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Abstract

Let f be a convex function defined on an interval I, 0 < a < 1 and let
A, B be nxn complex Hermitian matrices with spectrum in I . It is proved that
the eigenvalues of f(aA + (1 — «)B) are weakly majorized by the eigenvalues of
af(A)+(1—«)f(B). Further if f islog-convex it is proved that the eigenvalues of
f(aA+(1—a)B) are weakly log-majorized by the eigenvalues of f(A)*f(B)!~. If
I =10,00), f(0) <0 and f is monotone, then it is proved that there exits unitaries
U,V such that Uf(A)U*+V f(B)V* < f(A+ B). As applications we shall obtain
generalizations of the famous Golden-Thomson trace inequality, a representation
theorem and a harmonic-geometric mean inequality. Some related inequalities are

also discussed.
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1. INTRODUCTION

Throughout M,, shall denote the set of n x n complex matrices and H,, shall
denote the set of all Hermitian matrices in M, . We shall denote by &, , the set of all
positive semidefinite matrices in M, . The set of all positive definite matrices in M.,
shall be denoted by P, . Let I be an interval in R . We shall denote by H,([), the
set of all Hermitian matrices in M, whose spectrum is contained in I .

Let f be a real valued function defined on I . The function f is called convex if

flas+ (1 —a)t) <af(s)+(1—a)f(t)

forall 0 <a <1 and s,t € I. Likewise f is called concave if —f is convex. Further

if f is positive then f is called log-convex if



flas+ (1 —a)t) < f(s)*f(t)'
and is called log-concave if
f)f@) 7 < flas+ (1 —a)t).
If 7=(0,00) and f is positive then f is called multiplicativily convex if
flsoti=e) < fs) f(t)t

forall 0<a<1 and s,tel.

A norm ||| -]|] on M,, is called unitarily invariant or symmetric if
AV = [[[Alll

for all A € M,, and for all unitaries U,V € M, . The most basic unitarily invariant

norms are the Ky Fan norms || - ||, (k = 1,2, ,n), defined as
k
j=1

and the Schatten p-norms defined as

3
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1l = (Xt y)
j=1
1 < p < oo, where s1(A) > s3(A) > -+ > s,(A) are the singular values of A,
that is, the eigenvalues of |A| = (A*A)Y2. It is customary to assume a normalization
condition that |||diag(1,0,...,0)||| = 1. The spectral norm (or operator norm) is given
by ||A|] =s1(A). An A e M, is called a contraction if ||A]| <1.

Throughout [ shall denote an arbitrary interval (unless specified otherwise) in R
and ||| - ||| shall denote an arbitrary unitarily invariant norm on M, . For (column)
vectors x,y € C™ their inner product is denoted by (x,y) = y*x. For an A € M,,,
Ai(A), 1 < j < n will always denote the eigenvalues of A arranged in the decreas-
ing order whereas s;(A), 1 < j < n will always denote the singular values of A ar-
ranged in the decreasing order. We shall use the notation A(A) to denote the row vector
(M (A), Aa(A), - Au(A))

Let A € H,(I) have spectral decomposition

A= U*dzag()\l, )\2, ceey /\n)U

where U is a unitary and Ap, Ag,..., A, are the eigenvalues of A. Let f be a real
valued function defined on I . Then f(A) is defined by



f(A) = Urdiag(f (M), f(X2), -, f(Aa))U -
For A, B € 'H, we consider four kinds of ordering:

def
<

(i) B<A(or A>DB) A — B positive semidefinite,

(ii)  (eigenvalue inequalities)

def

A(B) < M(A) N(B) < N(A) (G=1,2,...,n)

&L B<UrAU 3 unitary U € M,,

(iii)  (weak log-majorization )

k
AB) <uiog MA) & JINB) <[[NA) (k=12,....n).

(iv)  (weak majorization )

AB) <o MA) &5 S NB) <Y NA) (k=1,2,...,n).

Trivially we can see

B<A = AB)<MA) = AB)<w A).

AA)AB) >0, AB) <utog MA) = A(B) <u A(A).

f increasingon I, A, BeH,(I), N(B) <ANA) = A[f(B)) <A(f(A)),
f increasing and convex on [, A, B € H,(I), AB) <uw AM(A) = A(f(B)) <w
A(f(A)).

In Section 2, we shall prove that for a convex function f on I
A f(aA+ (1 —a)B)) <w Maf(A) + (1 —a)f(B))
forall A,B € H,(I) and 0 <« <1.If further 0 €I and f(0) <0 then
Af(XTAX)) <w MX"f(A)X)

for all A € H,(I) and for all contractions X € M,, . If in addition the function f is

also increasing (or decreasing), it is proved that
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Af(@A+ (1 —a)B)) < Maf(A)+ (1 —a)f(B))
forall A,B€ H,(I) and 0 <« < 1. If further 0 € I and f(0) <0 then
Af(XTAX)) < MX7f(A)X)

for all A € H,(I) and for all contractions X € M, . In Section 3, for a log-convex

function f on I, we shall prove that
A f(@A+ (1 = a)B)) <uiog N(f(A)*f(B)=)

forall A,B € H,(I[) and 0 <« < 1. In this section we shall also prove a representation

theorem. In Section 4, we shall prove matrix sub-additive inequalities for convex functions.
2. CONVEX FUNCTIONS

The following lemmas will be used to prove the main results in this section. The

reader may refer to [6] for their proofs.

Lemma 2.1. [6, page 281] Let A € H,(I) and f be a convex function on I .

Then for every unit vector =z € C™,

f({Az, z)) < (f(A)z, z).
Lemma 2.2. [6, page 35| Let A € H,,. Then

k k
Z A;(A) = max Z(Auj,uj> (k=1,2,...,n)
7j=1 7j=1
where the maximum is taken over all choices of the orthonormal vectors wq,us, ..., ug.
Lemma 2.3. [6, page 93| Let A, B € M,,. Then
Al < [1Bllw)
k=1,2,...,n if and only if
Al < 18]I,

for all unitarily invariant norms ||| - ||.

Theorem 2.4. Let f be a convex function on [ . Then
Af(aA+ (1= a)B)) <w AMaf(4) + (1 —a)f(B))
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forall A,Be€ H,(I) and 0 <a <1.If further 0 €I and f(0) <0 then
AJ(XTAX)) <w AXTf(A)X)

for all A € H,(I) and for all contractions X € M,, .

Proof. Let Aj, Ag,..., A\, be the eigenvalues of «A+(1—«)B and let uy,us, ..., uy,
be the corresponding orthonormal eigenvectors arranged such that f(A\) > f(Ag) > -+ >
f(An). Let k=1,2,...,n. Then

k

Sonflad+1=a)B) = > f)

J=1

= Zf(((aA + (1 — a)B)uj, uj))

Jj=1

— Zf(a(Auj,uj> + (1 - @)<Buj7uj>)

< ;[af(@‘luj,uj)) + (1= a)f((Buj, u;))]
< Z;Mf(fl)uj, uj) + (1= a)(f(B)uj,u;)]
= Zi;((ozf(fl) + (1 =) f(B))u;, uj)

< Zi;Aj(Oéf(AH(l—a)f(B)),

using convexity of f, Lemma 2.1 and Lemma 2.2 respectively. This proves
Af(aA+ (1= a)B)) <uw Maf(A) + (1 - a)f(B)) .

To prove the second assertion, let A, Aa,..., A, be the eigenvalues of X*AX and let
Uy, Us, . .., U, be the corresponding orthonormal eigenvectors arranged such that f(A;) >
f(A2) > -+ > f(\,) . Since f(0) <0, to prove the desired inequality we can assume



that || Xu,|| #0, j=1,2,...,n. Then

k k
DNF(XTAX)) = 3 FO)
k
= D fUX AXuj,w)

= > F(AXu;, X))

k
Xu; Xu;
= 3 (Xl (A, S 4 (1 [ X)) - 0)
2 I P A T T T :
k

S (16l (A ) + (0= 1K1970)

J=1

IN

2 (WulP A e rea)
= i((f(A)XUijUﬁ

J=1

= D> (X" f(A)Xuy,uy)

j=1
k

< SN S(A)X),

j=1

IN

using convexity of f, the condition f(0) <0, Lemma 2.1 and Lemma 2.2 respectively.
Thus
AMf(XTAX)) <uw M(XTf(A)X).

This completes a proof. [

The following corollary which supplements the results of Ando, Bhatia, Kittaneh and
Zhan in [2,7]:
AM(A+ B)") <uw A(A" + B") (1)

for 0<r<1 and
AMA" 4+ B") <y M((A+ B)") (2)

for r > 1, A,B € S,, was proved in [3]. The proof follows on taking f(¢t) =t", r <0
and I = (0,00) in Theorem 2.4.



Corollary 2.5. Let A, B € P, . Then
A27T(A+ B)") <y A(A” + B")

for all r<0.
The following corollary follows on using Theorem 2.4 and Lemma 2.3.

Corollary 2.6. Let f is be a nonnegative convex function on I . Then
f(@A+ (1 =a)B)[|| < [[laf(A) + (1 —a)f(B)]
forall A,BeH,(I) and 0 <a <1.Iffurther 0 €] and f(0) =0 then
[HLAXAX[] < (][ X7 fF(A)X]]

for all A € H,(I) and for all contractions X € M,, .
Remark 2.7. Corollary 2.6 may not be true if f is not nonnegative. To see this one

may take f(t) = —logt. This is convex on (0,00). Let 0 < o < 1. It is easy to find
s,t € (0,00) such that the inequality

[flas+ (1 —a)t)] < |af(s) + (1 —a)f(t)]

does not hold.

Remark 2.8. For A, B € H, , the inequality (see [6, page 294])
H’(A_ B)2m+1m < 22mH‘A2m+1 _ BszrlH’

is equivalent to
|H(A+B)2m+1‘|| S 22m’HA2m+1 +B2m+1‘||

m =1,2,.... The inequality,
1A+ B[l < 277 A+ |BI]l, (3)

r > 1, which follows on choosing the nonnegative convex function f(¢) = |t[", » > 1, on
(—00,00) in Corollary 2.6, as a special case provides an analogue of the above inequality
for even powers. Another particular case of Corollary 2.6 when f(t) =", r > 1 is
Theorem 1 in [§].



If in addition, in Theorem 2.4 we also assume that f is increasing (or decreasing) we

have the following stronger result.

Theorem 2.9. Let f be an increasing (or decreasing) convex function on I . Then
AflaAd+ (1 —a)B)) < Maf(A) + (1 —a)f(B)),
forall A,Be€ H,(I) and 0 <« < 1. If in addition, 0 € I and f(0) <0, then
Af(XTAX)) < MX™f(A)X)
for all A € H,(I) and all contractions X € M,, .
Proof. Since f is increasing, for any H € H,(I)
NF(H)) = fFN(H)) (G=12,...,n).

It is known [6, page 58] that the eigenvalue A;j(H) admits the following max-min char-
acterization:

Aj(H) = max min{(Hz,z); ||z]| =12 € M} (4)
dim M=j

where M is a subspace of C". Then since f is increasing

M) = FOG) = f( max minf{(Ha,a) ; 2] = 1,2 € M})

dim M=j
= max min{f((Hz,z)); ||z|]| =12 € M}.
dim M=j
Applying this to H = aA+ (1 — «)B we have
Ni(flaA+(1—a)B)) = nax 'min{f(<(aA + (1 —a)B)x,x)); ||z]| =1,z € ./\/l}
im M=j

By convexity of f and Lemma 2.1, we get

f({(cA+ (1 —a)B)x,z)) = f(a{Az,z)+ (1 — a)(Bz,x))
< af((Az,x)) + (1 — a) f((Bz, z))

< ((af(A) + (A =) f(B))z,z) ([[z]] =1).

Now using formula (4), we have
A (fed+ 1 -a)B) < A (af(4)+ (1 -a)f(B)).
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This completes a proof of the first assertion.

Now suppose 0 € I and f(0) < 0. Since f(0) <0, we can assume that ||[Xz|| #0
for all unit vectors x € C™. We have as above

N(f(XTAX)) = max min{f((X"AXz, z));||z|]| =1, € M}.

dim M=j
Using convexity of f, the condition f(0) <0 and Lemma 2.1, we get

i 9 Xz Xz 9
FUXAXw2) = F(IXalP(AT e ) + (= 1XalP) - 0)

< Il (A ) + (0= el
9 Xr Xz
< XA )

(X*f(A) Xz, x).
By (4) we get
A (F(XTAX)) < N(X7f(A)X).

This completes a proof of the second assertion. [J

Remark 2.10. Theorem 2.9 may not be true if f is not increasing (or decreas-

-1 1
ing). To see this one may take f(t) = |t|, t € (—o00,0), A = ) and

1 -1
2
B={2").

Remark 2.11. We would like to remark here that the inequality in Corollary 2.5
is sharp whereas inequalities (1) and (2) are not sharp. Taking the convex function
f(t)=1t", r > 1 in Theorem 2.9, we get

M(A+ B)") < A2 YA" + B"))

for all » > 1, which in turn gives a sharp upper bound for inequality (2). Now let

0 <r <1. Applying Theorem 2.9 to the decreasing convex function ¢(t) = —t", we get

A2 HA"+ BT) < M(A+ B)).



This provides a sharp lower bound for inequality (1). Taking the decreasing convex
function f(t) =¢", r <0 in Theorem 2.9, we get

A2U(A+ B)") < MA"+ B,

which gives a stronger result than Corollary 2.5.
3. LOG-CONVEX FUNCTIONS

We begin this section with some lemmas. For a proof of the following two lemmas

the reader is refered to [1].

Lamma 3.1. [1, page 56] Let A,B € P, and 0 <r < 1. Then
A(Llog(A/2Br A7/2)) <, A(log(AY/2BAY?)).

The following lemma is known as Trotter’s formula.

Lemma 3.2. [1, page 57] Let A, B € P,,. Then
lim, o4 [2 log(A™/2B" A"/?)] = log A + log B.

The next lemma follows from Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let A, B € P,,. Then
Mlog A + log B) <, A(log(AY2BAY?)) .
Theorem 3.4. Let f be a log-convex function on I. Then
A(f(aA+ (1= a)B)) <uiog A(f(A)*f(B)'7%)
forall A,BeH,(I) and 0 <a < 1.

Proof. Let f be log-convex on I. Then the function log f(¢) is convex function

on [ . Therefore by Theorem 2.4 and Lemma 3.3, we get

Alog f(aA+ (1—a)B)) <, Aalog f(4)+ (1 - a)log f(B))
= Alog f(A)" +log f(B)!*)
<u Mloglf(A)2F(B)' =" f(A)*/7).

This implies

k

[[hi(fleA+ 1 —a)B) < [T (FA)F(B)' ™), 1<k<n,

J=1

that is,



A(f(@A+ (1= 0)B)) <utog A(F(A)/2f(B)I=0 f(A)/2)
Since Ay (f(A)*/2f(B)1=*f(A)*/2) = \(f(A)*f(B)1=*) , we get
(@A + (1= ) B)) <utog A(F(A) F(B)2).

This completes a proof. [

Since for any X € M, , we have

k k
DN <D si(X),
=1 =1
(k=1,2,...,n), [6, page 42], by Lemma 2.3 we get a proof of the following corollary.

Corollary 3.5. Let f be a log-convex function on I. Then
f(@A + (1 —a)B)||| < [|[f(A)*f(B) |

forall A,Be€H,(I) and 0 <a <1.

Corollary 3.6. Let a >1 and A, B € H,,. Then
Ma*™B) <, Matd®).

Proof. Let p =max{||A||,||B||}. Then —pI < A, B < pI . The function f(t) =a'

is log-convex function on [—p, p] . Therefore by Theorem 3.4, we get
)\(aaA—i—(l—a)B) <w )\(aaAa(l—a)B)

for 0 < a <1. Now by taking « :% and then replacing A by 24 and B by 2B in

the above inequality, we get the desired result. [

Remark 3.7. As a special case of Corollary 3.6 when a = e we obtain the famous

Golden-Thompson inequality:
tr(etB) < tr(etel)

for A,B € H, . Here for X € M,,, tr(X) denotes the trace of X . The following

corollary may be considered as another generalization of the Golden-Thompson inequal-

ity.

Corollary 3.8. ( See [10, page 513-514].) Let f be a multiplicatively convex function
on (0,00). Then
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A(f(exH0=0B)) < A(f(e)* f(eP)1 =)

forall 0<a<1 and A,BeH,.

As another application of Theorem 3.4, we obtain a generalized harmonic-geometric

mean (Young’s) inequality.

Corollary 3.9. Let A,Be€ P, and 0 <a <1. Then
AM[aA™ + (1= a)B71™)) <w A(ABI=97) <, A(JA°" B2

forall r>0.
Proof. Let p = max{||A||,[|A7Y],||B]|,||B~|} . Then —pI < A, A~ B,B~ <pl

and the function ¢ — ¢~ is log-convex on (0, p| . Therefore by Theorem 3.4
MaA + (1 —a)B]™) < A(A™or B=(1=a)ry
Now on replacing A by A™! and B by B~! in the above inequality, we get
M[aA™ + (1 — @) B7Y™") <y A(AoBU=a)ry)

The second inequality follows, since

k

k
Z)\j(AoarB(l ar ZSJ AarBl ar)
7j=1

j=1

k=1,2,...,n. This completes the proof. [J

Remark 3.10. For an increasing log-convex function f
Mf(aA+ (1 = a)B)) <uwiog A(f(A)*f(B)'™)
can not be improved as

Af(@A+ (1 —a)B)) < Af(A)*f(B)'79).
In fact, let A, B € H,, and f(t) =e'. By Theorem 3.4, we have

H/\ [exp <ozA+(1—oz)B)] < ﬁ)\j[exp (ozA) exp ((1—&)3)] (k=1,2,...,n).

jf
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But

H/\j[exp (ozAJr(l—oz)Bﬂ = det[exp <aA+(1—oz)B>]

= det [exp <aA> exp ((1 - &)Bﬂ

- e (o) (1-09)

j=1

Thus it follows that we can find A, B € ‘H,, and an ¢, 1 <7 <n such that
)\Z(exp <aA +(1—- oz)B)) > )\i<exp(ozA) exp((1 — a)B)).
Therefore the ordering
Aexp(ad + (1 — a)B)) < Mexp(ad) exp((1 — a)B))

does not hold.

Remark 3.11. Let f be a log-concave function on I. Then one might conjecture
that

A(f(A)f(B)' %) <w A(f(aA+ (1 — a)B))
for all A,B € H,(I) and 0 < a < 1. However this fails. To see it one may take

6 -5 9 -1
f(t):tG,I:(O,OO),Oz:%,A:<_5 7)ande(_l . )

For a proof of the next lemma the reader is refered to [6, page 267].
Lemma 3.12. Let A,B€ P, and 0 <a <1. Then
[JA“B (| < [I[Al[*[IB]]I*= .
Next we prove a representation theorem.
Theorem 3.13. Let p,q > 1 be such that zl) + % =1 and A€ P, . Then
ma [[|AX] | = [[147]]] ¥

where ¥ ={X € P, : ||| X1]||| =1} .
Proof. By Lemma 3.12, we have
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1AVPXYa || < [[JAJIVP]IX e
Now replace A by AP and X by X7 to get
IAXI]] < [[]AP[|]*/P

using that ||| X||| =1 if X € ¥ . The equality occurs in the above inequality if we take

X9 = H\f‘—il\\ . This completes a proof. [

The following corollary is the well known Minkowski’s inequality (see [6, page 88]) for

unitarily invariant norms.

Corollary 3.14. Let A,B € P, and p > 1. Then
1A+ BYIIMP < [I1API[M =+ |11 B7[[]7 .
Proof. Let ¢ = 2. Then % + 1 =1. Therefore by Theorem 3.13, we have
p—1 P q

p|||l/p _—
[[[(A + B)P|l] max [[|(A + B) X[

IN

max [[[AX || + max ||| BX]|
ey Xex
= [[|AP[[|" + || B7||[7.

This is the desired inequality. [J
4. SUPPER-ADDITIVE INEQUALITIES
In this section we shall prove supper-additive inequalities for convex functions.

Theorem 4.1. Let f be a nonnegative convex function on I = [0,00) with f(0) =0
and A, B € §,. Then there exists unitary matrices U and V such that

Uf(A) U+ V f(B)V* < f(A+ B).
Proof. Let A, B € S,,. We can assume that A+ B is invertible. Then
A=AY2(A+B)"V*(A+ B)(A+ B)"Y?AY? = X(A+ B)X*

and

B=BY(A+B)"Y*A+B)(A+B)Y?*BY2 =Y(A+ B)Y*
where X = AY2(A+ B)™'/2 and Y = BY?(A+ B)~Y/2 are contractions. Since for any
T eM,, T*T and TT* are unitarily congruent, we have by Theorem 2.9

14



A(f(A) =Mf(X(A+ B)X")
< MXf(A+ B)X*)
A

((f(A+B))'2X*X(f(A+ B))"?)).

This implies there exists a unitary matrix U such that
Uf(A)U* < (f(A+B)'2X*X(f(A+ B))">. (5)
Similarly there exists a unitary matrix V' such that
VHB)V" < (f(A+ B)*Y*Y (f(A+ B))". (6)
Adding (5) and (6) we get
Uf(A)U+Vf(B)V*< f(A+ B)

since X*X +Y*Y = [,. This completes a proof. []

We would like to remark here that the inequality

A(f(A) + f(B)) < A(f(A+ B))

1 0 11
is not true. To see this one may take f(t) =1t A= 0 0 and B=1{ 2 % |. We
2 2

have the following analogous result for the concave functions which have a similar proof.

Theorem 4.2. Let f be an nonnegative concave function on I = [0,00) with
f(0)=0 and A, B € S,. Then there exists unitary matrices U and V such that

f(A+ B) <Uf(AU* + VF(B)V*.
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