
From SIAM News, Volume 42, Number 4, May 2009

Blockbuster Algorithm
By Barry A. Cipra

Nineteen sixty-five was an extraordinary year for three-letter acronyms in numerical analysis. James Cooley and John Tukey pub-
lished what would come to be called the FFT. That same year, Gene Golub and William Kahan introduced an algorithm for computing
something known as the SVD. Decades later, both algorithms are mainstays of large-scale scientific—and commercial—computation.
Indeed, without them, computers might only now be finishing calculations started when Lyndon Johnson was launching the Great
Society.
The FFT, of course, is the famously versatile fast Fourier transform, beloved of physicists, computational engineers, and signal processors of

all stripes. Its name describes what it does: It computes Fourier transforms (more precisely, discrete Fourier transforms), and it does so quick-
ly. (To be sure, the FFT was later discovered to be a re-discovery of an algorithm first found by Gauss.) Roughly speaking, it replaced a straight-
forward but lethargic O(N2) algorithm with a subtle but sleek O(N log N) approach, thereby saving orders of magnitude in computational effort
with increasing N.
The SVD is similarly beloved—and even more versatile. SVD stands for singular value decomposition and is also often taken to refer to the algo-

rithm outlined by Golub and Kahan. In essence, the SVD is an all-purpose, blue-collar, nuts-and-bolts method for revealing information trapped inside
large matrices of arbitrary size. As such, it is the key step in solving a vast array of problems in linear algebra. Dianne O’Leary, an SVD expert at the
University of Maryland, calls it “the Swiss Army knife of matrix computation.”

Cigars and Pancakes
Linear algebra fairly bristles with matrix decompositions, also known as factorizations. Much like factorizations of composite numbers into

primes, or of polynomials into linear and quadratic terms, matrix decompositions express general matrices as products of matrices that are some-
how “atomic.” The higher dimensionality of matrix theory, however, makes it possible to do this in many ways: There are LU decompositions,
QR decompositions, eigendecompositions, Cholesky, Schur, and Jordan decompositions, and endless others, including the SVD. Each has its
own requirements and adherents. Some are highly specialized—to be eligible for, say, Cholesky decomposition, a matrix must be square, sym-
metric, and positive definite. Others, including the SVD, are far more general.
The singular value decomposition takes any m × n matrix A and rewrites it as the product of an m × m unitary matrix U, an

n × n unitary matrix V, and an m × n diagonal matrix S:

A = USV*.

Most important, the entries down the diagonal of S are non-negative real numbers, traditionally arranged in decreasing order. These are the so-
called singular values.
Geometrically, the singular value decomposition describes the unit sphere in Rn taking on an ellipsoidal appearance in Rm under the trans-

formation A. A single large singular value and a slew of smaller ones give the ellipsoid a cigar-like look, two comparable large values and you’ve
got a pancake, and so forth. The unitary matrix U essentially identifies the orientation of the ellipsoid in Rm, while V* picks out the axes in Rn

along which the singular-value dilations and contractions of the sphere take place.
The geometric interpretation makes it more or less obvious that the singular value decomposition is well defined, with a unique diagonal

matrix S. Singular values, in general, are not eigenvalues. For one thing, eigenvalues don’t exist for non-square matrices. But even when A is
square, the connection is tenuous at best; only when A is Hermitian and positive semi-definite are the singular values and eigenvalues the same.
The squares of the singular values, on the other hand, are eigenvalues—not of A itself, but of A*A. Indeed, statisticians have long made use

of this for singular value decomposition by another name: principal component analysis. In PCA, each row of the matrix A corresponds to data
from a single trial in an experiment, such as the age, weight, height, IQ, testosterone level, and batting average of a bunch of baseball players.
More precisely, the entries in a column are the departures from the average for that column (so that each column of A sums to 0). The aim is to
see what correlates most strongly with what. The columns of the n × n matrix V are the “principal components.” The SVD–PCA connection
stems from the straightforward linear algebra calculation

A*A = (VS*U*)(USV*) = VS2V*

(S being a diagonal matrix with real entries, and U*U = I).
The number of nonzero singular values reveals the underlying dimensionality of the data set, and their relative sizes hint at the spread of the

data cloud in the directions of the various principal components. In particular, the principal component corresponding to the largest singular
value gives the direction for a linear regression.
Using A*A to get at the principal components makes tremendous sense, especially when n is fairly small. But by squaring the singular val-

ues, the eigen-approach exaggerates the ratio of largest to smallest, to the point that important information can be lost in the numerical clutter: A
poorly designed principal component algorithm could mistake a pancake for a crepe.



The singular value decomposition is a more robust way to compute principal components. It also lends itself to a host of other applications,
ranging from finding the vector x in Rn that minimizes ||Ax – b|| for a given vector b in Rm to finding basis vectors for the range and null space
of A. “In many problems, once you’ve got the SVD, it makes the solution obvious,” O’Leary notes. “If you google SVD, you come up with mil-
lions of hits.” (More precisely, 6,100,000 on March 12, 2009. Some of those hits, however, are for a Russian sniper rifle, while others lead to
the SocietasVerbi Divini, or Society of the DivineWord. Specifying “singular value decomposition” takes the count down to 430,000—but miss-
es a lot of sites that don’t spell out the acronym.)

“Numerically Stable and Fairly Fast”
Until Golub and Kahan showed how, numerical analysts had no accurate way to compute SVDs. Numerical instability seemed unavoid-

able. MathWorks founder and SIAM past-president Cleve Moler, who received his PhD in 1965, recalls that when he was a grad student, “we
knew about the SVD, but only as a theoretical tool.”
The Golub–Kahan breakthrough, described as “a numerically stable and fairly fast method” for computing the singular value decomposition,

was published in 1965 in SIAM Journal on Numerical Analysis (Volume 2, Number 2, pages 205–224) under the title “Calculating the Singular
Values and Pseudo-Inverse of a Matrix.” The authors modestly pointed out in their abstract that the method “is complicated but does not suffer
from the computational difficulties which occasionally afflict some previously known methods.” The method has three key steps for computing
the singular values. The first produces an n × n bidiagonal matrix J with the same singular values as A. The second takes the 2n × 2n matrix

and converts it to symmetric tridiagonal form (with zeroes down the main diagonal and the bidiagonal entries of J alternating on the sub- and
super-diagonals). The eigenvalues of this matrix are the singular values of A and their negatives. The third step is simply to find the eigenval-
ues of this tridiagonal matrix—a step for which efficient algorithms were already known.
Overall, the algorithm that Golub and Kahan outlined runs on m × n matrices in O(mn2) time, with the convention m≥ n. The n2 may appear

worrisome, but it’s the linearity in m that’s crucial: In many applications m is a huge number, while n is merely large. The algorithm’s main
virtue, however, is accuracy. The classic A*A approach of PCA also runs in O(mn2) time, but the results are all too often worthless, or at least
suspect.

Coming Attractions
The Golub–Kahan algorithm, and a more fleshed-out version published in 1970 by Golub and Christian Reinsch, opened the floodgates for

applications of the SVD. It is a commonly invoked subroutine in, for example, MATLAB, where it is simply written as svd(A). There are, of
course, endless variants, specialized for different purposes.
One current application for which the SVD has, so far, been computational king of the hill is in a million-dollar challenge known as the Netflix

Competition. Netflix is the DVD rental behemoth based in Los Gatos, California. With more than 10 million subscribers (who could range from
a loner mathematician dropout living in a cabin in Montana to an extended family crammed into a one-bedroom apartment in the Bronx) pick-
ing from more than 100,000 titles, Netflix has a database to die for: Each subscriber is invited to rate movies that he or she or they have seen,
using a “star” system, from 1 star (terrible) to 5 stars (terrific).
Netflix uses this database primarily to make recommendations to its subscribers, calculating movies they are likely to enjoy. Just about all e-

tailers do much the same, sometimes to the annoyance of their customers. Amazon, of course, makes a profit every time you buy something it
recommends. For Netflix, the goal is customer satisfaction and loyalty, leading to subscription-plan upgrades and word-of-mouth advertis-
ing. (How often have you heard friends complain about the service they get from Netflix?) One other goal is to increase circulation of movies
in the “long tail” of filmdom: If Netflix can divert customers who would otherwise queue up for the latest releases, which also typically have
higher distribution fees, to little-watched cinematic gems, everyone wins.
The general subject of making recommendations based on observed or self-reported behavior goes under the rubric “collaborative filtering.”

The process can be thought of as looking for doppelgängers. Suppose, for example, that Netflix spotted in its database someone who has seen
many of the same movies you have and that within this overlap the two of you have exactly the same opinions. It’s reasonable to assume that
your tastes will coincide for other movies as well—if your counterpart gave 5 stars to, say, The Matrix, it’s likely that you’d enjoy it too. (An
anti-doppelgänger, who hates the movies you love, and vice versa, would be equally valuable.)
Such exact matches, of course, are rare to the point of being non-existent, except for people who have seen (or ranked) so few movies that

they might have multiple doppelgängers who disagree among themselves on other movies. A far more sensible approach is to look for correla-
tions in cinematic tastes—exactly the sort of thing the SVD is designed to do.
Netflix considers recommendations so vital that it has ponied up a million dollars in prize money for a 10% improvement in accuracy over

its own proprietary algorithm, Cinematch. The company has made more than 100 million ratings of nearly 18,000 movies by more than 480,000
(anonymized) subscribers publicly available as a “training set,” reserving another 3 million ratings as a test set (using digital signatures to vouch
for the integrity of the data, which will be revealed when the competition ends in 2011). Contestants are told which subscriber-movie ratings
they are to predict; the goal is to come as close as possible to the actual test-set values.
The 10% metric refers to a root mean squared error measurement. When Netflix ran Cinematch on the training set, its predictions for the test

set had an RMSE of 0.9525. This turned out to be a 9.6% improvement over one of the most naive approaches possible: Compute each movie’s
average rating over the training set and use those numbers across the board in the test set, which gives an RMSE of 1.0540. In effect, the mil-
lion-dollar challenge is to slightly more than double Cinematch’s edge over mindless averaging. The official target is an RMSE of 0.8572 on
the test set.



The Netflix Competition, announced in 2006,
has attracted thousands of entries. Teams have
come tantalizingly close to the target 10%, but so
far (as of early April 2009) double-digit improve-
ment has proved elusive. To maintain inter-
est, Netflix awards an annual “progress
prize”: $50,000 for specified incremental ad-
vances. The 2007 prize went to the three-member
team “BellKor”: Bob Bell and Chris Volinsky,
both of AT&T Labs, and Yehuda Koren, now at
Yahoo! Research in Israel. Last year, BellKor
joined forces with Andreas Töscher and Michael
Jahrer of Commendo Research in Austria, enter-
ing the competition as “BellKor in BigChaos,” to
win the 2008 progress prize. The current leader is
a two-member team from Montreal called Prag-
maticTheory, whose most recent entry weighed
in with an RMSE of 0.8596—which is to say, a
9.65% improvement over Cinematch.
The SVD is only one aspect of the various con-

testants’ algorithms—the progress prize papers
describe many other components that have gone
into the stew, from “Boltzmann machines” to k-
nearest-neighbor models, not to mention varia-
tions on the SVD itself—but it appears to be
indispensable. PragmaticTheory’s chart of its
progress, for example, shows the SVD to have
been responsible for an early quick improvement
(see Figure 1).
“The SVD method was the first ‘latent feature model’ that we implemented for the Netflix contest,” PragmaticTheory’s Martin Chabbert

says. (His fellow pragmatic theorist is Martin Piotte.) “Because it is pretty simple to understand and implement, and because its application to
this problem is very well documented, it is often the first (serious) step that people start out with. The SVD is also interesting because it has a
‘psychological’ or ‘human-level’ explanation that can be fun to explore. In the end though, the SVD is more of a building block that helps under-
stand some basic concepts before tackling (and inventing) more complex models and methods.”

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.

Figure 1. The PragmaticTheory team, which currently has the lead in the Netflix Competition
with a 9.65% improvement over Cinematch, has tracked its performance since entering the
race in 2008. As the graph shows, the singular value decomposition was a key element in get-
ting the team off to a fast start.


