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WHAT ARE TENSORS?

TENSOR — MULTI-INDEX ARRAY — MULTI-WAY ARRAY —
MULTI-DIMENSIONAL MATRIX:

A = |aij..k]

icI, j€J, .., keK

Number of different indices is dimension.

Indices are called also modes.

Cardinalities of index ranges I, J, ..., K are mode sizes.
In case of dimension d and mode sizes n1, na, ..., 1g,

A is a tensor of size 1 X Mgy X ... X Ngq.

Talking of tensors, tacitly assume that d > 3.



TENSORS AND MATRICES

Let A = [aijklm].
Consider pairs of complementary long indices

(¢27) and (klm)
(kl) and (¢gm)

Then A gives rise to several matrices:
By = [bij),(kim)]5
By = [bki), (ijm)]

with
b(ij),(kim) = bk1),(ijm) = +++ = Qijrim



MODE UNFOLDING MATRICES

Ay = [a;,(jkim))

Az = [a; (ikim).
As = :ak,(z’jlm):
Ay = |ay,(ijem)]

As = [am,(ijk)]

Columns of unfolding matrices are called mode vectors.
If d = 3, typical names are columns, rows, fibers.

Ranks of unfolding matrices are called mode ranks or Tucker ranks.

L. R. Tucker, Some mathematical notes on three-mode factor analysis,
Psychometrika, V. 31, P. 279-311 (1966).



TENSOR-BY-MATRIX MULTIPLICATIONS
Also called mode contractions.

Given a tensor A = [a;;x] and matrices
U=lup], V=Iv, W =wp,

define new tensors

AU = A XU = [agjk]
AV = A Xy V =[al,]

as follows:

agjk E Wity Ak — A? =UA,

7
| — § e s V

=
|

J
= Zwk/k Q;jk — AW W As



WHY CONTRACTIONS?

Let A = [a;jr] be n X n X n and mode ranks be equal to r <K n.
Consider QR decompositions of unfolding matrices

A =Q1R, Ay =Q2R;, A3 =Q3R;
Q1, Q>, Q3 arc orthogonal n X r matrices.

Define the Tucker core tensor G = [gas~]
of contracted size r X r X 7:

G =A X, QlT X2 Q; X3 Q:—),r Le. GaBy = Zaiﬂ'k qz'la qu'ﬂ qz'r

1,3,k
THEOREM
A = G X1Q1 X2Q2X3Q3 1e ajr = Z Gapy qz'la q?’ﬂ ql?::'y
0,8,y

IMPORTANT: A is now represented in a contracted form
with only 3nr + r3 K n3 parameters.



TUCKER DECOMPOSITION

Regarded as Tensor SVD or Higher Order SVD:

A = G X1Q1X2Q2X3Q3 le a;r = Z Gapy qz'la q?’ﬁ qi?::'y
a,B,y

Orthogonal matrices Q1, Q2, Q3 are Tucker factors or frame matrices.

THEOREM

Rows in each of unfolding matrices for the Tucker core can be

made orthogonal and arranged in length-decreasing order.

Row lengths of unfoldings for G = singular values of unfoldings for A.
PROOF is easy via SVD of unfolding matrices:

if Ay = lel‘/l then (A X1 Q;r)l = > Vi.

Same for other modes.



TUCKER APPROXIMATIONS

~ 1 2 3
Aijk ~ Z JapBy i 953 i~
a,3,y

APPLICATIONS:

e Multi-way Principal Component Analysis
(senior frame matrices are most informative).

e Tensor data compression
(ignore small and get to reduced Tucker ranks <€ mode sizes).

e New generation of numerical algorithms
with all data in the Tucker format.
Enjoy linear and even sublinear complexity in total size of data
(could be petabytes).

[. Oseledets, D. Savostyanov, E. Tyrtyshnikov,
Linear algbera for tensor problems, submitted to Computing (2008).

G. Beylkin, M. Mohlenkamp, Algorithms for numerical analysis in
high dimensions, SIAM J. Sci. Comput., 26 (6), pp. 2133-2159 (2005).



CANONICAL DECOMPOSITION

p

Qij...k — E Wit Vjteso Wit
t=1

Minimal p = tRank is called canonical rank or tensor rank of A.

THEOREM
Let mode ranks be egual to . Then

r < tRank(A) < r%

CANONICAL APPROXIMATIONS
p
Aij...k ~ Z Uit Vjteoo Wit
t=1
play same compression role as Tucker.
Could be better but not necessarily!



TENSOR RANKS IN COMPLEXITY THEORY

In the “row-by-column” rule for multiplication of m X m matrices
we have n? multiplications. Can we reduce this number?

Ci1 C2| |a1 a2| b1b2
C3 C4 o asz ay o bs b4

Cr — Zzh”k a; bj

i=1 j=1
Let p = tensor rank of h;;i and canonical decomposition read

p
hiji = E Uit Vjt Wit =
t—1

p 4 n
Cr, = E Wit E Uit Q; E v;tb;
t=1 i=1 j=1

Now we have p multiplications!

If n = 2 then p = 7 (Strassen, 1965).
By recursion = only O(n!'°827) multiplications for arbitrary n.



TUCKER VS CANONICAL FOR MATRICES

T

ai; =Y Y GaplinGs & A=Q:1GQ,

a=1 3=1

Tucker = a pseudo-skeleton decomposition of A.

p
Q;; = Zuitvﬁ &S A= UVT

t=1

Canonical = a skeleton or dyadic decomposition of A.

Tensor (canonical) rank seems to be a true generalization
of the matrix rank concept.

However, tensor rank for dimension > 3 and matrix rank
have noticably different properties.



KRONECKER PRODUCT REPRESENTATION

Tucker decomposition:

A = Zgaﬁ'yua® v Q w,

o,y

Canonical decomposition:

AZZ U Q@ v Q wy
:



KRUSKAL (ESSENTIAL) UNIQUENESS

Minimal canonical decomposition

A:Zut(g) v Q wy
:

is said to be essentially unique it
Zuit R Vit @ Wit = Zﬁz‘t R Vit @ Wit
t t

implies that, upon some reordering,
ug || wey, v || Oy wye || @y,

lur @ vi @ wy|| = ||t ® Uy @ wyl|.

Matrix skeleton (dyadic) decomposition is NOT ESSENTIALLY UNIQUE.
This becomes an obstacle in Principal Component Analysis,

e.g. In separation of signals.

Despite that, tensors possess ESSENTIAL UNIQUENESS

(under mild assumptions).



INDEPENDENT COMPONENT RECONSTRUCTION

EXAMPLE (De Lathauwer) where the PCA fails.

Assume we need to separate two independent zero-mean signals

1 if kn <t < km+m/2,

x1(t) = V2sint, wz(t):{_l if km+7/2<t< kr+m,

defined on the interval 0 < t < 47 and mixed by a matrix

4= (37§ _3\5@>
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FIG. 1. Signals to be separated.
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Fig. 2. Observations of linearly mixed signals.
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FIG. 3. Seperation results produced by the PCA.
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FIG. 4. Separation results of the tensor technique.
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FIG. 4. Separation results of the tensor technique.



KRUSKAL (ESSENTIAL) UNIQUENESS

Canonical decomposition

p
A=Zut® v Q wy

t=1

is defined by matrices with p columns:
U = [uy], V = v, W = [wgy].

A matrix is said to have Kruskal rank r it
r 1s the maximal number s.t. any = columns are linearly independent.

KRUSKAL THEOREM
Let the Kruskal ranks for U, V, W coincide with their ranks and

rankU + rankV 4 rankW > 2p + 2.

Then this canonical decomposition is essentially unique.

J. B. Kruskal, Three-way arrays: rank and uniqueness for 3-way and n-way arrays,
Linear Algebra Appl., 18, pp. 95-138 (1977).



SIMULTANEOUS DIAGONALIZATION

Tensor decomposition of an . X n X n tensor
p

Qi = E Uit Vjt Wit
t=1
means simultaneous diagonalization of n slice matrices

WEk1
Mk = [aijk] = U VT
Wep

UandV arten X p

RELATED SIMULTANEOUS EIGENVALUE PROBLEM

Mx = Ay



2 X 2x 2 TENSORS

When tensor rank is equal to 27
If so, we have simultaneously

M, =UWV
My = UW,RV

If M, is nonsingular, it follows that
]\/_T1M2_1 = UDU !, D = W1W2_1 is a diagonal matrix.

01 1
R o

Tensor with slices My, My must be of tensor rank > 3

EXAMPLE

COROLLARY

Tensor rank for a tensor of size 2 X 2 X 2 can be greater than 2.

[t cannot exceed 4, but can it be greater than 37



PRESERVATION OF TENSOR RANK

LEMMA

Tensor rank is invariant under mode contractions by nonsingular matrices.

COROLLARY 1.

Tensor rank calculation for general 2 X 2 X 2 tensor
reduces to a particular case of tensor with slices

-y s

COROLLARY 2.
Maximum of tensor ranks for 2 X 2 X 2 tensors is equal to 3.



TENSOR RANK DEPENDS ON THE SUBFIELD

[t does not happen for matrices!
However, for tensor over R tensor ranks over R and C may differ.

PROOF.
Consider 2 X 2 X 2 tensor with slices

0 —1 10
Ml_[l 0]’ M2_[01]'

Matrix My M, ' has eigenvalues +4/—1.

Hence, it cannot be diagonalized by a real similarity =
tensor rank over R is equal to 3.

But tensor rank over C is 2.



RANK INSTABILITY

e Matrix rank can be made larger by arbitrarily small perturbation,
but cannot be made smaller.
The same for Tucker ranks.

e Tensor (canonical) rank may decrease by an arbitrary small perturbation,
at least for some tensors.

EXAMPLE (could be 3D Laplacian)

aRaRXRb+aRbRa-+bRaR®Ra=

a®(a+eb)@b+eta)+(b—c'a) Xa®a
+ea@bR DL
Notice large numbers in a lower-rank tensor.

DIFFICULTY

Best approximation to a given tensor by tensors
of a prescribed tensor rank may not exist.



BEST TENSOR APPROXIMATIONS

THEOREM 1.
For a tensor of canonical rank p,
best approximations of rank 1 and rank p always exist.

Is it possible to produce an example of tensor with non-existence
of best approximations of any rank strictly in between of 1 and p?

THEOREM 2.

Best approximations of a prescribed tensor rank and a predetermined upper
bound on moduli of the factor entries always exist.

THEOREM 3.
Best approximations of a prescribed tensor rank with nonnegativity constraint
for all entries of factors always exist.



GENERIC RANKS

A minimal finite set R(n1,...,ng) = {rs} of positive integers s.t. tensors
with tensor ranks from this set are dense in the set of all tensor of size

ny X ... XNy

1s sald to consist of generic ranks for ny X ... X ng tensors.

Real 2 X 2 X 2 tensors has generic ranks 2 and 3.
2 in ~79% and 3 in ~ 21% cases.

The set of complex 2 X 2 X 2 tensors has generic rank 2.

THEOREM (HYPOTHESIS?)

For complex tensors there is a single value of generic rank
(depending on size).

HYPOTHESIS (THEOREM?)

For real tensors there could be onle two possible generic ranks
(depending on size).



ALTERNATING LEAST SQUARES

R. A. Harshman,
Foundations of the Parafac procedure: models and conditions for an explanatory
multimodal factor analysis, UCLA Working Papers in Phonetics, 16: 1-84 (1970).

Given A, find an optimal canonical decomposition
with factor matrices U,V, W
with prescribed number of columns.

ALS reads
e [reeze V, W and substitute U with the best LS fit.
e [reeze U, W and do the same with V.
e [reeze U, V and do the same with W'.

e Repeat until convergence.

Convergence theory?



ONE STEP OF ALS
With U and V frozen, find W from the LS problem

p
LS
Uit Vjt Wit — Ak
t=1
In the matrix form, find vectors of size p

W1
L =

Wip

solving

a1k

Uov £ b, = | “1*

_annk:_

ULV = [’Ll,l X U1y eeey Up X ’Up] (Khartri—Rao product)



