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Introduction

Formally a mean of order n, or n-mean for short, on a set X
is a function

μ : Xn → X satisfying ∀x ∈ X,μ(x, x, . . . , x) = x.

It is frequently assumed in the definition of the mean that a
mean is invariant under any permutation of variables; we
call these symmetric means.
The mean μ : Xn → X is a topological mean if X is
Hausdorff and μ is continuous.

Typically a mean represents some type of averaging
operator.
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A Bit of History

The subject of means dates back into antiquity. The
Greeks, motivated by their interest in proportions, defined
up to eleven different means, the arithmetic, geometric,
harmonic, and golden being the best known.
In the twentieth century interest emerged in the theory of
topological symmetric means on topological spaces. This
work was pioneered by G. Aumann (1934), who showed
among other things that no sphere admits such a mean.
The problem of characterizing those spaces, particularly
metric continua, that admit the structure of a topological
mean has attracted considerable attention up to the present
day. See J. Charatonic’s web overview of both older and
recent work.
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Origins of Operator Means

Operator means are of more recent vintage, but have a
substantial literature that has grown out of foundational
papers, particularly that of Kubo and Ando (1980).
A key result is that the continuous, invariant (under
congruence transformations), monotone 2-means on the
positive operators on Hilbert space are given by

μ(A,B) = A1/2f(A−1/2BA−1/2)A1/2,

where f : R
+ → R

+ is a continuous, nondecreasing,
operator monotone function with f(1) = 1.
The theory has found a variety of applications, including the
establishment of important inequalities, some of which find
application in quantum mechanical calculations.
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The Challenge

The various successful applications of operator means has
motivated a search for extending them to means of higher
orders. However, finding a general method of extending
operator means of two variables to means of a higher
number of variables has proved elusive, and the question of
how to do this has remained an open problem.

Included in the problem are the subproblems of defining
precisely what one means by such an extension, what
properties it should have, and to what extent it is unique.
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Recent Progress

Similar inductive approaches to extending means to higher
orders have been carried out by Horwitz (2002) for the case
of means on the positive real numbers and by Ando, Li, and
Mathias (2004) for the case of the geometric mean on the
positive (semi)definite Hermitian matrices. This approach
has also been adopted and generalized beyond the case of
the matrix geometric mean by Petz and Temesi (2005),
although in the general setting they only obtain existence of
the higher order means for ordered tuples.
Bhatia and Holbrook (2006) have proposed an alternative
generalization for the geometric mean via a geometric
approach linked to work of E. Cartan.
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A General Approach Via Metric Spaces

Our purpose is to develop a method of extending means to
higher orders that appears to offer a viable general
approach. We show that the basic approach of Horwitz, of
Ando, Li and Mathias, and of Petz and Temesi can be
generalized to means on metric spaces and develop the
theory of extensions in this context.
The resulting theory is attractive for the generality of its
results and for the resulting uniqueness and preservation
properties of the extensions.
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The Barycentric Operator

Given a set X and a k-mean μ : Xk → X, the barycentric
operator β = βμ : Xk+1 → Xk+1 is defined by

β(x) :=
(
μ(π �=1x), . . . , μ(π �=k+1x)

)
,

where x = (x1, . . . , xk+1) ∈ Xk+1 and
π �=jx := (x1, . . . , xj−1, xj+1, . . . , xk+1) ∈ Xk.
For a topological k-mean, we say that the barycentric map
β is power convergent if for each x ∈ Xk+1, we have
limn βn(x) = (x∗, . . . , x∗) for some x∗ ∈ X.
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An Intuitive Example

As a motivating geometric example for the terminology
consider the 3-mean in R

3 that assigns to any three points
the centroid of the triangle for which they are the vertices,
i.e., the point where the three medians meet. If we take now
the four vertices of a 3-simplex or tetrahedron in R

3, the
barycentric operator applied to the 4-tuple consisting of the
four vertices replaces each vertex with the centroid
(barycenter) of the face opposite it, the face with vertices
the remaining three vertices. Thus one may envision the
tetrahedron with vertices the four centroids of the four faces
as the result. Repeating this process, one obtains a
shrinking family of tetrahedra whose intersection is the
barycenter of the original tetrahedron, represented by the
4-tuple with all entries equal to that point.
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Extending One’s Means

We define our first notion of an extension in terms of the
barycentric operator.
A mean ν : Xk+1 → X is a β-invariant extension of
μ : Xk → X if ν ◦ βμ = ν, i.e., ∀x = (x1, . . . , xk+1) ∈ Xk+1

ν(x) = ν
(
μ(π �=1x), . . . , μ(π �=k+1x)

)
. (1)

The notion of a β-invariant extension was introduced by
Horwitz, who called it type I invariance.
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An Existence and Uniqueness Result

Proposition. Assume that μ : Xk → X is a topological
k-mean and that the corresponding barycentric operator β

is power convergent. Define μ̃ : Xk+1 → X by μ̃(x) = x∗

where limn βn(x) = (x∗, . . . , x∗).

(i) μ̃ : Xk+1 → X is a (k + 1)-mean on X that is a
β-invariant extension of μ.

(ii) Any continuous mean on Xk+1 that is a β-invariant
extension of μ must equal μ̃.

(iii) If μ is symmetric, so is μ̃.
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Powerful Extensions

We seek a notion of mean extension that allows one both to
deduce readily that a large number of properties transfer
from a mean to its extension and also is applicable to a
wide variety of means. The preceding proposition provides
the ingredients for this definition.
A (k + 1)-mean ν is a β-extension of a topological k-mean μ

(or β-extends μ) if for each x ∈ Xk+1,
limn βn(x) = (ν(x), . . . , ν(x)). In this case we say that β
power converges to ν, written βn

μ → ν.

We note (using the previous proposition) that a β-extension
ν is a β-invariant extension, and hence any continuous
β-invariant extension of μ must equal ν.
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Tying Some Things Together

A. Horwitz and later D. Petz and R. Temesi consider means
on the positive reals and show that any continuous
symmetric 2-mean that is strict
(min(a, b) < μ(a, b) < max(a, b) for a �= b) and
order-preserving in each variable has a power convergent
barycentric map, and hence has a unique β-extension to a
3-mean. Petz and Temesi point out that the argument for
power convergence extends to higher order variables, and
thus one can inductively define β-extensions for all n > 2.
For the arithmetic, geometric, and harmonic means the
extensions yield the usual corresponding means of
n-variables. To check this, one has only to note that they
are continuous and are β-invariant extensions, then apply
the earlier uniqueness result.
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Preserving Convexity

Let μ be a topological mean on a metric space X. In a
direct fashion one may define (in terms of μ) convex sets,
local convexity, uniform local convexity, closed ball
convexity, etc. and directly show that if μ admits a
β-extension ν, then ν also inherits the corresponding
properties. One also concludes that ν is also a topological
mean, provided that (X,μ) is locally convex.
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Two Key Notions

(1) A k-mean μ on a metric space X is called nonexpansive
if it satisfies for all x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ Xk,

d(μ(x), μ(y)) ≤ max{d(xj , yj) : 1 ≤ j ≤ k},

i.e., μ has Lipschitz constant 1 wrt the sup metric on Xk.

(2) For 0 < ρ < 1, we say that μ is coordinatewise
ρ-contractive if for any x,y ∈ Xk that differ only in one
coordinate, say xj �= yj ,

d(μ(x), μ(y)) ≤ ρ d(xj , yj).
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The End That Determines Means

We come now to our principal tool for extending means.

Theorem. Let X be a complete metric space equipped with
a nonexpansive, coordinatewise ρ-contractive (0 < ρ < 1)

k-mean μ : Xk → X, k ≥ 2. Then there exists uniquely a
family of continuous means μn : Xn → X, one for every
n > k, such that each is a β-extension of the previous one.
Furthermore, each μn is nonexpansive and coordinatewise
ρ-contractive.
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Metric Convex Means

A general metric space may have none, one, or many
midpoints between two given points. (Recall that m is a
midpoint of a and b if d(m, a) = d(m, b) = (1/2)d(a, b).) We
consider the setting where possibly many midpoints may
exist, but there is a distinguished midpoint that appears in a
“convex” manner.

A symmetric mean μ : X ×X → X, written μ(x, y) = x#y,
on a complete metric space X is called a convex mean if it
satisfies the basic convexity condition

d(x#z, y#z) ≤
1

2
d(x, y) for all x, y, z ∈ X.

Note. For a convex mean, x#y is a midpoint for all x, y.
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Extension of Convex Means

Proposition. A convex mean inductively β-extends to a
symmetric, nonexpansive, coordinatewise (1/2)-contractive
n-mean for every n > 2.

Example. Let X be a Banach space (or a closed convex
subset thereof) and define the symmetric 2-mean
μ(x, y) = (1/2)(x + y). This is the midpoint with respect to
the norm metric, and is easily seen to be a convex mean.
Setting μk(x1, . . . , xk) = (1/k)

∑k
i=1

xi, one verifies directly
that μk+1 is the β-invariant extension of μk, so μ inductively
β-extends to the standard arithmetic mean μn for all n.
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Hadamard Spaces

A metric space X is said to satisfy the semiparallelogram
law if for any two points x1, x2,∈ X, there exists z ∈ X that
satisfies for all x ∈ X:

d(x1, x2)
2 + 4d(x, z)2 ≤ 2d(x, x1)

2 + 2d(x, x2)
2.

It follows readily that z is the unique midpoint between x1

and x2. A Hadamard space (occasionally called a
Bruhat-Tits space) is a complete metric space that satisfies
the semiparallelogram law.
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CAT(0)-Spaces

Using a metric notion for an upper bound of curvature
(geodesic triangles in the metric space satisfy certain
inequalities when compared with euclidean test triangles),
one calls a metric space a CAT(κ)-space if it is a geodesic
space (each pair of points can be connected by a metric
geodesic) satisfying the curvature bound condition for the
real number κ. The CAT(0)-spaces are the non-positively
curved spaces. A metric space has an alternative
characterization as a Hadamard space: it is a simply
connected, complete, geodesic CAT(0)-space.
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Hadamard Means

Remark. Defining a 2-mean μ(x, y) on a Hadamard space
(X, d) as the unique midpoint between x and y defines a
convex mean in the sense of the preceding section. Hence
this mean may be β-extended to an n-mean for every n > 2.
This result provides a new and interesting operation of
“barycenter" for any finite subset of a Hadamard spaces.
A wide variety of Hadamard spaces and constructions for
new Hadamard spaces from old appear in the literature.
Some examples include Hadamard manifolds (simply
connected complete Riemannian manifolds with nonpositive
sectional curvature), particularly simply connected
symmetric spaces of noncompact type, finite-dimensional
hyperbolic geometries over the reals, complexes, and
quaternions, symmetric cones, Tits buildings, and various
examples obtained by coning and gluing.
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Positive Definite Matrices

Of particular interest to us is the example of the manifold X
of positive definite (real or complex) matrices. Endowed
with the usual Riemannian metric, the trace metric, X is a
Hadamard manifold and the midpoint mean operation is
precisely the geometric mean of the two positive definite
matrices. Using the fact that the length metric satisfies the
semiparallelogram law, hence is a convex metric with the
midpoint operation being a convex mean, we obtain the
following alternative derivation of the principal result of
Ando, Li, and Mathias:
Corollary The midpoint operation for the trace length metric,
which is precisely the geometric mean, defines a convex
2-mean, which β-extends to an n-mean for each n > 2.
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Iterated Means

A standard construction technique for means is iteration,
the arithmetic-geometric or Gauss mean being the best
known example. We derive a result for showing that certain
iterated means are coordinatewise ρ-contractive and
nonexpansive, hence admit β-extensions of all orders.
Definition. Let λ, ν be 2-means on a complete metric space
X. Starting with λ1 = λ and ν1 = ν, we inductively obtain
sequences of means {λn} and {νn}:

λn+1(x, y) = λ(λn(x, y), νn(x, y)), νn+1(x, y) = ν(λn(x, y), νn(x, y)).

If there exists a 2-mean μ such that for all x, y ∈ X,
limn λn(x, y) = μ(x, y) = limn νn(x, y), then μ is called the
iterated composition of λ and ν and denoted μ = λ ∗ ν.
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Extending Iterated Means

The following result enables the extension of a significant
class of iterated means.
Proposition. Suppose in a complete metric space X that λ
is a convex mean and ν is coordinatewise ρ′-contractive,
0 < ρ′ < 1, and nonexpansive. Then the iterated
composition λ ∗ ν exists, is coordinatewise ρ-contractive,
ρ = max{1/2, ρ′} and nonexpansive, and hence β-extends to
all orders greater than two.

Linear Algebra, ’09 – p. 24/29



Positive Definite Operators

Consider the space Ω of positive definite operators on a
Hilbert space with the Thompson metric

d(A,B) = log(max{M(A/B),M(B/A)}),

where M(A/B) = inf{t ≥ 0 : A ≤ tB}.
The Thompson metric is a complete metric on Ω and the
operator geometric mean

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

is a convex mean wrt the Thompson metric, hence
(uniquely) β-extends to all higher orders.
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Basic Properties

We order the open cone Ω of positive definite operators by
the Loewner order:

A ≤ B ⇔ B − A is positive semidefinite.

By definition the order interval
[A,B] := {C ∈ Ω : A ≤ C ≤ B}.
A 2-mean μ on Ω is monotonic if A1 ≤ B1 and A2 ≤ B2 imply
μ(A1, B1) ≤ μ(A2, B2). It is invariant or satisfies the
transformer equality with respect to a given metric d if
d(PAP ∗, PBP ∗) = d(A,B) for A,B ∈ Ω and P invertible.
Proposition. Monotonicity and invariance are preserved by
β-extensions of means.
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Extending Iterated Operator Means

The following theorem is the main one for forming and
extending iterated operator means.
Theorem. Let Ω denote the set of positive operators on a
Hilbert space, let λ(A,B) = A#B denote the geometric
mean of A,B, and let ν be a continuous, invariant,
monotonic 2-mean on Ω that is also nonexpansive and
coordinatewise ρn-contractive for 0 < ρn < 1 on the order
interval [(1/n)I, nI] for each n with respect to the Thompson
metric. Then the iterated composition μ = λ ∗ ν exists, is a
coordinatewise ρn-contractive, nonexpansive mean when
restricted to [(1/n)I, nI] for each n, and hence inductively
β-converges to a β-extension for each n > 2.
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Gauss and Logarithmic Means

The following lemma is important for forming and extending
iterated means.
Lemma. The arithmetic and harmonic operator means are
continuous, invariant, monotonic 2-means on Ω that are
also nonexpansive and coordinatewise ρn-contractive for
0 < ρn < 1 on the order interval [(1/n)I, nI] for each n with
respect to the Thompson metric.
The Gauss mean and the logarithmic mean may be formed
as appropriate iterated means of the geometric and
arithmetic means, and hence by our theorem on extensions
of iterated means may be inductively β-extended for each
n > 2.
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