O

Problems
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1. Supply the computational details to prove Lemma (3.1.4).
2. What are the Jordan canonical forms of the two matrices in (3.0.0)?

3. Suppose A € M,, has some non-real entries, but only real eigenvalues.
Show that A is similar to a real matrix. Can the similarity matrix ever be
chosen to be real?

4. Let A € M, be given. If A is similar to cA for some complex scalar ¢ with
le| # 1, show that o(A) = {0} and hence A is nilpotent. Conversely, if A is
nilpotent, show that A is similar to cA for all nonzero ¢ € C.

5. Explain why every Jordan block J; () has a one-dimensional eigenspace
associated with the eigenvalue A. Conclude that A has geometric multiplicity
one and algebraic multiplicity k as an eigenvalue of Jj ().

6. Carry out the three steps in the proof of (3.1.11) to find the Jordan canonical

forms of
1 1
[ 11 } and

Confirm your answers by using (3.1.18).

O O W
S W =
w O N

7. Let A € M, let X be an eigenvalue of A, and let k¥ € {1,...,n}. Using
(3.1.15-16), explain why 711 (A) — 27k (A) 4+ r+1(A) is the number of Jordan
blocks of A that have size k and eigenvalue .

8. Let A € M,, be given. Suppose that rank A = r» > 1 and A2 = 0. Use
the preceding problem or (3.1.18) to show that the Jordan canonical form of
Ais J5(0) ® -+ B J2(0) @ 0,,_2, (there are r 2-by-2 blocks). Compare with
Problem 23 in (2.6).

9. Letn > 3. Show that the Jordan canonical form of .J,,(0)? is .J,,, (0) & J,,, (0)
ifn = 2m is even, and it is J,,,11(0) & J,,(0) if n = 2m + 1 is odd.

10. For any A € C and any positive integer k, show that the Jordan canonical
form of —Ji(A) is Jx(—A). In particular, the Jordan canonical form of —J(0)
is Jg (0)

11. The information contained in the Weyr characteristic of a matrix associated
with a given eigenvalue can be presented as a dot diagram, sometimes called a
Ferrers diagram or Young diagram. For example, consider the Jordan matrix J
in (3.1.16a) and its Weyr characteristic wy, = wg(J,0),k = 1,2, 3. Construct
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the dot diagram

w1 [ ] [} [ ] [ ) [ ] [ ]
wao [ ] [} [ ] [ ) [}
ws [ ] [}

S1 82 S3 83 S5 Sg

by putting w; dots in the first row, w dots in the second row, and w3 dots in the
third row. We stop with the third row since w;, = 0 for all k¥ > 4. Proceeding
from the left, the respective column lengths are 3,3,2,2,2, 1, which is the
Segre characteristic s, = si(J,0),k = 1,2,...,6. That is, J has 2 Jordan
blocks of the form .J5(0), 3 blocks of the form .J5(0), and one block of the
form J; (0). Conversely, if one first constructs a dot diagram by putting s; dots
in the first column, so dots in the second column, and so forth, then there are
w1y dots in the first row, wo dots in the second row, and ws dots in the third
row. In this sense, the Segre and Weyr characteristics are conjugate partitions
of their common sum n; either characteristic can be derived from the other via
a dot diagram. In general, for A € M, and a given eigenvalue A\ of A, use
the Weyr characteristic to construct a dot diagram with wy (A, A) dots in row
k=1,2,...s0longas wg(A, X) > 0. (a) Explain why there are s, (A, \) dots
in column j for each j = 1,2, .... (b) Explain why one can also start with the
Segre characteristic, construct the columns of a dot diagram from it, and then
read off the Weyr characteristic from the rows.

12. Let A € M,,. Write wy = wi(A,A) and s, = si(A4,\) for the Weyr
and Segre characteristics of A associated with the eigenvalue A. Show that:
(@) sw, > kifwg > 0; (b) k > Sy,+1 forall k; (¢) ws, > kif s > 0; (d)
k > wg, 41 forall k.

13. Let k and m be given positive integers and consider the block Jordan
matrix

AI?')’L I’"L

M, .
J}j_()\lm) = ) S Mk:m
I,

)\I’Hl

(ablock k-by-k matrix). Compute the Weyr characteristic of J, ,j' (AL;,) and use
it to show that the Jordan canonical form of J;" (Al,,,) is Ji(A) & - - - & Jx(A)
(m summands).

14. Let A € M,,. Use (3.1.18) to show that A and A are similar. Are A and
A* similar?
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15. Letn > 2, let z,y € C™ be given nonzero vectors, and let A = xy*.
Explain why the Jordan canonical form of A is B & 0,,_o, in which B =

[V ¢ Jifyte £ 0and B = 12(0) ify"e =0,

16. Suppose that A\ # 0 and k& > 2. Then Jj(\)~! is a polynomial in Jj ()
(2.4.3.4). (a) Explain why J;(\)~! is an upper triangular Toeplitz matrix, all
of whose main diagonal entries are A™'. (b) Let [\ ay ... a,] be the first
row of Ji(A\) 1. Verify that the 1,2 entry of J(\)Jx(A)~!is Aag + A" and
explain why all the entries in the first superdiagonal of J;(\)~! are —\~?;
in particular, these entries are all nonzero. (c) Show that rank(J,(A\)~! —
AT )¥ =n — k for k = 1,...,n and explain why the Jordan canonical form
of Ju(\)~1is Jy (A1), Hint: (3.1.18).

17. Suppose that A € M,, is nonsingular. Show that A is similar to A~! if and
only if for each eigenvalue A of A with \ = +1, the number of Jordan blocks
of the form Ji(\) in the Jordan canonical form of A is equal to the number
of blocks of the form .Ji,(A™'), that is, the blocks J(\) and J,(A™') occur
in pairs if A # £1 (there is no restriction on the blocks with eigenvalues +1.
Hint: Problem 16.

18. Suppose that A € M,, is nonsingular. (a) If each eigenvalue of A is
either +1 or —1, explain why A is similar to A=, (b) Suppose that there
are nonsingular B,C,S € M, such that A = BC, B~! = SBS~!, and
C~! = SCS~'. Show that A is similar to A~!. Hint: Problem 17 and
(1.3.22).

19. Let z,y € R™ and ¢t € R be given. Define

1 27 ¢
Aa:,y,t = 0 I, Yy € M7L+2(R)
0 0 1

andlet H,(R) = {A; 4+ : z,y € R"andt € R}. (a) Show that A, ,, s A¢ ,, - =]}
Apve yinttr and (A; )" = A_, _, _+. (b) Explain why H,(R) is a
subgroup (called the n'" Heisenberg group) of the group of upper triangular
matrices in M,,;2(R) that have all main diagonal entries equal to +1. (c) Ex-
plain why: the Jordan canonical form of A, , ; is J3(1) & I,,_1 if Ty # 0; if
2Ty =0, itis either Jo(1) ® Jo(1) © I, 2 (x # 0 # y),or Jo(1) B I, (x =0

or y = 0 but not both), or I, 42 (x = y = 0). Hint: (3.1.18). (d) Explain why
A, 4.+ 1s always similar to its inverse.

20. Let A € M, and suppose that n > rank A = r > 1. If 0 is a semisimple
eigenvalue of A, show that A has a nonsingular r-by-r principal submatrix
(that is, A is rank principal (0.7.6)). Hint: Problem 16 in (1.3).
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21. Let A € M, be an unreduced upper Hessenberg matrix (0.9.9). (a) For
each eigenvalue A of A, explain why w;(A, ) = 1 and A is nonderogatory.
(b) Suppose that A is diagonalizable (for example, A might be Hermitian and
tridiagonal). Explain why A has n distinct eigenvalues.

22. Let A € M, (R) be tridiagonal. (a) If a; 410,41, > 0 for all i =
1,...,n—1, show that A has n distinct real eigenvalues. Hint: Show that there
is a positive diagonal D such that DAD~! is symmetric and apply Problem 21.
(b) If a; 441ai41,; > Oforalli = 1,...,n — 1, show that all the eigenvalues

of A are real. Hint: Perturb A and use continuity.

23. Let A = [a;;] € M,, be tridiagonal with a;; real foralli =1,...,n. (a) If
@;,i+10i+1,; is real and positive for i = 1, ..., n—1, show that A has n distinct
real eigenvalues. Hint: Proceed as in Problem 22; choose a positive diagonal
D such that DAD™! is Hermitian. (b) If a; ;+1ai11,; is real and nonnegative
foralli =1,...,n — 1, show that all the eigenvalues of A are real.

24. Consider the 4-by-4 matrices A = [A;;]7 ;_; and B = [B;;]7 ;_,, in which
A1 = Ay = By1 = By = J5(0), As1 = By = 09, A1p = [ o }, and
Biy = { Ll } (a) Forall k = 1,2, ..., show that A* and B* are 0 — 1
matrices (that is, every entry is O or 1) that have the same number of entries
equal to 1. (b) Explain why A and B are nilpotent and similar. What is their
Jordan canonical form? (c) Explain why two permutation similar 0—1 matrices
have the same number of entries equal to 1. (d) Show that A and B are not
permutation similar. Hint: Consider the directed graphs of A and B (6.2).

Notes and Further Readings. Camille Jordan published his eponymous
canonical form in C. Jordan, Traité des Substitutions et des Equations Al-
gébriques, Gauthier-Villars, Paris, 1870; see §157. Our proof of (3.1.11) is
in the spirit of R. Fletcher and D. Sorensen, An Algorithmic Derivation of the
Jordan Canonical Form, Amer. Math. Monthly 90 (1983) 12—16. For a combi-
natorial approach, see R. Brualdi, The Jordan Canonical Form: An Old Proof,
Amer. Math. Monthly 94 (1987) 257-267.

3.2 The Jordan canonical form: some observations and applications
3.2.1 The structure of a Jordan matrix. The Jordan matrix
Jn1 (Al)
J = ,n1+ne+---+nr=n (3.2.1.1)
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has a definite structure that makes apparent certain basic properties of any
matrix that is similar to it.

1. The number k of Jordan blocks (counting multiple occurrences of the
same block) is the maximum number of linearly independent eigenvec-
tors of J.

2. The matrix J is diagonalizable if and only if k£ = n, that is, if and only
if all the Jordan blocks are 1-by-1.

3. The number of Jordan blocks corresponding to a given eigenvalue is
the geometric multiplicity of the eigenvalue, which is the dimension of
the associated eigenspace. The sum of the sizes of all the Jordan blocks
corresponding to a given eigenvalue is its algebraic multiplicity.

4. Let A € M, be a given nonzero matrix, and suppose that A is an
eigenvalue of A. Using (3.1.14) and the notation of (3.1.15), we know
that there is some positive integer ¢ such that

(A, ) > ra(A,0) > - > rg1(A, ) > (4,0 =0

This integer ¢ is the index of A as an eigenvalue of A; it is also the size
of the largest Jordan block of A with eigenvalue .

3.2.2 Linear systems of ordinary differential equations. One application
of the Jordan canonical form that is of considerable theoretical importance is
to the analysis of solutions of a system of first order linear ordinary differential
equations with constant coefficients. Let A € M,, be given, and consider the
first-order initial value problem

a'(t) = Ax(t)

221
x(0) =z is given 3 )

in which z(t) = [x1(t), 22(t), ..., 2, (t)]T, and the prime (") denotes differen-
tiation with respect to . If A is not a diagonal matrix, this system of equations
is coupled; that is, (t) is related not only to x;(¢) but to the other entries of
the vector z(t) as well. This coupling makes the problem hard to solve, but
if A can be transformed to diagonal (or almost diagonal) form, the amount of
coupling can be reduced or even eliminated and the problem may be easier to
solve. If A = SJS~! and J is the Jordan canonical form of A, then (3.2.2.1)
becomes

v = Jyt) (3.2.2.2)

y(0) =y is given



200 Canonical forms for similarity, and triangular factorizations

in which x(t) = Sy(t) and yo = S 'x¢. If the problem (3.2.2.2) can be
solved, then each entry of the solution z(¢) to (3.2.2.1) is just a linear combi-
nation of the entries of the solution to (3.2.2.2), and the linear combinations
are given by S.

If A is diagonalizable, then J is a diagonal matrix, and (3.2.2.2) is just
an uncoupled set of equations of the form y; (t) = Ayx (), which have the
solutions y(t) = yi(0)e t. If the eigenvalue ) is real, this is a simple
exponential, and if A, = ay, + iby, is not real, yi(t) = yx(0)e**![cos(bit) +
isin(bgt)] is an oscillatory term with a real exponential factor if aj, # 0.

If J is not diagonal, the solution is more complicated but it can be described
explicitly. The entries of y(t) that correspond to distinct Jordan blocks in J are
not coupled, so it suffices to consider the case in which J = .J,,,()) is a single
Jordan block. The system (3.2.2.2) is

yi(t) = Ayi(t) +y2(t)
Y 1(t) = Mm—1(t) + ym (t)
y;n(t) = /\ym(t)

which can be solved in a straightforward way from the bottom up. Starting
with the last equation, we obtain

Ym(t) = Ym (O)e”
so that
Y1 () = Mym—1(t) + ym (0)e

This has the solution

Ym-1(t) = e [Ym (0)t + Ym—1(0)]

which can now be used in the next equation. It becomes

y':n—2(t) = /\ym—Q(t) + Ym (O)te)\t + ym—l(o)e)\t

which has the solution
t2

Ym2(t) = X [Ym(0)5 + ym-1(0)t + Ym—2(0)]

and so forth. Each entry of the solution has the form

m i—k
yr(t) = eMap(t) = e Z yi(0) (z‘t— k)!

i=k
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so g (t) is an explicitly determined polynomial of degree at most m — k, k =
1,...,m.

From this analysis, we conclude that the entries of the solution x(t) of the
problem (3.2.2.1) have the form

zi(t) = eMip(t) + e pa(t) + - - - 4+ eMpy(t)

in which A1, Ag,..., Ay are the distinct eigenvalues of A and each p;(t) is
a polynomial whose degree is strictly less than the size of the largest Jordan
block corresponding to the eigenvalue \; (that is, strictly less than the index of
A;). Real eigenvalues are associated with terms that contain a real exponential
factor, while non-real eigenvalues are associated with terms that contain an
oscillatory factor and possibly also a real exponential factor.

3.2.3 Similarity of a matrix and its transpose. Let K, be the m-by-m re-
versal matrix (0.9.5.1), which is symmetric and involutory: K,, = ng =
K..'

Exercise. Verify that K, J,,(\) = J,,(A)TK,,. Deduce that K,,J,,,(\) is
symmetric and J,,,(A) = K1 J,, (NI K = Ky I (V)T K.

The preceding exercise shows that each Jordan block is similar to its trans-
pose via a reversal matrix. Therefore, if J is a given Jordan matrix (3.2.1.1),
then J7 is similar to .J via the symmetric involutory matrix K = K,,, ® - ®
Kp:J' =KJK.If A= SJS7 !, thenJ = S~1AS,

AT = T gTsT = s TKJKST = STTK(S 'AS)K ST
= (STTKS™HA(SKST)

and SK ST is symmetric. The conclusion is that every square complex ma-
trix is similar to its transpose, and this similarity can be accomplished with a
symmetric matrix. If A is nonderogatory, we can say more: every similarity
between A and A7 must be via a symmetric matrix; see (3.2.4.4).

Moreover, we can write

A=8J8"1=(SKST) (S TKJS™)

in which KJ is symmetric. The conclusion is that every complex matrix is a
product of two symmetric matrices.

For any field F, it is also the case that every matrix in M, (F) is similar, via
some symmetric matrix in M, (F), to its transpose.
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3.2.4 Commutativity and nonderogatory matrices. For any polynomial p(¢)Jj
and any A € M,, p(A) always commutes with A. What about the converse?
If A, B € M, are given and if A commutes with B, is there some polynomial
p(t) such that B = p(A)? Not always, for if we take A = I, then A com-
mutes with every matrix and p(I) = p(1)I is a scalar matrix; no non-scalar
matrix can be a polynomial in /. The problem is that the form of A permits it
to commute with many matrices, but permits it to generate only a limited set
of matrices of the form p(A).

What can we say if A = J,,,()) is a single Jordan block of size 2 or greater?

Exercise. Let A € C and an integer m > 2 be given. Show that B € M,
commutes with J,,, (A\) if and only if it commutes with J,,,(0). Hint: Jp,(N\) =
M, + J1 (0).

Exercise. Show that B = | [ }'2 | € M, commutes with J(0) if and

only if bo; = 0 and b;; = bao; this is the case if and only if B = by115 +
b12J2(0), which is a polynomial in J5(0).

Exercise. Show that B = [b;;] € M3 commutes with J3(0) if and only if B
is upper triangular, b1; = byo = b33, and b1o = bag; that is, if and only if B
is an upper triangular Toeplitz matrix (0.9.7). This is the case if and only if
B = by I3 + b12J3(0) + by3J3(0)2, which is a polynomial in J3(0).

Exercise. What can you say about B = [b;;] € M, if it commutes with J4(0)?

3.2.4.1 Definition. A square complex matrix is nonderogatory if each of its
eigenvalues has geometric multiplicity one.

Since the geometric multiplicity of a given eigenvalue of a Jordan matrix is
equal to the number of Jordan blocks corresponding to that eigenvalue, a ma-
trix is nonderogatory if and only if each of its distinct eigenvalues corresponds
to exactly one block in its Jordan canonical form. Examples of nonderogatory
matrices A € M,, are: any matrix with n distinct eigenvalues or any matrix
with only one eigenvalue, which has geometric multiplicity one (that is, A is
similar to a single Jordan block). A scalar matrix is the antithesis of a non-
derogatory matrix.

Exercise. 1f A € M,, is nonderogatory, why is rank A > n — 1?

3.2.4.2 Theorem. Suppose that A € M, is nonderogatory. If B € M,, com-
mutes with A, then there is a polynomial p(t) of degree at most n — 1 such that
B =p(A).

Proof: Let A = SJ4S~! be the Jordan canonical form of A. If BA = AB,
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then BSJ4S~! = SJ4S~ !B and hence (S~1BS)J4 = J(ST1BS). If we
can show that ST1BS = p(Ja), then B = Sp(Ja)S~! = p(SJaS~1) =
p(A) is a polynomial in A. Thus, it suffices to assume that A is itself a Jordan
matrix.

Assume that (a) A = J,, (A1) @ -+ @ Jp, (M), in which A\, Agy ... Ak
are distinct, and (b) A commutes with B. If we partition B = [By;]};_;
conformally with .J, then (2.4.4.2) ensures that B = B11 & - - - @ By, is block
diagonal. Moreover, B;;J,,,(0) = J,,(0)B;; for each i = 1,2,..., k. A
computation reveals that each B;; must be an upper triangular Toeplitz matrix
(0.9.7), that is,

o b bl
By = R (3.2.43)
by
by
which is a polynomial in .J,,, (0), and hence also a polynomial in .J,,, (A):

By;

bgi)Ini + béi)Jni (0) et bsz? I, (O)m—l

= b (s (N) = NiL,)® 4 057 (T (A) = N, ) - 0 (T (A) = Aid )™

If we can construct polynomials p; (t) of degree at most n — 1 with the property
that p;(J,,; (A;)) = 0 forall i # j, and p;(Jn, (Xi)) = Bii, then

p(t) = p1(t) + -+ pi(t)

fulfills the assertions of the theorem. Define

k
q:(t) = H(t — )", degree g;(t) = n —n;

-

-
and observe that g;(J,,, (A;)) = 0 whenever i # j because (J,,, (A;)—A;1)" =]
0. The upper triangular Toeplitz matrix g;(J,,, (A;)) is nonsingular because its
main diagonal entries ¢;()\;) are nonzero.

[

The key to our construction of the polynomials p;(¢) is observing that the
product of two upper triangular Toeplitz matrices is upper triangular Toeplitz,
and the inverse of a nonsingular upper triangular Toeplitz matrix has the same
form (0.9.7). Thus, [g;(J,, (A;))] 1 Bj; is an upper triangular Toeplitz matrix,

which is therefore a polynomial in .J,, (A;):

[qi (Jn, X)) Bis = 7i(Jn, (M)
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in which r;(¢) is a polynomial of degree at most n; — 1. The polynomial
p;i(t) = ¢;(t)r;(t) has degree at most n — 1,

Dy (0)) = 6 (T, (A))7s( T, (0y)) = 0 whenever i # j

and

Pi(Jn; () = qi(Jn;(Ni))7i(Tn; (Ni))
= qi(Jn, (X)) (@i (Jn, (M))]” ' Bii) = Bii

There is a converse to the preceding theorem; see Problem 2.

An illustrative application of (3.2.4.2) is the following strengthening of (3.2.3)i
in a special case.
3.2.4.4 Corollary. Let A, B,S € M, be given and suppose that A is non-
derogatory.
(a) If AB = BAT then B is symmetric.
(b) If S is nonsingular and A” = S~!AS, then S is symmetric.

Proof: (a) There is a symmetric nonsingular R € M,, such that AT = RAR™!
(3.2.3), s0 AB = BAT = BRAR™! and hence A(BR) = (BR)A. Then
(3.2.4.2) ensures that there is a polynomial p(t) such that BR = p(A). Com-
pute RB" = (BR)" = p(A)" = p(A") = p(RAR™") = Rp(A)R™" =
R(BR)R™! = RB. Since R is nonsingular, it follows that BT = B. (b) If
AT = §~1AS then SAT = AS, so (a) ensures that S is symmetric. O

3.2.5 Convergent matrices. A matrix A € M, with the property that all
entries of A™ tend to zero as m — oo is said to be convergent. Convergent
matrices play an important role in the analysis of algorithms in numerical linear
algebra. If A is a diagonal matrix, then A is convergent if and only if all
the eigenvalues of A have modulus strictly less than 1; the same is true of
non-diagonalizable matrices, but a careful analysis is required to come to this
conclusion.

If A= SJ4S! is the Jordan canonical form of A, then A™ = SJ77'S1,
so A™ — 0asm — oo if and only if Ji' — 0 asm — oo. Since J4 is a
direct sum of Jordan blocks, it suffices to consider the behavior of powers of
a single Jordan block Jj(\) = Al + Ji(0), which we can compute using the
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binomial theorem. We have Ji(0)™ = 0 for all m > k, so

™ = (M + Ju(0)™ = ;0 (m"zj) N (0)]
k—1
= 2 (")

j=0

for all m > k. The diagonal entries of Ji(\)™ are all equal to A\™, so
Ji(A)™ — 0 implies that A" — 0, which means that |A\| < 1. Conversely, if
|A] < 1, it suffices to prove that

( mn )x\mj—>Oasm—>oof0reachj:0,1,2,...,k—1
m-=17

There is nothing to prove if A = 0 or j = 0, so suppose that 0 < |A| < 1 and
j > 1; compute

m )\m—j _
m—j

It suffices to show that m?|A\|"™ — 0 as m — oo. One way to see this is to take
logarithms and observe that jlogm + mlog |\| — —oc as m — oo because
log || < 0 and I’Hopital’s rule ensures that (logm)/m — 0 as m — oc.

The preceding argument makes essential use of the Jordan canonical form of
A to show that A™ — 0 as m — oo if and only if all the eigenvalues of A have
modulus strictly less than 1. Another proof, which is completely independent
of the Jordan canonical form, is given in (5.6.12).

‘ mj )\'"L

GIN

‘m(m Dim—=2)---(m—j+1A™
FIN

3.2.6 The geometric multiplicity—algebraic multiplicity inequality. The geo-lj
metric multiplicity of an eigenvalue X\ of a given A € M, is the number of
Jordan blocks of A corresponding to A. This number is less than or equal to
the sum of the sizes of all the Jordan blocks corresponding to A; this sum is
the algebraic multiplicity of A\. Thus, the geometric multiplicity of an eigen-
value is not greater than its algebraic multiplicity. We have already discussed
this fundamental inequality from very different points of view: see (1.2.18),
(1.3.7), and (1.4.10).

3.2.7 Diagonalizable + nilpotent: the Jordan decomposition. For any Jor-
dan block, we have the identity Ji,(\) = A, + Jx(0), and J;(0)¥ = 0. Thus,
any Jordan block is the sum of a diagonal matrix and a nilpotent matrix.



206 Canonical forms for similarity, and triangular factorizations

More generally, a Jordan matrix (3.2.1.1) can be writtenas J = D + N, in
which D is a diagonal matrix whose main diagonal is the same as that of .J,
and N = J — D. The matrix N is nilpotent, and N* = 0 if k is the size of the
largest Jordan block in .J, which is the index of 0 as an eigenvalue of N.

Finally, if A € M,, and A = SJ,S~! is its Jordan canonical form, then
A=S8D+N)S™! =8DS™ ' +SNS~! = Ap + Ay, in which Ap is
diagonalizable and Ay is nilpotent. Moreover, Ap Ay = AnyAp because
both D and N are conformal block diagonal matrices, and the diagonal blocks
in D are scalar matrices. Of course, Ap and Ay also commute with A =
Ap + Apn.

The preceding discussion establishes the existence of a Jordan decomposi-
tion: any square complex matrix is a sum of two commuting matrices, one of
which is diagonalizable and the other is nilpotent. For the uniqueness of the
Jordan decomposition, see Problem 18.

3.2.8 The Jordan canonical form of a direct sum. Let A; € M,,, be given
fori = 1,...,m and suppose that each A; = Sl-JZ-ijl, in which each J; is a
Jordan matrix. Then the directsum A = A ® - - - & A,,, is similar to the direct
sumJ =J1®--- D J,viaS =5 - DS,,. Moreover, J is a direct sum
of direct sums of Jordan blocks, so it is a Jordan matrix and hence uniqueness
of the Jordan canonical form ensures that it is the Jordan canonical form of A.

3.2.9 An optimality property of the Jordan canonical form. The Jordan
canonical form of a matrix is a direct sum of upper triangular matrices that have
nonzero off-diagonal entries only in the first superdiagonal, so it has many zero
entries. However, among all the matrices that are similar to a given matrix, the
Jordan canonical form need not have the smallest number of nonzero entries.
For example,

—1
(3.2.9.1)

O O = O
o = O O
— o O O
O N O

has 5 nonzero entries, but its Jordan canonical form J = J(1) & Jo(—1) has
6 nonzero entries. However, A has 5 nonzero off-diagonal entries, while .J has
only 2 nonzero off-diagonal entries. We now explain why no matrix similar to
A can have fewer than 2 nonzero off-diagonal entries.

3.2.9.2 Observation. Suppose that B = [b;;] € M,, has fewer than m — 1
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nonzero off-diagonal entries. Then there exists a permutation matrix P such
that P BP = B; ® By in which each B; € M,,, and each n; > 1.

Why is this? Here is an informal argument that can be made precise: Con-
sider m islands C1, ..., C,, located near each other in the sea. There is a
footbridge between two different islands C; and C; if and only if ¢ # j and
either b;; # 0 or b;; # 0. Suppose that Cy,C},, ..., C;, are all the differ-
ent islands that one can walk to starting from C;. The minimum number of
bridges required to link up all the islands is m — 1. We are assuming that there
are fewer than m — 1 bridges, so v < m. Relabel all the islands (1 through
m again) in any way that gives the new labels 1,2,...,vt0 C1,C},,...,Cj,.
Let P € M, be the permutation matrix corresponding to the relabeling. Then
PTBP = By @ B,, in which B; € M,,. The direct sum structure reflects
the fact that no bridge joins any of the first (relabeled) v islands to any of the
remaining n — v islands.

We say that a given B € M, is indecomposable under permutation sim-
ilarity if there is no permutation matrix P such that PTBP = B; @ B,, in
which each B; € M,,, and each n; > 1. Then (3.2.9.2) says that if B € M,,
is indecomposable under permutation similarity, it has at least m — 1 nonzero
off-diagonal entries.
3.2.9.3 Observation. Any given B € M,, is permutation similar to a direct
sum of matrices that are indecomposable under permutation similarity.

Proof: Consider the finite set S = {PTBP : P € M,, is a permutation
matrix}. Some of the elements of S are block diagonal (take P = I, for
example). Let g be the largest positive integer such that B is permutation
similar to By @ --- @ B,, each B; € M,,, and each n; > 1; maximality
of ¢ ensures that no direct summand B; is decomposable under permutation
similarity. |

The number of nonzero off-diagonal entries in a square matrix is not changedfi
by a permutation similarity, so we can combine the two preceding observations
to obtain a lower bound on the number of Jordan blocks in the Jordan canonical
form of a matrix.
3.2.9.4 Observation. Suppose that a given B € M, has p nonzero off-
diagonal entries, and that its Jordan canonical form Jp contains r Jordan
blocks. Thenr > n — p.

Proof: Suppose that BB is permutation similar to By @ - - - © By, in which each
B; € M, is indecomposable under permutation similarity, and each n; > 1.
The number of nonzero off-diagonal entries in B; is at least n; — 1, so the
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number of nonzero off-diagonal entries in B is at least (ng — 1) + -+ - + (ng —
1) =n —gq. Thatis,p > n — ¢, so ¢ > n — p. But (3.2.8) ensures that Jp
contains at least ¢ Jordan blocks, sor > g > n — p. |

Our final observation is that the number of nonzero off-diagonal entries in
an n-by-n Jordan matrix J = J,,, (A1) @ - -+ @ Jp, (\,) is exactly (ng — 1) +
ot (np—1)=n-—r.
3.2.9.5 Theorem. Let A, B € M, be given. Suppose that B has exactly p
nonzero off-diagonal entries and is similar to A. Let J4 be the Jordan canoni-
cal form of A and suppose that J4 consists of 7 Jordan blocks. Thenp > n—r,
which is the number of nonzero off-diagonal entries of J 4.

Proof: Since B is similar to A, .J 4 is also the Jordan canonical form of B, and
(3.2.94) ensures thatr > n —p,sop > n —r. |

3.2.10 The index of an eigenvalue of a block upper triangular matrix. The
index of an eigenvalue A of A € M,, (the index of A in A) is, equivalently, (a)
the size of the largest Jordan block of A with eigenvalue A or (b) the smallest
value of m = 1,2, ..., n such that rank(A — A\I)™ = rank(A — \XI)™*! (and
hence rank(A — AI)™ = rank(A — AXI)™** forall k = 1,2,...). If the index
of Ain Ay; € M, is vy and the index of A in Asy € M,,, is v, then the index
of X in the direct sum Ay @ Agg is max{vy,va}.
J2(0) I

0 J2(0)T
in each diagonal block is 2. Show that the index of 0 as an eigenvalue of A is
4.

Exercise. Consider A = }, so the index of the eigenvalue 0

If X is an eigenvalue of Ay; or Asy in the block upper triangular matrix
A= [ A(}l ‘2;2 }, and if A;5 # 0, what can we say about the index of A
as an eigenvalue of A? For convenience, take A = 0. Let the index of A in
A1 € M, be vy and let the index of X in Ayy € M, be va. Any power of
A is block upper triangular,

AM — Aﬁ ZZL:O A]1C1‘412A721371€
0 AL

the rank of A™ is at least the sum of the ranks of its diagonal blocks (0.9.4),
and we have the lower bound

rank AV T2 > pank AV pank ATt

= rank A} 4 rank A%3
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Now compute

e [ AT A
0 AV1+V2
22
[ A 0] Al T, AR AnAnT
0 0 0 0
4|V St AR A AR 100
0 0 0 A%

The basic rank inequalities (0.4.5¢,d) now imply the upper bound

Vi

rank AV1Tv2 < rank[ AOH 8 ] +rank[ 8 A(,;% }

= rank A]] + rank A%3
Combining our upper and lower bounds gives

rank A”*7"2 < rank A} + rank A5 < rank Avitvatl

< rank AV1Tve

which tells us that rank A¥1 V2 = rank A¥1+¥2+1 The conclusion is that the
index of 0 in A is at most v; 4+ v5. An induction permits us to extend this
conclusion to any block upper triangular matrix.

Theorem 3.2.10.1. Let A = [Aij],’;j:l € M, be block upper triangular, so
each A;; is square and A;; = 0 for all ¢ > j. Suppose that the index of A as an
eigenvalue of each diagonal block A;; is v;,7 = 1,...,p. Then the index of A
as an eigenvalue of A is at most vy + - - + vy,

Exercise. Provide details for the induction required to prove the preceding the-
orem.

Corollary 3.2.10.2. Let A € C, let A = { AO“ /GZ }, and suppose that

A1 € M, is diagonalizable. Then every Jordan block of A with eigenvalue

different from A is 1-by-1, and every Jordan block of A with eigenvalue A is
either 1-by-1 or 2-by-2.

3.2.11 ABvs. BA. If A € My, ,, and B € M, 1, (1.3.22) ensures that the
nonzero eigenvalues of AB and BA are the same, including their multiplici-
ties. In fact, we can make a much stronger statement: the nonsingular parts of
the Jordan canonical forms of AB and B A are identical.

Theorem 3.2.11.1. Suppose that A € M,,, and B € M, ,,,. For each
nonzero eigenvalue A of AB and for each k = 1,2, ..., the respective Jordan
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canonical forms of AB and BA contain the same number of Jordan blocks
Jr(A).

Proof: In the proof of Theorem (1.3.22), we found that C; = [4F ” ] and
Co = [’ ] are similar. Let X # 0 be given and let k be any given positive

integer. First observe that the row rank of

(AB — \I,)* 0 }
* (=AI,)*

is 7 + rank((AB — AI,,,)¥), then observe that the column rank of

(=AIn)k 0
* (BA — \I,)F }

(C1 = Mpin)* = [

(Co= A = |

is m+rank((BA—\I,)*). But (C1 — Ay, 40,)" is similar to (Ca — My p)¥,
so their ranks are equal, that is,

rank((AB = ALy)") = rank((BA = M,)") +m = n
foreach k = 1,2, ..., which implies that

rank((AB — M,,,)*™1) — rank((AB — AI,,,))
= rank((BA — \,,)*') — rank((BA — \I,,)%)

for each k = 1,2,.... Thus, the respective Weyr characteristics of AB and
B A associated with any given nonzero eigenvalue A of AB are identical, so
(3.1.18) ensures that their respective Jordan canonical forms contain exactly
the same number of blocks Jj (\) foreach k =1,2,. ... O

3.2.12 The Drazin inverse A singular matrix does not have an inverse, but
several types of generalized inverse are available, each of which has some (but
of course not all) features of the ordinary inverse. The generalized inverse that
we consider in this section is the Drazin inverse.

3.2.12.1 Definition. Let A € M, and suppose that

. B 0.
A_S[ 0 N}S (3.2.12.2)

in which S and B are square and nonsingular, and IV is nilpotent. The direct
summand B is absent if A is nilpotent; N is absent if A is nonsingular. The
Drazin inverse of A is

Bl 0
D __ —1
AP = S[ 0 0 } S (3.2.12.3)
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Every A € M, has a representation of the form (3.2.12.2): use the Jordan
canonical form (3.1.12) in which B is a direct sum of all the nonsingular Jordan
blocks of A and IV is a direct sum of all the nilpotent blocks.

In addition to (3.2.12.2), suppose that A is represented as

c o0 _
A:T{ 0 N ]T ! (3.2.12.4)
in which T and C are square and nonsingular, and N” is nilpotent. Then A™ =
S[ E:)n 8 }S‘l = T{ %n 8 }T‘l, so rank A™ = rank B™ = rank B
is the size of B since it is nonsingular; for the same reason, it is also the
size of C. We conclude that B and C' have the same size, and hence N and
N’ have the same size. Since A = S{ ]g 1(\)[ ]S’l = T[ g 18, }T’l, it

followsthat | § § | = | N | R.inwhich R = TS, Partition R ~

[Ri;]7 j—1 conformally with [ Jg ~ } Then (2.4.4.2) ensures that Ry5 =
0and Ry; = 0, s0 R = Ri; ® Rge, Ry and Rys are nonsingular, C' =
RiiBR;', N' = Ry2NR,;', and T = SR™'. Finally, compute the Drazin
inverse using (3.2.12.4):

r[ €7 0] p _ gpr| (RuBRE)T 0| e
0 0 0 0
= S Rl_ll 0 RllB_lRl_ll 0 R
0 Ry, 0 0 0
B 0] .1 b
= :A
s[ ; 0}5

We conclude that the Drazin inverse is well defined by (3.2.12.3).
Exercise. Explain why AP = A~ if A is nonsingular.

Let ¢ be the index of the eigenvalue 0 of A and consider the three identities

AX = XA (3.2.12.5)
Al = A9 (3.2.12.6)
XAX = X (3.2.12.7)

Exercise. Use (3.2.12.2) and (3.2.12.3) to explain why A and X = AP sat-
isfy the preceding three identities if and only if A = [ Jg J(\), ] and X =

{ B (; ' g } satisfy them. Verify that they do.

There is a converse to the result in the preceding exercise: If X satisfies

0
Ry

-
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(3.2.12.5-7), then X = AP . To verify this assertion, proceed as in the Exercise

to replace A by [ 109 ~ } and partition the unknown matrix X = [X;;]?

ij=1
conformally. We must show that X;; = B~! and that X5, X5;, and X
are zero blocks. Combining the first identity (3.2.12.5) with (2.4.4.2) ensures
that X5 = 0 and X5, = 0; in addition, N X9 = X35 N. The second identity
Gansaysthac[ 77 S T[N 2 [= 5 ) [sometix =
B BX,; =I,and X;; = B~'. The third identity (3.2.12.7) ensures that

Xoy = XooNXgp = NX2, (3.2.12.8)

which implies that Ni=1Xy = qulNXzz2 = N‘1X222 =0,s0 N1 X5, =
0. Using (3.2.12.8) again, we see that N9 72 X9y = N9 2N X2, = (N971 X35) Xoo =J}

0, so N772X,, = 0. Continuing this argument reveals that N9 73X,y =
0,...,NXs95 =0, and finally X95 = 0.
Our last observation is that the Drazin inverse AP is a polynomial in A.

Exercise. Represent A as in (3.2.12.2). According to (2.4.3.4) there is a poly-
nomial p(t) such that p(B*!) = (B41)~1. Let g(t) = tip(t?t!). Verify
that g(A) = AP,

Exercise. Let A € M, and suppose ) is a nonzero eigenvalue of A. If x # 0
and Az = Az, explain why APz = X'z

Problems

1. Let F = {A, : @« € I} C M, be a given family of matrices, indexed
by the index set Z, and suppose there is a nonderogatory matrix Ag € F such
that A, Ag = AyAg for all @ € Z. Show that for every o € 7 there is a
polynomial p,, (t) of degree at most n — 1 such that A, = p,(Ap), and hence
F is a commuting family.

2. Let A € M,,. If every matrix that commutes with A is a polynomial in A,
show that A is nonderogatory. Hint: Why does it suffice to consider the case in
which A is a Jordan matrix? Suppose that A = Ji(A) @ Je(\) @ J, in which
J is either empty or is a Jordan matrix and k£,¢ > 1. For any polynomial
p(t) the leading k + ¢ diagonal entries of p(A) are all equal to p(A). But
—Iy ® I, & I,,_;_y, commutes with A.

3. Let A € M,,. Show that there is a bounded set containing all of the entries
of the family {A™ : m = 1,2,...} (that is, A is power-bounded) if and only if
every eigenvalue \ of A satisfies (a) |A\| < 1 and (b) if |A| = 1 then no Jordan



3.2 The Jordan canonical form: some observations and applications 213

block of A with eigenvalue A has size greater than 1 (that is, every eigenvalue
with modulus 1 is semisimple). Hint: Jo(\)™ = { A ]

4. Suppose A € M, is singular and let r = rank A. In Problem 28 of (2.4) we
learned that there is a polynomial of degree = + 1 that annihilates A. Provide
details for the following argument to show that h(t) = p4(t)/t" "1 issucha
polynomial. Let the Jordan canonical form of Abe J& J,,, (0)&®--- & J,,, (0),
in which the Jordan matrix J is nonsingular. Let v = n; + --- + nyg and
let nmax = max; n; be the index of the eigenvalue zero. (a) Explain why
pa(t) = p1(t)t”, in which p; (t) is a polynomial and p; (0) # 0. (b) Show that
p(t) = p1(t)t™=== annihilates A, so pa(t) = (py (t)t"mex)t¥~"max () Explain
whyk=n—7,v—nmax > k—1=n—r—1,and h(A) = 0.

5. What is the Jordan canonical form of A = [ i ji }‘?

6. The linear transformation d/dt : p(t) — p’(t) acting on the vector space of
all polynomials with degree at most 3 has the basis representation

01 00
0 0 2 0
00 0 3
0 0 0 O

in the basis B = {1,t,t2,#3}. What is the Jordan canonical form of this
matrix?

7. What are the possible Jordan forms of a matrix A € M,, such that A3 = I?

8. What are the possible Jordan canonical forms for a matrix A € Mg with
characteristic polynomial p(t) = (t + 3)*(t — 4)%?

9. Suppose that & > 2. Explain why the Jordan canonical form of adj Ji () is
JAFTYYif A #£ 0, and it is Jo(0) @ Op_o if A = 0.

10. Suppose that the Jordan canonical form of a given nonsingular A € M, is
Jny (A1) @ -+ @ Jy,, (Ag). Explain why the Jordan canonical form of adj A is
Iy (1) @ -+ @ I, (1y,), in which each i, = AP [, A7, i =1, k.
11. Suppose that the Jordan canonical form of a given singular A € M, is
Iy (A1) & - D Jn,_, (A1) & Jp, (0). Explain why the Jordan canonical
form of adj A is J2(0) ®0,,_o ifny, > 2, and itis [T/, A ©0,,_; ifny, = 1;
the former case is characterized by rank A < m — 1 and the latter case is
characterized by rank A = n — 1.

12. Explain why adj A = 0 if the Jordan canonical form of A contains two or
more singular Jordan blocks.
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13. Let A € M, and B, C € M, be given. Show that | § 5 | € My is

similar to { ’3 g } if and only if B is similar to C'.

14. Let B,C € M, and a positive integer k be given. Show that
B®---®#B and Co&---0C
—— ——

k summands k summands

are similar if and only if B and C' are similar.
15. Let A € M,, and B,C € M,, be given. Show that
AeB®---¢B and AeCe---aC
—— ——

k summands k summands
are similar if and only if B and C are similar. Hint: Use the two preceding
problems.

16. Let A € M, have Jordan canonical form J,,, (A1) ® -+ @ Jp, (Ar). If A
is nonsingular, show that the Jordan canonical form of A2 is J,, (A\}) @ --- @
I, ()\i); that is, the Jordan canonical form of A2 is composed of precisely
the same collection of Jordan blocks as A, but the respective eigenvalues are
squared. However, the Jordan canonical form of .J,,, (0)? is not .J,,, (0%) if m >
2; explain.

17. Let A € M,, be given. Show that rank A = rank A? if and only if the
geometric and algebraic multiplicities of the eigenvalue A = 0 are equal; that
is, if and only if all the Jordan blocks corresponding to A = 0 (if any) in the
Jordan canonical form of A are 1-by-1. Explain why A is diagonalizable if and
only if rank(A — A\I) = rank(A — A\I)? forall A € o(A).

18. Let A € M, be given. In (3.2.7) we used the Jordan canonical form to
write A as a sum of two commuting matrices, one of which is diagonalizable
and the other is nilpotent: the Jordan decomposition A = Ap + An. The goal
of this problem is to show that the Jordan decomposition is unique. That is,
suppose that (a) A = B+ C, (b) B commutes with C, (¢) B is diagonalizable,
and (d) C is nilpotent; we claim that B = Ap and C = Ay. It is helpful
to use the fact that there are polynomials p(t) and ¢(¢) such that Ap = p(A)
and Ay = ¢(A); see Problem 14(d) in Section 6.1 of [HJ]. Provide details
for the following: (a) B and C' commute with A. (b) B and C' commute with
Ap and Ay. (¢) B and Ap are simultaneously diagonalizable, so Ap — B
is diagonalizable. (d) C and Ay are simultaneously upper triangularizable,
so C' — Ay is nilpotent. () Ap — B = C' — Ay is both diagonalizable and
nilpotent, so it is a zero matrix. The (uniquely determined) matrix Ap, is called
the diagonalizable part of A; Ay is the nilpotent part of A.
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19. Let A € M, be given and let A be an eigenvalue of A. (a) Prove that
the following two assertions are equivalent: (i) Every Jordan block of A with
eigenvalue \ has size two or greater; (ii) Every eigenvector of A corresponding
to A is in the range of A — AI. (b) Prove that the following five assertions
are equivalent: (i) Some Jordan block of A is 1-by-1; (ii) There is a nonzero
vector x such that Az = Az but z is not in the range of A — A\, (iii) There
is a nonzero vector x such that Ax = Az but x is not orthogonal to the null
space of A* — \I; (iv) There are nonzero vectors x and y such that Az = Az,
y*A = \y*, and z*y # 0; (v) A is similar to [\] @ B for some B € M,,_;.
Hint: (1.4.7).

20. Let A, B € M, be given. Show that AB is similar to BA if and only
rank(AB)* = rank(BA)* foreach k = 1,2,...,n.

2. Letd=[ 0 0] e My witha = [10,andlet B = L @ [0] € M.

Show that the Jordan canonical form of AB is J3(0), while that of BA is

22. Let A € M,,. Show that both AAP and I — AAP are projections (idem-
potents), and that AAP (I — AAP) = 0.

23. Let A € M, and let ¢ be the index of 0 as an eigenvalue of A. Show that
AP =1lim;_o(AFHL +¢tI)~LAF forany k > q.

24. Let A,B € M,, let D = AB — BAT, and suppose that AD = DAT”.
Let A1, ..., Aq be the distinct eigenvalues of A. (a) (an analog of Problem
12(c) in (2.4)) If A is diagonalizable, show that D = 0, that is, AB = BAT.
Hint: Let A = SAS™Y with A = A\, & -+ @® A\gl,,; let D = S~1DS and
B = S"'BS~T. Then AD = DA and D = AB — BA. Conclude that D
and B are block diagonal conformal to A and D = 0. (b) Suppose that A is
nonderogatory. Then (3.2.4.4) ensures that D is symmetric. In addition, show
that rank D < n — d, so the geometric multiplicity of 0 as an eigenvalue of D
is at least d. Hint: Let A = SJS™ with J = J,,, (A1) & -+ & Jp, (Aa); let
D=S"'DSand B= S"'BS~7. Then JD = DJ" and D = JB — BJT.
ConcludethatD =D @ --- @ Dgand B =By & - - - @ By are block diagonal
conformal to J, J7D7 = D7le, and DL = J,B, — BLJZT for each i = 1, . 7d
(Ji = Jn;(N)). Let J&' = S;J;8;7'. Then J;(D;S;) = (DiS;)J;, and
(D;S;) = Ji(B;S;) — (B;S;)J;. Invoke Jacobson’s lemma.

25. Let A € M, be given and suppose that A? is nonderogatory. Explain why:
(a) A is nonderogatory; (b) If A is a nonzero eigenvalue of A, then —A is not
an eigenvalue of A4; (¢) If A is singular, then 0 has algebraic multiplicity one as
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an eigenvalue of A4; (d) rank A > n — 1; (e) There is a polynomial p(t) such
that A = p(A4?).

26. Let A, B € M, be given and suppose that A? is nonderogatory. If AB =
BT A and BA = AB7T, show that B is symmetric. Hint: Show that (B —
BT)A = 0 and explain why rank(B — BT) < 1. See Problem 27 in (2.6).

Notes and Further Readings. For a detailed discussion of the optimality prop-
erty (3.2.9.4) and a characterization of the case of equality, see R. Brualdi, P.
Pei, and X. Zhan, An extremal sparsity property of the Jordan canonical form,
Linear Algebra Appl. 429 (2008) 2367-2372. Problem 21 illustrates that the
nilpotent Jordan structures of AB and B A need not be the same, but in the
following sense they cannot differ by much: If m; > mgo > --- are the sizes
of the nilpotent Jordan blocks of AB while n; > ny > --- are the sizes of
the nilpotent Jordan blocks of BA (append zero sizes to one list or the other,
if necessary to achieve lists of equal length) then |m; — n;| < 1 for all q.
For a discussion and proof, see C. Johnson and E. Schreiner, The relationship
between AB and BA, Amer. Math. Monthly 103 (1996) 578-582.

3.3 The minimal polynomial and the companion matrix

A polynomial p(t) is said to annihilate A € M, if p(A) = 0. The Cayley—
Hamilton theorem (2.4.2) guarantees that for each A € M,, there is a monic
polynomial p 4 (¢) of degree n (the characteristic polynomial) such that p 4 (A) =Jj
0. Of course, there may be a monic polynomial of degree n — 1 that annihilates
A, or one of degree n — 2 or less. Of special interest is a monic polynomial of
minimum degree that annihilates A. It is clear that such a polynomial exists;
the following theorem says that it is unique.

3.3.1 Theorem. Let A € M, be given. There exists a unique monic poly-
nomial g4 (t) of minimum degree that annihilates A. The degree of g4 (¢) is
at most n. If p(¢) is any monic polynomial such that p(A) = 0, then g4 (t)
divides p(t), that is, p(t) = h(t)ga(t) for some monic polynomial h(t).

Proof: The set of monic polynomials that annihilate A contains p4(t), which
has degree n. Let m = min{k : p(¢) is a monic polynomial of degree k
and p(A) = 0}; necessarily m < n. If p(t) is any monic polynomial that
annihilates A, and if ¢(¢) is a monic polynomial of degree m that annihilates
A, then the degree of p(t) is m or greater. The Euclidean algorithm ensures that
there is a monic polynomial /(t) and a polynomial r(¢) of degree strictly less
than m such that p(t) = q(¢)h(t)+r(t). But0 = p(A) = q(A)h(A)+r(A) =
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Oh(A) 4+ r(A), so 7(A) = 0. If r(¢) is not the zero polynomial, we could
normalize it and obtain a monic annihilating polynomial of degree less than m,
which would be a contradiction. We conclude that r(t) is the zero polynomial,
so ¢(t) divides p(t) with quotient h(t). If there are two monic polynomials
of minimum degree that annihilate A, this argument shows that each divides
the other; since the degrees are the same, one must be a scalar multiple of the
other. But since both are monic, the scalar factor must be +1 and they are
identical. |

3.3.2 Definition. Let A € M,, be given. The unique monic polynomial g4 (t)
of minimum degree that annihilates A is called the minimal polynomial of A.

3.3.3 Corollary. Similar matrices have the same minimal polynomial.

Proof: 1If A,B,S € M,, andif A = SBS~!, then qp(A) = qg(SBS™!) =
Sqp(B)S™! =0, s0 qp(t) is a monic polynomial that annihilates A and hence
the degree of g4 (t) is less than or equal to the degree of ¢p(¢). But B =
S7LAS, so the same argument shows that the degree of gz () is less than or
equal to the degree of ¢ (t). Thus, g4 (t) and ¢p(t) are monic polynomials of
minimum degree that annihilate A, so (3.3.1) ensures that they are identical.

|

Exercise. Consider A = J3(0) @ J2(0) € My and B = J2(0) @ 02 € My.
Explain why A and B have the same minimal polynomial but are not similar.

3.3.4 Corollary. For each A € M,,, the minimal polynomial ¢ (t) divides the
characteristic polynomial p4(t). Moreover, g4(A) = 0 if and only if A is an
eigenvalue of A, so every root of p4(t) = 0 is aroot of ¢4 (¢) = 0.

Proof: Since pa(A) = 0, the fact that there is a polynomial h(t) such that
pa(t) = h(t)ga(t) follows from (3.2.1). This factorization makes it clear
that every root of q4(t) = 0 is a root of pa(tf) = 0, and hence every root
of ga(t) = 0 is an eigenvalue of A. If X is an eigenvalue of A, and if x is
an associated eigenvector, then Az = Az and 0 = ga(A)x = qa(N)z, so
ga(A) = 0 since = # 0. O

The preceding corollary shows that if the characteristic polynomial p4(t)
has been completely factored as
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with A1, A, ..., A distinct, then the minimal polynomial ¢ 4 (¢) must have the
form
d
aat) =JJt-2)", 1<r<s
i=1

In principle, this gives an algorithm for finding the minimal polynomial of a
given matrix A:

1. First compute the eigenvalues of A, together with their algebraic multi-
plicities, perhaps by finding the characteristic polynomial and factoring
it completely. By some means, determine the factorization (3.3.5a).

2. There are finitely many polynomials of the form (3.3.5b). Starting with
the product in which all r; = 1, determine by explicit calculation the
product of minimal degree that annihilates A; it is the minimal polyno-
mial.

Numerically, this is not a good algorithm if it involves factoring the char-
acteristic polynomial of a large matrix, but it can be very effective for hand
calculations involving small matrices of simple form. Another approach to
computing the minimal polynomial that does not involve knowing either the
characteristic polynomial or the eigenvalues is outlined in Problem 5.

There is an intimate connection between the Jordan canonical form of A €
M,, and the minimal polynomial of A. Suppose that A = S.JS~1 is the Jordan
canonical form of A, and suppose first that J = J,,(\) is a single Jordan block.
The characteristic polynomial of A is (t — \)", and since (J — AI)* # 0 if
k < n, the minimal polynomial of J is also (¢ — A)™. However, if

Ini (A) 0

J= 0 Ju,(\)

e M,

with n1 > ng, then the characteristic polynomial of J is still (¢ — A)™, but
now (J — AI)™ = 0 and no lower power vanishes. The minimal polynomial
of J is therefore (¢ — A\)™*. If there are more Jordan blocks with eigenvalue
A, the conclusion is the same: The minimal polynomial of J is (¢ — A)", in
which 7 is the size of the largest Jordan block corresponding to A. If J is a
general Jordan matrix, the minimal polynomial must contain a factor (t — \;)"
for each distinct eigenvalue A;, and r; must be the size of the largest Jordan
block corresponding to A;; no smaller power annihilates all the Jordan blocks
corresponding to \;, and no greater power is needed. Since similar matrices
have the same minimal polynomial, we have proved the following theorem.
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3.3.6 Theorem. Let A € M, be a given matrix whose distinct eigenvalues are

A1, A2, ..., Ag. The minimal polynomial of A is
d
ga(t) =[]t =)™ (3.3.7)
i=1

in which r; is the size of the largest Jordan block of A corresponding to the
eigenvalue \;.

In practice, this result is not very helpful in computing the minimal poly-
nomial since it is usually harder to determine the Jordan canonical form of a
matrix than it is to determine its minimal polynomial. Indeed, if only the eigen-
values of a matrix are known, its minimal polynomial can be determined by
simple trial and error. There are important theoretical consequences, however.
Since a matrix is diagonalizable if and only if all its Jordan blocks have size 1,
a necessary and sufficient condition for diagonalizability is that all ; = 1 in
(3.3.7).

3.3.8 Corollary. Let A € M, have distinct eigenvalues A1, Ao, ..., Ag and let
q(t) = (t = A)(t = Xa) -+ (t — \a) (3.3.9)
Then A is diagonalizable if and only if g(A) = 0.

This criterion is actually useful for determining if a given matrix is diago-
nalizable, provided that we know its distinct eigenvalues: form the polynomial
(3.3.9) and see if it annihilates A. If it does, it must be the minimal polyno-
mial of A, since no lower-order polynomial could have as zeros all the distinct
eigenvalues of A. If it does not annihilate A, then A is not diagonalizable. It is
sometimes useful to have this result formulated in several equivalent ways:

3.3.10 Corollary. Let A € M,, and let g4 (¢) be its minimal polynomial. The
following are equivalent:

() ga(t) has distinct linear factors.

(b) Every eigenvalue of A has multiplicity 1 as a root of ¢4 (¢) = 0.
(c) For every eigenvalue X of A, ¢/, (¢) # 0.

(d) A is diagonalizable.

We have been considering the problem of finding, for a given A € M,,, a
monic polynomial of minimum degree that annihilates A. But what about the
converse? Given a monic polynomial

p(t) =t" + an_1t" "+ an_ot" 2+ +art +a (3.3.11)



220 Canonical forms for similarity, and triangular factorizations

is there a matrix A for which p(¢) is the minimal polynomial? If so, the size of
A must be at least n-by-n. Consider

0 —ap
1 0 —ai
A= 1 . : €M, (3.3.12)
0 —an—2
0 1 —QUn—1
and observe that
161 = €1 = A061
Ael — (D) = A61
Aeg = €3 = A261
Aes = e4 = A3e
Aep1 = e, = Anilel
In addition,
Aep, = —ap—1n —ap—2ey_1 — -+ —a1€2 — ape1
—an_lA”_lel — an_gAn_Qel — e — a1A€1 — apeé1 = A"el
= [A" —p(A)]er
Thus,
p(A)er = (aper + arde; + asA%e; + -+ an,lAnflel) + A"e;

= [p(A) — A"e; + [A™ —p(A)]e; =0

Furthermore, p(A)ey, = p(A)A*~le; = A*~1p(A)e; = A*~10 = 0 for each
k=1,2,...,n. Since p(A)e, = 0 for every basis vector ei, we conclude that
p(A) = 0. Thus p(t) is a monic polynomial of degree n that annihilates A. If
there were a polynomial g(t) = t™ + by, _1t™ "1 + - + byt + by of lower
degree m < n that annihilates A, then

0 = q(A)er =A"er +by_1A™ rer + -+ + by Aer + boes
= emt1+bm_1em+ -+ biea+boe; =0

which is impossible since {e1, €2, . . ., €41 } is linearly independent. We con-
clude that n'"* degree polynomial p(t) is a monic polynomial of minimum de-
gree that annihilates A, so it is the minimal polynomial of A. The characteristic
polynomial p 4 (t) is also a monic polynomial of degree n that annihilates A,
s0 (3.3.1) ensures that p(¢) is also the characteristic polynomial of the matrix
(3.3.12).
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3.3.13 Definition. The matrix (3.3.12) is the companion matrix of the polyno-
mial (3.3.11).

We have proved the following:

3.3.14 Theorem. Every monic polynomial is both the minimal polynomial
and the characteristic polynomial of its companion matrix.

If the minimal polynomial of A € M, has degree n, then the exponents in
(3.3.7) satisfy r1 +- - - +r4 = n; that is, the largest Jordan block corresponding
to each eigenvalue is the only Jordan block corresponding to each eigenvalue.
Such a matrix is nonderogatory. In particular, every companion matrix is non-
derogatory. A nonderogatory matrix A € M, need not be a companion matrix,
of course, but A and the companion matrix C of the characteristic polynomial
of A have the same Jordan canonical form (one block J,, ();) corresponding
to each distinct eigenvalue \;), so A is similar to C.

Exercise. Provide details for a proof of the following theorem.

3.3.15 Theorem. Let A € M,, have minimal polynomial g4 (¢) and character-
istic polynomial p 4 (¢). The following are equivalent:

(a) qa(t) has degree n.

(b) pa(t) = qa(t).

(¢) A is nonderogatory.

(d) A is similar to the companion matrix of p4 (¢).

Problems

1. Let A, B € M3 be nilpotent. Show that A and B are similar if and only if
A and B have the same minimal polynomial. Is this true in M4?

2. Suppose A € M, has distinct eigenvalues A1, Ao, ..., Ag. Explain why
the minimal polynomial of A (3.3.7) is determined by the following algorithm:
For each i = 1,2,...,d compute (A — \;I)¥ for k = 1,2,...,n. Let r; be
the smallest value of k for which rank(A — \;I)* = rank(A — \;1)k*1.

3. Use (3.3.10) to show that every idempotent matrix is diagonalizable. Hint:
Show that 2 — ¢ = ¢(¢ — 1) annihilates A. What is the minimal polynomial of
A? What can you say if A is tripotent (A3 = A)? What if AF = A?

4, If A € M,, and A = 0 for some k > n, use properties of the minimal

polynomial to explain why A” = 0 for some < n.

5. Show that the following application of the Gram—Schmidt process permits
the minimal polynomial of a given A € M,, to be computed without knowing
either the characteristic polynomial of A or any of its eigenvalues.
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(a) Let the mapping T" : M,, — C"’ be defined as follows: For any A € M,
partitioned according to columns as A = [aiaz...ay), let T(A) denote the
unique vector in C"* whose first n entries are the entries of the first column
a1, whose entries from n + 1 to 2n are the entries of the second column as,
and so forth. Show that this mapping 7T is an isomorphism (linear, one-to-one,
and onto) of the vector spaces M,, and c.

(b) Consider the vectors

vo =T(I),v1 = T(A),vy = T(A?),..., v, = T(A"),...

inC" fork = 0,1,2,...,n. Use the Cayley—Hamilton theorem to show that
{vo,v1,...,v,} is a dependent set.

(c) Apply the Gram—Schmidt process to the set {vg, vy, ..., v, } in the given
order until it stops by producing a first zero vector. Why must a zero vector be
produced?

(d) If the Gram—Schmidt process produces a first zero vector at the kth step,
argue that &k — 1 is the degree of the minimal polynomial of A.

(e) If the kth step of the Gram—Schmidt process produces the vector agvg +
a1V + -+ agp_1vk_1 = 0, show that

T—l(aovo + vy -+ ak—lvk—1)
=apl + a1 A+ aA? + -+ a1 AF1 =0

and conclude that g4 (t) = (g1t ~1 + -+ + aot? + it + ap) /a1 is the
minimal polynomial of A. Why is a1 # 0?

6. Carry out the computations required by the algorithm in Problem 5 to deter-
mine the minimal polynomials of [(1) ;} , [(1) H, and [é (1)} .

7. Consider A = [} }] and B = [J9] to show that the minimal polynomials
of AB and B A need not be the same. However, if C, D € M,,, why must the
characteristic polynomials of C'D and DC be the same?

8. Let A, € M,,,i=1,2,...,k and let g4, (¢) be the minimal polynomial of
each A;. Show that the minimal polynomial of A = A; @ - - - @ Ay, is the least
common multiple of g4, (¢), ..., qa, (t). This is the unique monic polynomial
of minimum degree that is divisible by each ¢;(¢). Use this result to give a
different proof for (1.3.10).

9. If A € Mj5 has characteristic polynomial p4(t) = (t — 4)3(t + 6)? and
minimal polynomial q4(t) = (t — 4)?(¢ + 6), what is the Jordan canonical
form of A?
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10. Show by direct computation that the polynomial (3.3.11) is the charac-
teristic polynomial of the companion matrix (3.3.12). Hint: Use cofactors to
compute the determinant.

11. Let A € M,, be the companion matrix (3.3.12) of the polynomial p(¢) in
(3.3.11). Let K, be the n-by-n reversal matrix. Let Ay = K, AK,, A3 = AT,
and Ay = K,ATK,. (a) Write Ay, A3, and A4 as explicit arrays like the
one in (3.3.12). (b) Explain why p(t) is both the minimal and characteristic
polynomial of As, As, and A4, each of which is encountered in the literature
as an alternative definition of companion matrix.

12. Show that there is no real 3-by-3 matrix whose minimal polynomial is
22 + 1, but that there is a real 2-by-2 matrix as well as a complex 3-by-3
matrix with this property. Hint: Use (3.3.4).

13. Explain why any n complex numbers can be the eigenvalues of an n-by-n
companion matrix. However, the singular values of a companion matrix are

subject to some very strong restrictions. Write the companion matrix (3.3.12)
0

an—1]T € C"~ 1. Verify that A*A = {1’5:1 ﬂ, in which s = |ag|? + |a1|* +
-+ |an_1|* Let oy > --- > o, denote the ordered singular values of A.
Use (1.2.20) to show thatog = --- = 0,1 = 1 and

1
e 5 (s +1E£+/(s+1)2- 4|a0|2)

14. Use the example in the exercise preceding (3.3.4) to show that there are
nonsimilar A, B € M,, such that for every polynomial p(t), p(A) = 0 if and
only if p(B) = 0.

as a block matrix A = [I ) ‘g}, in whicha = —gpand £ = [—ay ... —

15. Let A € M, be given, and let P(A) = {p(A4) : p(¢) is a polynomial}.
Show that P(A) is a subspace of M,, and that it is even a subalgebra of M,,.
Explain why the dimension of P(A) is the degree of the minimal polynomial
of A.

16. Let A, B € M,,. Suppose that p4(t) = pp(t) = qa(t) = ¢p(t). Explain
why A and B are similar. Use this fact to show that the alternative forms for
the companion matrix noted in Problem 11 are all similar to (3.3.12).

17. Explain why any matrix that commutes with a companion matrix C' must
be a polynomial in C'.

18. Newton’s identities (2.4.18-19) can be proved by applying standard matrix
analytic identities to the companion matrix. Adopt the notation of Problems
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3 and 9 in (2.4) and let A € M,, be the companion matrix of p(t) = t" +
an_1t""1+ - +ait+ ap. Provide details for the following: (a) Since p(t) =
pa(t), we have p(A) = 0 and 0 = tr(A*p(A4)) = p,pp + Gne1fin 1 +
oo+ @y + aopy fork = 0,1,2, .., whichis (2.4.19). (b) Use (2.4.13) to
show that

tr(adj(t] — A)) = nt" ' +tr A, ot" 2 4+ Ftr At +tr Ay (3.3.13)

and use (2.4.17) to show thattr A,, 1 = pp+0n_1y_1+ - Fan_rt1/4;+
nay,—y, which is the coefficient of t*~%~1 in the right-hand side of (3.3.13) for
k=1,...,n— 1. Use (0.8.10.2) to show that tr(adj(t] — A)) = nt"~! +
(n — Van_1t""2 + -+ + 2ast + ay, so (n — k)a,_y, is the coefficient of
t"~*=1 in the left-hand side of (3.3.13) for k = 1,...,n — 1. Conclude that
(n—K)an—k = p+an—1f_1+ -+ an_gr1p;+nan_pfork =1,...,n—1,
which is equivalent to (2.4.17).

19. Let A, B € M,, and let C = AB — BA be their commutator. In Problem
12 of (2.4) we learned that if C' commutes with either A or B, then C™ = 0.
If C commutes with both A and B, show that C"~! = 0. What does this say
if n = 22 Hint: Suppose C"~! # 0 and use (3.2.4.2).

20. Let A, B € M,, be companion matrices (3.3.12) and let A € C. (a) Show
that \ is an eigenvalue of A if and only if z) = [L A A% ... X" 17 is an
eigenvector of AT, (b) If \ is an eigenvalue of A, show that every eigenvector
of AT associated with ) is a scalar multiple of . Deduce that every eigen-
value of A has geometric multiplicity one. (c) Explain why A7 and BT have
a common eigenvector if and only if they have a common eigenvalue. (d) If A
commutes with B, why must A and B have a common eigenvalue?

21. Let n > 2, let C,, be the companion matrix (3.3.12) of p(t) = t" + 1, let
L,, € M, be the strictly lower triangular matrix whose entries below the main
diagonal are all equal to +1, let E,, = L,, — L, and let 0, = T2k +1),k=
0,1,...,n — 1. Provide details for the following proof that the spectral radius
of E, is cot 5. (a) The eigenvalues of C), are A\, = e k=0,1,...,n—1
with respective associated eigenvectors zj, = [1 A, ... AP 7. (b) E,, =
Cp,+C2+- .. +Cn1 has eigenvectors xy, k = 0, 1,...,n— 1 with respective
associated eigenvalues

e — A 14X
I—X  1—X
efiek/2+ei9k/2 gk

= ——————— =1jcot —
e*lek/Q — elek/Q 2

fork=0,1,...,n— 1. (c) p(E,) = cot =

2n°

Me+ A+ 4+ A =
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22. Let A € M,,. Explain why the degree of the minimal polynomial of A is
at least rank A 4 1, and show by example that this lower bound on the degree
is best possible: foreachr = 1,...,n — 1 there is some A € M,, such that the
degree of g4 (t) is rank A + 1. Hint: Problem 4 in (3.2).

23. Show that a companion matrix is diagonalizable if and only if it has distinct
eigenvalues.

24. Let A € M, be a companion matrix (3.3.12). Show that: (a) If n = 2, then
A is normal if and only if |ag| = 1 and a; = —agay; it is unitary if and only if
|ap| = 1and a; = 0. (b) If n > 3, then A is normal if and only if |ag| = 1 and
ay = -+ = anp—1 = 0, that is, if and only if p4(¢t) = t" — cand |¢| = 1; (¢)
If n > 3 and A is normal, then A is unitary and there is a ¢ € [0, 27/n) such
that the eigenvalues of A are e*?e2™%/" | =0,1,... . n— 1.

25. If ag # 0, show that the inverse of the companion matrix A in (3.3.12) is

=41 0 - 0
—%2 0 1 0
ap
A7l = : AR (3.3.14)
—an—1 '._ 1
aqg
L agp .

and that its characteristic polynomial is

a Ay 1 tm 1
o Syl iy — = —pa(=) (3.3.15)
ap ap Qo Qo t

26. This problem is a generalization of Problem 16 in (2.4). Let Ay, ..., A\q be
the distinct eigenvalues of A € M,,, let ga(t) = (¢ — Ap)H1 -+ (t — Ag)"< be
the minimal polynomial of A. Fori = 1,...,d, let ¢;(¢t) = qa(t)/(t — \;)
and let v; denote the number of blocks .J,,, ();) in the Jordan canonical form
of A. Show that: (a) For each¢ = 1,...,d, ¢;(4) # 0, each of its nonzero
columns is an eigenvector of A associated with )\;, and each of its nonzero
rows is the complex conjugate of a left eigenvector of A associated with \;;
(b) foreachi =1,...,d, ¢;(A) = X;Y;*, in which X;,Y; € M, ,, each have
rank v;, AX; = A\ X;,and Y*A = \;Y*; (¢) rank ¢;(4) = vi, i = 1,...,d;
(d) Ifv; = 1 for some i = 1,...,d, then there exists a polynomial p(¢) such
that rank p(A) = 1; (e) If A is nonderogatory, then there is a polynomial p(t)
such that rank p(A) = 1; (f) The converse of the assertion in (d) is correct as
well—can you prove it? Hint: (A1 — A)gi(A) = qa(A).
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27. The n*" order linear homogeneous ordinary differential equation
v+ any "+ anay" P 4 ary +agy = 0

for a complex-valued function y(¢) of a real parameter ¢ can be transformed
into a first order homogeneous system of ordinary differential equations 7’ =
Az, A € M,,x = [x1 ... x,)7 by introducing auxiliary variables x; =
y, 2 =19, ..., 2z, =y Y. Perform this transformation and show that A”
is the companion matrix (3.3.12).

28. Suppose that K € M, is an involution. Explain why K is diagonalizable,
and why K is similar to I,,, & (—I,_,,) for some m € {0,1,...,n}. Hint:
K? = I, so there are three possibilities for the minimal polynomial of K.

29. Suppose that A, K € M,,, K is an involution, and A = K AK. Show that:
(a) there is some m € {0, 1,...,n} and matrices A11 € M,,, Aas € My,
such that A is similar to A;; @ Agg and K A is similar to A1; @ (—Aaz2); (b) A
is an eigenvalue of A if and only if either +\ or —\ is an eigenvalue of K A;
(c)if A € M, is centrosymmetric (0.9.10) and K = K, is the reversal matrix
(0.9.5.1), then A is an eigenvalue of A if and only if either +XA or —\ is an
eigenvalue of K, A, which presents the rows of A in reverse order. Hint: Let
K =SDS 'with D = I,, ® (—I,_,) and let A = S7TAS = [Aij]f,jzl.
Then K A is similar to DA and A = DAD = A5 = 0and Ay = 0.

30. Suppose that A, K € M, K is an involution, and A = —KAK. Show

that: (a) there is some m € {0,1,...,n} and matrices Aj2 € My, n—m,
A9y € M,,_ . m such that A is similar to B = [272"1 OAf } and K A is similar

—A21 Op—m
if ¢\ is an eigenvalue of K A4; (c) if A € M, is skew-centrosymmetric (0.9.10)

and K, is the reversal matrix (0.9.5.1), then A is similar to ¢ K, A (thus, A is an
eigenvalue of A if and only if i) is an eigenvalue of K, A, which presents the
rows of A in reverse order). Hint: Let T = il,, © I,,_,, and compute TBT 1.

to [ Om A1z } ; (b) Ais similar to ¢ K A, so A is an eigenvalue of A if and only

3.4 The real Jordan and Weyr canonical forms

In this section we discuss a real version of the Jordan canonical form for real
matrices, as well as an alternative to the Jordan canonical form for complex
matrices that is especially useful in problems involving commutativity.

3.4.1 The real Jordan canonical form Suppose that A € M, (R), so any
nonreal eigenvalues must occur in complex conjugate pairs. We have rank(A—



3.4 The real Jordan and Weyr canonical forms 227
AD* = rank (A — AI)* = rank(A — A\I)* = rank(A — A\I)* forany A\ € C

andallk = 1,2, ..., sothe Weyr characteristics of A associated with any com-
plex conjugate pair of eigenvalues are the same (that is, wy (A, \) = wi (A, \)
for all £ = 1,2,...). Lemma 3.1.18 ensures that the Jordan structure of

A corresponding to any eigenvalue )\ is the same as the Jordan structure of
A corresponding to the eigenvalue A (that is, s;,(A4,\) = s5(A,\) for all
k = 1,2,...). Thus, all the Jordan blocks of A of all sizes with nonreal
eigenvalues occur in conjugate pairs of equal size.

For example, if A is a nonreal eigenvalue of A € M, (R), and if k blocks
Jo()) are in the Jordan canonical form of A, then there are k blocks J2()\) as
well. The block matrix

A 10 0
BN 0 ] _ [0 A0 0
[0 Jz(j\)}_ 00 | X1

001 0 X

is permutation-similar (interchange rows and columns 2 and 3) to the block
matrix

A0 P10
02101 _[Du) I, ]
0041 X0 0 DO
00 {0 A
inwhich D(\) = | 5§ | € Mo,
In general, any Jordan matrix of the form
Je(N) 0
< M. 34.1.1
5 | 2 G4LD

is permutation similar to the block upper triangular matrix

D) I

€ Moy, (3.4.12)

I
D(A)

which has k 2-by-2 blocks D(\) on the main block diagonal and k& — 1 blocks
I5 on the block superdiagonal.
Let A\ = a +ib,a,b € R. A computation reveals that D()) is similar to a
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real matrix

C(a,b) = [_Z Z ] = SD()\)S™! (3.4.1.3)

in which S = [ _11 :i } and S~! = %{ j _Zz ] Moreover, every block
matrix of the form (3.4.1.2) with a nonreal ) is similar to a real block matrix
of the form
C(CL, b) IQ
C’(a, b) IQ

C’k(a,b) = € My, (3.4.14)

I
C(a,b)

via the similarity matrix S & - - - @ S (k direct summands). Thus, every block
matrix of the form (3.4.1.1) is similar to the matrix Cy(a,b) in (3.4.1.4). These
observations lead us to the real Jordan canonical form theorem.

3.4.1.5 Theorem. Each A € M, (R) is similar via a real similarity to a real
block diagonal matrix of the form

[ Ch, (Cbh b1) |
Cny (@.50) (3.4.1.6)
Jmy (1)
L er (Mr) h
in which A\, = ay+1ibg, k = 1,2,...,p, are nonreal eigenvalues of A, each ay,
and by, is real and b, > 0, and p4, . . ., i, are real eigenvalues of A. Each real

block triangular matrix C.,, (ag,br) € May,, is of the form (3.4.1.4) and cor-
responds to a pair of conjugate Jordan blocks J,,, (Ax), Jn, (Ax) € M, with
nonreal A in the Jordan canonical form (3.1.12) of A. The real Jordan blocks
I, (i) in (3.4.6) are the Jordan blocks in (3.1.12) that have real eigenvalues.

Proof: We have shown that A is similar to (3.4.1.6) over C. Theorem 1.3.28
ensures that A is similar to (3.4.6) over R. O

The block matrix (3.4.1.6) is the real Jordan canonical form of A.

3.4.2 The Weyr canonical form The Weyr characteristic (3.1.16) played a
key role in our discussion of uniqueness of the Jordan canonical form. It can
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also be used to define a canonical form for similarity that has certain advan-
tages over the Jordan form.

Suppose that ¢ is the index of an eigenvalue A of A € M,,, and let wy =
wi (A, X), k =1,2,...be the Weyr characteristic of A associated with . The
Weyr block W 4 (\) of A associated with X is the upper triangular ¢-by-g block
bidiagonal matrix

My, Gi2
My, Ga3

Wa(\) = (3.4.2.1)

Gq—l,q
A,

in which

Ty,
Gi,i+k = |: wgrk :| S Mu)i,u)qurk, k= 1, 27 s
Notice that rank G ;1 = Witk.

For example, the Weyr characteristic of the Jordan matrix J in (3.1.16a)
associated with the eigenvalue 0 is w; = 6, wy = 5, w3 = 2, so

O0¢ G5
W, (0) = 05 Gsp (3.4.2.2)
02

Exercise. Let A be an eigenvalue of A € M,,. Explain why the size of the
Weyr block W4 () is the algebraic multiplicity of A, which is the sum of the
sizes of all the Jordan blocks of A with eigenvalue .

The Weyr block W4 () in (3.4.2.1) may be thought of as a g-by-q block
matrix analog of a Jordan block. The number of diagonal blocks (the parameter
q) is the index of X (rather than its algebraic multiplicity), the diagonal blocks
are scalar matrices \I (rather than scalars) with nonincreasingly ordered sizes,
and the superdiagonal blocks are full-column-rank blocks [ é } (rather than
1s) whose sizes are dictated by the sizes of the diagonal blocks.

Exercise. For the Weyr block (3.4.2.2), show by explicit calculation that

06 0Os5 Gso2
W;(0)* = 05 05,2
02

and W;(0)® = 0. Explain why rank W (0) = 7 = we+ws and rank W, (0)? =[i
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2 = ws, and why the Weyr characteristic of W;(0) is 6, 5, 2. Deduce that .J is
similar to W;(0). In fact, J is similar to W (0) via a permutation similarity.
Describe it.

Exercise. The size of the Weyr block W4 () in (3.4.2.1) is w1 +wa+- - - +wy.
Explain why rank(Wa(\) — A) = wa + - - - + w,.

Exercise. Verify that kal,k’GkJH*l = kal,k+1a that is,

T | o i F W
0wk-1*wk,wk Owk*wk+1,wk+1 Owk—lfwk+1,wk+1

Using the preceding exercise, we find that (W4 (\) — \I)? =

[ 0w, O Gi3 1
0w, O
Ows  Ggoayg
0
L Ow

q J

so rank(Wa(X) — AI)? = ws + - - - +w,. Moving from one power to the next,
each nonzero superdiagonal block Gy—px € My, w,, b = p+1,...,q
in (W4(X) — AI)? moves up one block row into a higher superdiagonal of
(Wa(X) — AP whose blocks are Gr—p_16 € My, , 1wk = D+
2,...,q. Inparticular, rank(W4(A) = AI)P = wpq1 +- - +wg, k=1,2,.. ..
Observe that rank(Wa(A) — AP~ — rank(W4(A) — AI)P = w,, so the
Weyr characteristic of W4 () associated with X is w1, wa, . . ., wy; this is also
the Weyr characteristic of A associated with \.

A Weyr matrix is a direct sum of Weyr blocks with distinct eigenvalues.

We can now state the Weyr canonical form theorem:
3.4.2.3 Theorem. Let A € M, be given, let A1,..., Ay be its distinct eigen-
values in any prescribed order, let wi(A, A;),k = 1,2, ..., be the Weyr char-
acteristic of A associated with the eigenvalue A;, 7 = 1,...,d, and let W4 ();)
be the Weyr block (3.4.2.1) for j = 1,2,...,d. Then there is a nonsingular
S € M,, such that

WalA) 0
A=28 . S1
0 Wa(Aa)

The Weyr matrix Wy = W (A1) @ - - - ® Wa(Ag) is uniquely determined by
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A up to permutation of its direct summands. If A is real and has only real
eigenvalues, then S can be chosen to be real.

Proof: The preceding observations show that W4 and A have identical Weyr
characteristics associated with each of their distinct eigenvalues. Lemma 3.1.18]i
ensures that 14 and A are similar (and that 1/ 4 is unique up to permutation of
its direct summands) since they are both similar to the same Jordan canonical
form. If A and all its eigenvalues are real, then W4 is real and (1.3.28) ensures
that A is similar to W4 via a real similarity. |

The Weyr matrix W4 = Wa (A1) @ - - ® Wa(Aq) in the preceding theorem
is the Weyr canonical form of A. The Weyr and Jordan canonical forms W4
and J 4 contain the same information about A, but presented differently. Given
one form, one can use the information incorporated into it to write down the
other. Moreover, W 4 is permutation similar to J4 and vice versa.

Exercise. Let A € M, be given. Verify that the Jordan and Weyr canonical
forms of A have the same number of nonzero entries.

Exercise. Let A1, ..., \q be the distinct eigenvalues of A € M,,. (a) If A is
nonderogatory, explain why: (i) wy(A4,A;) = 1 foreachi = 1,...,d; (ii)
in each Weyr block W4 ()\;),i = 1,...,d, every diagonal and superdiagonal
sub-block of (3.4.2.1) is 1-by-1; (iii) The Weyr canonical form of A is the
same matrix as its Jordan canonical form. (b) If wi(A, \;) = 1 for each
i =1,...,d, why must A be nonderogatory? Hint: w1 (A, );) is the geometric
multiplicity of ;.

Exercise. Let \1,...,\q be the distinct eigenvalues of A € M,,. (a) If A is
diagonalizable, explain why: (i) w2(A, \;) = 0 foralli = 1,...,d; (ii) each
Weyr block W4 (\;),i = 1,...,d (3.4.2.1) consists of a single block, which
is a scalar matrix; (iii) the Weyr canonical form of A is the same matrix as its
Jordan canonical form. (b) If wy(A4,\;) = 0 for some i, why is wi (A, \;)
equal to the algebraic multiplicity of A; (it is a/ways equal to the geometric
multiplicity)? (c) If wa(A, ;) = 0 forall ¢ = 1,...,d, why must A be
diagonalizable?

Exercise. Let A1, ..., \g be the distinct eigenvalues of A € M,,. Explain why:
For each i = 1,...,d there are at most p Jordan blocks of A with eigenvalue
A; if and only if wq(A, \;) < p foreachi = 1,...,d, which is equivalent to
requiring that every diagonal block of every Weyr block W4 ()\;) (3.4.2.1) is at
most p-by-p.

In (3.2.4) we investigated the set of matrices that commute with a single
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given nonderogatory matrix. The key to understanding the structure of this set
is the following observation: a matrix A commutes with a single Jordan block
if and only if A is an upper triangular Toeplitz matrix (3.2.4.3). Thus, a matrix
commutes with a nonderogatory Jordan matrix J if and only if it is a direct
sum (conformal to J) of upper triangular Toeplitz matrices; in particular, it is
upper triangular. The Jordan and Weyr canonical forms of a nonderogatory
matrix A are identical; they are not the same if A is derogatory, and there is
an important difference in how the matrices that commute with them can be
described.

Exercise. Let J = Jao(\) @ Jo()\). Show that: (a) Wy = [ e T2 ]; (b)

matrix commutes with .J if and only if it has the form [ g g ] in which each
of B,C, D, E € Ms is upper triangular Toeplitz; (c) a matrix commutes with
W if and only if it has the block upper triangular form [ g g } , in which

B,C € M.

A matrix that commutes with a derogatory Jordan matrix need not be block
upper triangular. However, the preceding exercise suggests that the situation
might be different for a derogatory Weyr block. The following lemma identi-
fies the feature of a Weyr block that forces any matrix that commutes with it to
have a block upper triangular structure.
3.4.2.4 Lemma. Let A € C and positive integers ny > ng > -+ > ng > 1 be
given. Consider the upper triangular and identically partitioned matrices

My, Fia *
M,
F=I[F;lf_ = 2 e M,
Fr_1k
Ay,
and
M, Fly *
A ’
k na
F = [Filj]i,jzl = ) € M,
Fy_1k
A,

Assume that all of the superdiagonal blocks F; ; ,, have full column rank. If
A € M, and AF = F'A, then A is block upper triangular conformal to F' and
F’. If, in addition, A is normal, then A is block diagonal conformal to F' and
F'.
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Proof: Partition A = [A”]f€ j—1 conformally to /" and F’. Our strategy is
to inspect corresponding blocks of the identity AF = F’A in a particular
order. In block position £ — 1,1 we have AAy_1 1 = AAj_11 + F,Q_LkAkl,
so Fy 4 xAg1 = 0 and hence Ay = 0 since F,_, ,; has full column rank. In
block position k —2, 1 wehave AAy_21 = AAg_21+F; 5 1 Ag—1,1 (since
Apr = 0), 50 Fy_ 5 Ak—11 = 0and Ay_; 1 = 0. Proceeding upward in
the first block column of A and using at each step the fact that the lower blocks
in that block column have been shown to be zero blocks, we find that A;; = 0
foreachi =k, k —1,...,2. Now inspect block position k£ — 1,2 and proceed
upward in the same fashion to show that A;, = 0 foreachi =k, k—1,...,3.
Continuing this process left to right and bottom to top, we find that A is block
upper triangular conformal to F' and F”. If A is normal and block triangular,
(2.5.2) ensures that it is block diagonal. |

3.4.2.5 Corollary. Let A € M, be given, let A1, ..., Ay be its distinct eigen-
values in any prescribed order, let wi (A, A;),k = 1,2,. .., be the Weyr char-
acteristic of A associated with the eigenvalue A;, 7 = 1,...,d, and let W4 (\;)
be the Weyr block (3.4.2.1) for j = 1,2,...,d. Let S € M,, be nonsingular
and such that A = S(W4 (A1) @ -+ & Wa(\g))S™L. Suppose that B € M,,
and AB = BA. Then (1) S~'BS = B g ... @ B® is block diagonal con-
formal to W4 (A1) @ --- @ Wa(\q), and (2) each matrix B() is block upper
triangular conformal to the partition (3.4.2.1) of the Weyr block W4 (\s).

Proof: The assertion (1) follows from the basic result (2.4.4.2); the assertion
(2) follows from the preceding lemma. U

Any matrix that commutes with a Weyr matrix is block upper triangular, but
we can say a little more. Consider once again the Jordan matrix J in (3.1.16a),
whose Weyr canonical form W; = W;(0) is (3.4.2.2). In order to expose
certain identities among the blocks of a (necessarily block upper triangular)
matrix that commutes with W;, we impose a finer partition on W ;. Let my =
wg_1 —wg, k =1, 2,3, so each my, is the number of Jordan blocks of size k in
J:ms =2, mg =3,and m; = 1. We have w; = m3 + mg +mq = 6, wy =
ms+meo = 5, and wz = mg = 2. Now re-partition W (3.4.2.2) with diagonal
block sizes 2, 3, 1; 2, 3; 2—this is known as the standard partition: the coarsest
partition of a Weyr block such that every diagonal block is a scalar matrix
(square) and every off-diagonal block is either an identity matrix (square) or
a zero matrix (not necessarily square). In the standard partition, W has the
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form

0 0 0 I, 0 O
03 0 0 I3 O
0

00 0 O
— 4.2,
W; 0, 0 I 3 6)
03 O
02

Although the diagonal blocks in a Weyr block (3.4.2.1) are arranged in nonin-
creasing order of size, after imposing the standard partition the new, smaller,
diagonal blocks need not occur in nonincreasing order of size. A computation
reveals that NV commutes with W if and only if it has the following block
structure, conformal to that of (3.4.2.6):

[ B C %« D % %

F %« E % %

B G 0 % %
N = B C D (3.4.2.7)

F E

B

in which there are no constraints on the entries of the % blocks. It is easier to
see how the equalities among the blocks of (3.4.2.7) are structured if we col-
lapse its standard partition to the coarser partition of (3.4.2.2): N = [Nu}f =1
with Ny; € Mw1 = Mg, Nys € ]\471,2 = Ms, and N33 € ng = Ms>. Then

D B C
N33 = [B], N23:[E]’ N22=[0 F]’
D B C %
Ny = E % |, Nu=|0 F %
0 % 0 0 %
that is,
N N- N-
N22=[ 5’3 :}, N11_|: 022 :], N12—[ 023 :}
The pattern
Ni; %
Nii1jo1= [ — } (3.42.8)

permits us to determine all the equalities among the blocks in the standard
partition (including the positions of the off-diagonal zero block(s)) starting
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with the blocks in the last block column and working backwards up their block
diagonals.

One final structural simplification of (3.4.2.7) is available to us. Let Us, A3 €l
M., Us, Ag € Mp,,,and Uy, Ay € M,,, be unitary and upper triangular ma-
trices (2.3.1) such that B = UsAsUs, F = UsAxUs, and G = U1 AU (the
last factorization is trivial in this case). Let

U=UsdpUs U ®U30U; ®Us

Then
[A; C' % D % % |
Ay % E H &
PR B A 0 % K
N':=U*NU = A, O D (3.42.9)
Ay E
L A3 -

is upper triangular, in which ¢ = U;CU,, D' = U DUj, and E' = U; EUs.
The equalities among the blocks of N’ on and above the block diagonal are
the same as those of N. Moreover, W is unchanged after a similarity via U:
UW, ;U =W;.

We can draw a remarkable conclusion from the preceding example. Suppose
that: A € M3 has the Jordan canonical form (3.1.16a); F = {4, By, B, ...}
is a commuting family; and S € M3 is nonsingular and S~1 AS = W is the
Weyr canonical form (3.4.2.11). Then S™'FS = {W4,S71B1S,571B,S, .. . }}
is a commuting family. Since each matrix S~!'B;S commutes with W, it
has the block upper triangular form (3.4.2.7) in the standard partition. Thus,
for each j = 1,...,6 the diagonal blocks in position j, j of all the matrices
S~1B;S constitute a commuting family, which can be upper triangularized by
a single unitary matrix U; (2.3.3). For each 7 = 1,2, . .. the diagonal blocks of
S~1B;S in positions (1,1), (4,4), and (6, 6) are constrained to be the same,
so we may (and do) insist that U; = Uy = Ug. For the same reason, we insist
that Uy = Us. Let U = Uy @ - - ® Ug. Then each U*(S~1B;S)U is upper tri-
angular and has the form (3.4.2.9), and U*S~1ASU = U*W,U = W 4. The
conclusion is that there is a simultaneous similarity of the commuting family
{A,B1,Bs,...} (viaT = SU, that is, F — T~ 1FT) that reduces A to Weyr
canonical form and reduces every B; to the upper triangular form (3.4.2.9).

All the essential features of the general case are captured in the preceding
example, and by following its development one can prove the following theo-
rem.
3.4.2.10 Theorem. Let Ay, ..., \; be the distinct eigenvalues of a given A €
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M, in any prescribed order, let their respective indices be ¢, . . ., g4, and let
their respective algebraic multiplicities be p1,...,pq. Foreachi = 1,...,d,
let wq (A4, N;), ..., wg, (A4, A;) be the Weyr characteristic of A associated with
A; and let W4 (\;) be the Weyr block (3.4.2.1) of A associated with A;. Let

Wa = WA()\1) D---D WA(/\d) (3.4.2.11)

be the Weyr canonical form of A, and let A = SW 45~ !. Then
(1) Suppose that B € M,, commutes with A. Then S~'BS = BD @ ... @
B is block diagonal conformal to W,4. For each ¢ = 1,...,d, partition
B® = [BY)%._| € M,,, in which each B\ € M, (a5 = 1,....q.
In this partition, B(*) is block upper triangular conformal to W (),) and its
blocks along the k" block superdiagonal are related by the identities
(0) _ .

¢ B, . % kE=0,1,...,q — 1;

B(_)k_17j_1 = J—k.j 1 ,

J 0 * jZQbQZ_la"'vk—i_l

(3.4.2.12)

(2) Let F = {4, Ay, Ay,...} C M, be a commuting family. There is a
nonsingular T' € M,, such that T-1FT = {W, T Y AT, T~ AT, ...} is
an upper triangular family. Each matrix T7~' A, T is block diagonal conformal
to (3.4.2.11). If the diagonal block of T—1 A;T corresponding to W4 ()\¢) is
partitioned with diagonal block sizes w1 (A, Ap), w2 (A4, A¢), ..., wq, (4, Ae),
then its blocks along its k%" block superdiagonal are related by identities of the
form (3.4.2.12).

3.4.3 The unitary Weyr form Theorem 3.4.2.3 and the Q) R factorization im-
ply a refinement of Schur’s unitary triangularization theorem (2.3.1) that incor-
porates the block structure of the Weyr canonical form.

3.4.3.1 Theorem. Let \q,..., Ay be the distinct eigenvalues of a given A €
M, in any prescribed order, let 1, . . ., g4 be their respective indices, and let
q=q1+ -+ qq. Then A is unitarily similar to an upper triangular matrix of
the form

ﬂlfnl Fro Fi3 T Flp
lizfnz Fy3 tee sz
F= psln, - : (3.4.3.2)
. prl,p
'U'PI”P

in which (a) g1y = -+ = py, = Mg 41 = 0 = Lgipge = A2i-5
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Hp—ge+1 = == = p, = Ag; (b) For each j = 1,...,d the g; integers
iy« Niyq;—1 for which p; = -+ = Mitq,—1 = A; are the Weyr character-
istic of \; as an eigenvalue of A, thatis, n; = w1 (A, \j) > -+ > ny44,1 =
wy; (A, Aj); (€) if p; = p;y then ng > nyyq, Fijpn € M, is upper
triangular, and its diagonal entries are real and positive.

IfAe M,(R)andif \1,...,Aq € R, then A is real orthogonally similar to
a real matrix F' of the form (3.4.3.2) that satisfies conditions (a), (b), and (c).

The matrix F in (3.4.3.2) is determined by A up to the following equiva-
lence: If A is unitarily similar to a matrix F’ of the form (3.4.3.2) that sat-
isfies the conditions (a), (b), and (c), then there is a block diagonal unitary
matrix U = Uy & - -- & U, conformal to F such that F' = UFU*, that is,
FZ/j = Ui*FijUjai S j, Z,] = 1, ey D

iyThi41

Proof: Let S € M,, be nonsingular and such that
A=SW,S8™ ! = SWah)® - @ WA(Ad))571

Let S = QR be a QR factorization (2.1.14), so @ is unitary, R is upper tri-
angular with positive diagonal entries, and A = Q(RW4R~1)Q* is unitarily
similar to the upper triangular matrix RW4R~'. Partition R = [Rij};{ =1
conformally to W4 and compute

RiiW (A, M) Ry} *
RW, R = :
RaaW (A, \a) Ry,

It suffices to consider only the diagonal blocks, that is, matrices of the form

TW (A, \)T~'. The matrix T is upper triangular with positive diagonal en-
tries; we partition T’ = [T};]¢ ;_; and T~ = [T]] | conformally to W (A, A).J]
whose diagonal block sizes are w; > --- > wg > 1. The diagonal blocks of
TW (A, NT " are Ty M, T% = M, since T% = T;;' (0.9.10); the super-
diagonal blocks are Tj;G; ;1 TP 1 + N(Ty, THHY + T,y T =
T1;Gi i1 TP 1L (the term in parentheses is the (4,7 + 1) block entry of
TT-' = I). If we partition T); = { ¢ * } with C € M, (C is upper
triangular with positive diagonal entries), then

i1, C K || L, _ oT L
i+1,24+1 w; 1 _ it1,i
TGy THHH = { 0 D ] [ 0“ }THMH - { Bl +1 ]

is upper triangular and has positive diagonal entries, as asserted.
If A is real and has real eigenvalues, (2.3.1), (3.4.2.3), and (2.1.14) ensure
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that the reductions in the preceding argument (as well as the () R factorization)
can be achieved with real matrices.

Finally, suppose that Vi,V € M, are unitary, A = Vi FV; = VoF' V5,
and both F' and F” satisfy the conditions (a), (b), and (c). Then (V5'V4)F =
F (V5V1), so (3.4.2.4) ensures that ViV = Uy & - - - @ U, is block diagonal
conformal with F' and F”, thatis, Vi = Vo(U1 & --- @ Up) and F/ = UFU*.

O

The following corollary illustrates how (3.4.3.1) can be used.
3.4.3.3 Corollary. Let A € M, be given and suppose that A% = A. Let

01> >0,>1>0,01> >0, >0=0,11=""

be the singular values of A, so r = rank A and ¢ is the number of singular
values of A that are greater than 1. Then A is unitarily similar to

1 (o7 -1)Y2 1 (02112
R I, .
0 0 R 0 0 ®Lr—g ®Onr—g
Proof: The minimal polynomial of A is g4(t) = t(t — 1), so A is diag-
onalizable; its distinct eigenvalues are Ay = 1 and Ao = O0; their respec-
tive indices are g1 = g2 = 1; and their respective Weyr characteristics are

wy1(A,1) = r = tr A and w1(A4,0) = n — r. Theorem 3.4.3.1 ensures that

[ Id' 0F172 } and that Fyo is determined up to

A is unitarily similar to F' =
unitary equivalence. Let h = rank Fis and let F1o = VW™ be a singular
value decomposition: V' € M, and W € M,,_, are unitary, and ¥ € M, ,_,
is diagonal with diagonal entries s > -+ > s;, > 0 = sp41 = ---. Then F'
is unitarily similar (via V & W) to [ %‘ Oi N } , which is permutation similar
to
C = { é 801 ] D@ [ (1) S(f } &L _p &0,

The singular values of C' (and hence also of A) are (s?+1)1/2, ... (s? +1)1/2
together with » — h ones and n — r — h zeroes. It follows that h = g and
si= (0?2 -DYV2i=1,...,9. d

Exercise. Provide details for the preceding proof. Explain why two involutory
matrices of the same size are unitarily similar if and only if they are unitarily
equivalent, that is, if and only if they have the same singular values.

Problems

1. Suppose that A € M,,(R) and A2 = —1I,,. Show that n must be even, and
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that there is a nonsingular S € M, (R) such that

0 -I
—IA — n/2
5 o I: In/2 0

Hint: What is the real Jordan canonical form of A?

In the following three problems, for a given A € M,,, C(A) = {B € M, :
AB = BA} denotes the centralizer of A: the set of matrices that commute
with A.

2. Explain why C(A) is an algebra.

3. Let J € M3 be the matrix in (3.1.16a). (a) Use (3.4.2.7) to show that
dim C(J) = 65. (b) Show that wy(J,0)% + w2 (J,0)? + w3(J,0)? = 65.

4. Let the distinct eigenvalues of A € M, be A, ..., Ay with respective in-
dices q1,...,qq4. (a) Show that dimC(A4) = 2?21 S8 wi (A, \;)?. Hint:
Use (3.4.2.10) and the identities (3.4.2.12). (b) Show that dim C(A) > n, with
equality if and only if A is nonderogatory. Hint: w;(A,\;)? > w;(A,N\j).

(c) Let the Segre characteristic of each eigenvalue A; of A be s;(A, \;),7 =
1,...,wi(A, ;). Itisknown that dim C(A) = Y0_, SN (2i-1)s,(A, )]
see Problem 9 in Section 4.4 of [HJ]. Explain why

d wi(AN\))

wi( AN =" > (2i— 1)si(A,N)
j=1 =1

j=1 i=1

Verify this identity for the matrix in (3.1.16a).

5. Let A € M, be given and suppose that A2 = 0, that is, A is self-
annihilating. Letr = rank A and let oy > --- > 0, be the positive singular
values of A. Show that A is unitarily similar to

0 oty igl® o g
0 0 0 0 near

Explain why two self-annihilating matrices of the same size are unitarily simi-
lar if and only if they have the same singular values, that is, if and only if they
are unitarily equivalent. Hint: Use (3.4.3.1) as in (3.4.3.3); the unitary Weyr
form of A is again block 2-by-2, but now F} has full column rank.

6. Show that A € M>(R) is similar to [ jl } ] ifandonly if A = 1:};’ a sz/ﬁ ]I
for some «, 5 € R with 5 # 0.
Further Readings. Eduard Weyr announced his eponymous characteristic and

canonical form in E. Weyr, Répartition des matrices en espéces et formation
de toutes les especes, C. R. Acad. Sci. Paris 100 (1885) 966-969. For an
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exposition of the Weyr characteristic and canonical form see H. Shapiro, The
Weyr characteristic, Amer. Math. Monthly 196 (1999) 919-929; for technical
details (in particular, for a proof of (3.4.2.10)) see V. Sergeichuk, Canonical
matrices for linear matrix problems, Linear Algebra Appl. 317 (2000) 53-102.

3.5 Triangular factorizations

If alinear system Ax = b has a nonsingular triangular (0.9.3) coefficient matrix
A € M, computation of the unique solution x is remarkably easy. If, for ex-
ample, A = [a,;] is upper triangular and nonsingular, then all a;; # 0 and one
can employ back substitution: ayy,x, = b, determines ,; ap_1n-1Zn—1 +
@p—1nTy = by_1 then determines x,,_; since x,, is known and a,,—1 ,—1 7 0;
proceeding in the same fashion upward through successive rows of A one de-
termines T,,_o, Tp_3,...,T2, T1.

Exercise. Describe forward substitution as a solution technique for Az = b if
A € M, is nonsingular and lower triangular.

If A € M, is not triangular, one can still use forward and back substitution
to solve Az = b provided that A is nonsingular and can be factored as A =
LU, in which L is lower triangular and U is upper triangular: First use forward
substitution to solve Ly = b, and then use back substitution to solve Uz = y.

3.5.1 Definition. Let A € M,,. A presentation A = LU, in which L. € M,, is
lower triangular and U € M, is upper triangular, is called an LU factorization
of A.

3.5.2 Lemma. Suppose that A € M, and that A = LU is an LU factoriza-
tion. For any block 2-by-2 partition

A A ] { Ly 0 } { Un Ui }
A= . L= . U=
[ Ao Ao Loy Los 0 U

with A1, L11,Uq1 € My, k < n, we have

A= Li1Un
Ay = LUy, Ay = LyUpy
Ao = Lo1Ura + LaaUss

Consequently, each leading principal submatrix of A has an LU factorization
in which the factors are the corresponding leading principal submatrices of L
and U.

Exercise. Verify (3.5.2) by carrying out the partitioned multiplication.
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3.5.3 Theorem. Let A € M, be given. Then:

(a) A has an LU factorization in which L is nonsingular if and only if A has
the row inclusion property: foreachi = 1,...,n — 1, A[{i + 1;1,...,i}] is a
linear combination of the rows of A[{1, ..., }].

(b) A has an LU factorization in which U is nonsingular if and only if A has
the column inclusion property: foreach j = 1,...,n—1, A[{1,...,5;j + 1}] is
a linear combination of the columns of A[{1, ..., j}].

Proof: If A = LU, then A[{1,...,i + 1}] = L[{1,...,¢ + 1}JU[{1,...,i +
1}]. Thus, to verify the necessity of the row inclusion property, it suffices to
take ¢ = kK = n — 1 in the partitioned presentation given in (3.5.2). Since
L is nonsingular and triangular, L1 is also nonsingular and we have Ay, =
LoyUry = Loy L3}  L11Ury = (L1 Ly7') Aq1, which verifies the row inclusion
property.

Conversely, if A has the row inclusion property we may construct induc-
tively an LU factorization with nonsingular L as follows (the cases n = 1,2
are easily verified): Suppose that Ay; = L1,U11, L1 is nonsingular, and the
row vector A, is a linear combination of the rows of A;;. Then there is a vec-
tor i such that Ay = yT Ay = y7 L1,U;1, and we may take Ujo = LilAlg,
Lo1 = yTL11, Las = 1, and Usy = Agy — Lo Uy to obtain an LU factoriza-
tion of A in which L is nonsingular.

The assertions about the column inclusion property follow from considering
an LU factorization of A”'. |

Exercise. Consider the matrix .J,, € M, all of whose entries are 1. Find an
LU factorization of J,, in which L is nonsingular. With this factorization in
hand, J,, = Jg; = UTLT is an LU factorization of .J,, in which the upper
triangular factor is nonsingular.

Exercise. Show that the row inclusion property is equivalent to the following
formally-stronger property: For each i = 1,...,n — 1, every row of A[{i +
1,...,n};{1,...,i}] is a linear combination of the rows of A[{1, ...,7}]. What
is the corresponding statement for column inclusion?

Exercise. Characterize the square matrices that have LU factorizations in whichli
L may be taken to be nonsingular, or in which U may be taken to be nonsin-
gular, but not necessarily both.

If A€ M,,rank A = k,and det A[{1,...,5}] #0,j = 1,..., k, then A has
both the row inclusion and column inclusion properties. The following result
follows from (3.5.3).
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3.5.4 Corollary. Suppose that A € M,, and rank A = k. If A[{1,...,5}]is
nonsingular forall j = 1,..., k, then A has an LU factorization. Furthermore,
either factor may be chosen to be nonsingular; both L and U are nonsingular
if and only if k = n, that is, if and only if A and all of its leading principal
submatrices are nonsingular.

3.5.5 Example. Not every matrix has an LU factorization. If A = [ ? é }

could be written as A = LU = { a0 } { “or e }, then l11u11 = 0

la1 la2 U22
implies that one of L or U is singular; but LU = A is nonsingular.

Exercise. Explain why a nonsingular matrix that has a singular leading princi-
pal submatrix cannot have an LU factorization.

Exercise. Verify that
0 00 0 0 0 0 01
A=({0 0 1 (=1 0 0 010
010 01 1 0 0 0

has an LU factorization even though A has neither the row nor column inclu-
sion property. However, A is a principal submatrix of a 4-by-4 matrix

n A e 0 A N 0 1 N 0 1
A=[0 s ]=[a %] A=V o] An=]5 o]
that does not have an LU factorization. Verify this by considering the block
factorization in (3.5.2) with kK = 2: A5 = L1,U;5 implies that L1 is nonsin-

gular, and hence 0 = L1, Uy implies that U;; = 0, which is inconsistent with
Lo1Uyp = Ay #0.

Exercise. Consider A = { i (1) ] { 8 Qia } and explain why an LU fac-

torization need not be unique even if the diagonal entries of L are required to
be 1.

It is now clear that an LU factorization of a given matrix need not be unique,
and it may or may not exist. Much of the trouble arises from singularity, either
of A or of its leading principal submatrices. Using the tools of (3.5.2) and
(3.5.3), however, we can give a full description in the nonsingular case, and we
can impose a normalization that makes the factorization unique.

3.5.6 Corollary. Suppose that A € M,, is nonsingular. Then A has an LU
factorization A = LU if and only if A[{1,...,7}] is nonsingular for all j =
1,...,n. Moreover, A may be factored as A = L'DU’ in which L' € M,, is
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lower triangular and U’ € M,, is upper triangular, every diagonal entry of L’
and U’ is equal to 1, and D is a nonsingular diagonal matrix determined by

det D[{1,...,5}]=det A[{1,...,5}], j=1,....n
The factors L', U’, and D are uniquely determined by A.

Exercise. Use (3.5.2), (3.5.3), and prior exercises to provide details for a proof
of the preceding corollary.

Exercise. If A € M, has an LU factorization with L = [(;;] and U = [u;],
show that £11u11 = det[A{l}] and ¢;;u;; det A[{l, ey i—l}] = det A[{l, ey Z}],I
1=2,..,n.

Returning to the solution of the linear system Ax = b, suppose that A € M,,
cannot be factored as LU, but can be factored as PLU, in which P € M,, is a
permutation matrix, and L and U are lower and upper triangular, respectively.
This amounts to a reordering of the equations in the linear system prior to
factorization. In this event, solution of Ax = b is still quite simple via Ly =
PThand Uz = y. It is worth knowing that any nonsingular A € M,, may
be so factored and that L may be taken to be nonsingular. The solutions of
Ax = b are the same as those of Uz = L~ PTh.

3.5.7 Lemma. Let A € M) be nonsingular. Then there is a permutation ma-
trix P € My, such that det(PTA)[{1,...,5}] #0,5=1,...,k.

Proof: The proof is by induction on k. If & = 1 or 2, the result is clear by
inspection. Suppose that it is valid up to and including k£ — 1. Consider a non-
singular A € M}, and delete its last column. The remaining k£ — 1 columns are
linearly independent and hence they contain k — 1 linearly independent rows.
Permute these rows to the first £k — 1 positions and apply the induction hypoth-
esis to the nonsingular upper (k — 1)-by-(k — 1) submatrix. This determines a
desired overall permutation P, and PT A is nonsingular. U

3.5.8 Theorem. For each A € M, there is a permutation matrix P € M, a
nonsingular lower triangular L € M,,, and an upper triangular U € M,, such
that A = PLU.

Proof: 1f we show that there is a permutation matrix () such that QA has the
row inclusion property, then (3.5.3) ensures that QA = LU with L nonsingu-
lar, so A = PLU for P = Q7.

If A is nonsingular, the desired permutation is guaranteed by (3.5.7). If
rank A = k < n, first permute the rows of A so that the first £ are linearly
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independent. It follows that A[{¢ + 1};{1,...,4}] is a linear combination of
the rows of A[{1,...,i}],s =k, ...,n—1. If A[{1, ..., k}] is nonsingular, apply
(3.5.7) again to further permute the rows so that A[{1,...,k}], and thus A,
has the row inclusion property. If rank A[{1,...,k}] = ¢ < k, treat it in the
same way that we have just treated A, and obtain row inclusion for the indices
i = {,...,n — 1. Continue in this manner until either the upper left block is
0, in which case we have row inclusion for all indices, or it is nonsingular, in
which case one further permutation completes the argument. O

Exercise. Show that each A € M,, may be written A = LU(Q, in which L is
lower triangular, U is upper triangular and nonsingular, and @ is a permutation
matrix.

Problems

1. The theory developed in this section deals with a factorization A = LU,
with L lower triangular and U upper triangular. Discuss a parallel theory of
A = UL factorization, noting that the factors may be different.

2. Describe how Az = b may be solved if A is presented as A = QR, in
which @ is unitary and R is upper triangular (2.1.14).

3. Show that A € M,, may be written as A = LPyU, in which L € M,, is
nonsingular and lower triangular, U € M,, is nonsingular and upper triangular,
and P, is a sub-permutation matrix [a permutation matrix with as many of the
1’s replaced by 0’s as the rank of A is less than n]. Hint: Use elementary row
and column operations.

4. If the leading principal minors of A € M, are all nonzero, describe how
an LU factorization of A may be obtained by using type 3 elementary row
operations to zero out entries below the diagonal.

5. (Lanczos tridiagonalization algorithm.) Let A € M, and x € C" be
given. Define X = [z Az A%z ... A" 'z]. The columns of X are said
to form a Krylov sequence. Assume that X is nonsingular. (a) Show that
X 'AX is a companion matrix (3.3.12) for the characteristic polynomial of
A. (b) If R € M, is any given nonsingular upper triangular matrix and S =
XR, show that S1AS is in upper Hessenberg form. (c) Let y € C™ and
define Y = [y A*y (A*)%y ... (A*)"~ly]. Suppose that Y is nonsingular
and that Y* X can be written as LDU, in which L is lower triangular and
U is upper triangular and nonsingular, and D is diagonal and nonsingular.
Show that there exist nonsingular upper triangular matrices R and 7" such that
(XR)~! = T*Y* and such that T*Y*AX R is tridiagonal and similar to A.
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(d) If A € M, is Hermitian, use these ideas to describe an algorithm that
produces a tridiagonal Hermitian matrix that is similar to A.

6. Explain why the n, n entry of a given A € M, has no influence on whether
it has an LU factorization, or has one with L nonsingular, or has one with U
nonsingular.

7. Show that C,, = [1/max{i,j}] € M, (R) has an LU decomposition of
the form C,, = LnLZ, in which the entries of the lower triangular matrix L,,

are {;; = 1/ max{i,j} fori > j. Conclude that det L,, = (1/n!)>.

]

8. Show that the condition “A[{1,...,j}] is nonsingular forall j = 1,...,n’
in (3.5.6) may be replaced with the condition “A[{j, ..., n}] is nonsingular for
allj=1,...,n".

9. Let A € M, (R) be the symmetric tridiagonal matrix (0.9.10) with all
main diagonal entries equal to 42 and all entries in the first superdiagonal and
subdiagonal equal to —1. Consider

1 2 -1

n -1
— n+l
n—1 1 o

n

Show that A = LU and det A = n + 1. The ecigenvalues of A are \;, =
4 sin? %, k =1,...,n (see Problem 17 in (1.4)). Notice that \;(A4) — 0
and A\, (A) — 4asn — oo, anddet A = Ay -+ A, — 00.

10. Suppose that A € M,, is symmetric and that all its leading principal
submatrices are nonsingular. Show that there is a nonsingular lower triangular
L such that A = LL7T, that is, A has an LU factorization in which U = LT,

Further Reading. Problem 5 is adapted from [Ste], where additional informa-
tion about the numerical applications of LU factorizations may be found.
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