

2045-9

Joint ICTP-INFN-SISSA Conference: Topical Issues in LHC Physics

29 June - 2 July, 2009

Cosmic Antiparticles and Dark Matter Indirect Studies with the PAMELA Space Experiment

> Mirko BOEZIO INFN - Sezione di Trieste Italy

Strada Costiera 11, 34151 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.

Cosmic Antiparticles and Dark Matter Indirect Studies with the PAMELA Space Experiment

Mirko Boezio INFN Trieste, Italy

On behalf of the PAMELA collaboration

Joint ICTP-INFN-SISSA Conference July 2nd 2009

COSMIC RAYS PRODUCTION MECHANISMS

The first historical measurements on galactic antiprotons

The first historical measurements of the p/p - ratio and various Ideas of theoretical Interpretations

The current content of the Universe

Searches for WIMP Dark Matter

P. Gondolo, IDM 2008

Dark Matter Candidates

See talks by M. Cirelli and G. Kane

DM annihilations

See talks by M. Cirelli and G. Kane DM particles are stable. They can annihilate in pairs.

DM annihilations

Resulting spectrum for positrons and antiprotons M_{WIMP} = 1 TeV

Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

PAMELA Collaboration

Scientific goals

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter)
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

PAMELA detectors

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

Design Performance

- Antiprotons
- Positrons
- Electrons
- Protons
- Electrons+positrons
- Light Nuclei (He/Be/C)
- AntiNuclei search

<u>energy range</u> 80 MeV - 150 GeV

50 MeV - 300 GeV

up to 500 GeV

up to 700 GeV

up to 2 TeV (from calorimeter)

up to 200 GeV/n

sensitivity of 3x10⁻⁸ in He/He

→ Simultaneous measurement of many cosmic-ray species

- \rightarrow New energy range
- → Unprecedented statistics

Resurs-DK1 satellite + orbit

- Resurs-DK1: multi-spectral imaging of earth's surface
- PAMELA mounted inside a pressurized container
- Lifetime >3 years (assisted, first time last February)
- Data transmitted to NTsOMZ, Moscow via high-speed radio downlink. ~16 GB per day
- Quasi-polar and elliptical orbit (70.0°, 350 km 600 km)
- Traverses the South Atlantic Anomaly
- Crosses the outer (electron) Van Allen belt at south pole

Subcutoff particles

PAMELA milestones

Launch from Baikonur \rightarrow June 15th 2006, 0800 UTC.

'First light' \rightarrow June 21st 2006, 0300 UTC.

• Detectors operated as expected after launch

• Different trigger and hardware configurations evaluated

→ PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006

Main antenna in NTsOMZ

Trigger rate* ~25Hz Fraction of live time* ~ 75% Event size (compressed mode) ~5kB 25 Hz x 5 kB/ev \rightarrow ~ 10 GB/day (*outside radiation belts)

Till ~now: ~1100 days of data taking ~14 TByte of raw data downlinked >10⁹ triggers recorded and analyzed (Data from April till December 2008 under analysis)

Antiparticles with PAMELA

Antiproton / positron identification

Antiproton (NB: e⁻/p ~ 10²) Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV)

Bending in spectrometer: sign of charge

Ionisation energy loss (dE/dx): magnitude of charge

Interaction pattern in calorimeter: electron-like or proton-like, electron energy

ANTIPROTONS

Antiproton to proton flux ratio

PRL 102, (2009) 051101, Astro-ph 0810.4994

POSITRONS

Proton / positron discrimination

Proton

Positron

Fraction of energy released along the calorimeter track (left, hit, right)

Antiparticle selection

Rigidity: 20-30 GV

Fraction of charge released along the
calorimeter track (left, hit, right)•Energy-momentum match
•Starting point of shower

Rigidity: 20-30 GV

Fraction of charge released along the calorimeter track (left, hit, right)

- +
- Energy-momentum match
 Starting point of shower
- Longitudinal profile

Positron selection with calorimeter

Rigidity: 20-30 GV

Fraction of charge released along the
calorimeter track (left, hit, right)•Energy-momentum match
•Starting point of shower

Positron selection with calorimeter

Fraction of charge released along the calorimeter track (left, hit, right)

Flight data: rigidity: 42-65 GV

Test beam data: momentum: 50GeV/c

Positron selection with dE/dX

Energy loss in silicon tracker detectors: $-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 \left(\frac{\delta(\beta)}{Z} \right) \right]$

TOP: positive (mostly p) and negative events (mostly e⁻)

BOTTOM: positive events identified as p and e⁺ by transverse profile method

Rigidity: 10-15 GV

Rigidity: 15-20 GV

Positron selection with calorimeter

Rigidity: 20-30 GV

•Energy-momentum match •Starting point of shower

Can we create a sample of protons from the flight data themselves? Yes with the "pre-sampler" method!

e⁺ background estimation from data

Rigidity: 20-28 GV

Energy-momentum match
Starting point of shower

Procedure e⁺ background estimation from data

Pre-PAMELA positron fraction

Positron to Electron Fraction

Solar modulation

Charge dependent solar modulation

Heliosphere & Cosmic Ray Modulation Mechanisms

PAMELA electron to positron ratio and theoretical models

PAMELA Positron Fraction

Galactic H and He spectra

PAMELA Positron Fraction

Diffusion Halo Model

Nuclei identification

• Important input to secondary production + propagation models

- Secondary to primary ratios:
 - B / C
 - Be / C
 - Li / C
- Helium and hydrogen isotopes:
 - ³He / ⁴He
 - d / He

Truncated mean of multiple dE/dx measurements in different silicon planes

Secondary nuclei

PAMELA Positron Fraction

Theoretical uncertainties on "standard" positron fraction

T. Delahaye et al., arXiv: 0809.5268v3

Reasons for the positron fraction to rise

(slide by I. Moskalenko)

□ Main reason – primary positrons are perhaps unavoidable

□ There is no deficit in papers explaining the PAMELA positron excess

- (>200 papers since Oct 2008!):
- Various species of the dark matter (~170)
- Pulsars
- SNRs
- Microquasar
- a GRB nearby

- ...

□ Perhaps we have to discuss a deficit of positrons, not their excess!

Unfortunately, they are all wrong!

Reason – we do not know the electron spectrum and thus can't get an idea of the spectrum of the primary positron component (*I. Moskalenko*)

Positrons detection

Where do **positrons** come from?

Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton

Astrophysical Explanation: SNR

N.J. Shaviv et al., arXiv:0902.0376v1

Astrophysical Explanation: SNR

Astrophysical Explanation: Pulsars

- Mechanism: the spinning B of the pulsar strips e⁻ that accelerated at the polar cap or at the outer gap emit γ that make production of e[±] that are trapped in the cloud, further accelerated and later released at $\tau \sim 10^5$ years.
- Young (T < 10⁵ years) and nearby (< 1kpc)
- If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old.
- Diffuse mature pulsars

Astrophysical Explanation: Pulsars

Are there "standard" astrophysical explanations of the PAMELA data?

1000

10

Young, nearby pulsars

Not a new idea: Boulares, ApJ 342 (1989), Atoyan et al (1995)

Astrophysical Explanation: Pulsars

H. Yüksak et al., arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, age and energetic of the pulsar

M. Cirelli et al., arXiv: 0809.2409v3

Interpretation: DM

Which DM spectra can fit the data?

DM with $m_{\chi} \simeq 150 \,\text{GeV}$ and W^+W^- dominant annihilation channel (possible candidate: Wino)

positrons

antiprotons

M. Cirelli et al., arXiv: 0809.2409v3

Interpretation: DM

Which DM spectra can fit the data?

DM with $m_{\chi} \simeq 10$ TeV and W^+W^- dominant annihilation channel (no "natural" SUSY candidate)

But B≈10⁴

positrons

antiprotons

M. Cirelli et al., arXiv: 0809.2409v3

Interpretation: DM

DM with $m_{\chi} \simeq 1 \,\text{TeV}_{and} \ \mu^+ \mu^-$ dominant annihilation channel

positrons

antiprotons

 10^{4}

Example: Dark Matter

Hooper and Zurek arXiv:0902.0593v1

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Kaluza-Klein dark matter
Interpretation: DM I. Cholis et al. arXiv:0811.3641v1

- Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ...
- Light boson, so decays to antiprotons are kinematically suppressed

What about Electrons?

INFR Istituto Nazionale di Fisica Nucleare

The ATIC electron results exhibits a feature

"Advances in Cosmic Ray Science"

FERMI all Electron Spectrum

 PAMELA has been in orbit and studying cosmic rays for ~36 months. >10⁹ triggers registered and >14 TB of data has been down-linked.

Antiproton-to-proton flux ratio (~100 MeV - ~100 GeV) shows no significant deviations from secondary production expectations. Preliminary data presented up to ~180 GeV.

 High energy positron fraction (>10 GeV) increases significantly (and unexpectedly!) with energy.
Data at higher energies will help to resolve origin of rise (spillover limit ~300 GeV).

■ Analysis ongoing to measure the e⁻ spectrum up to ~500 GeV, e⁺ spectrum up to ~300 GeV and all electrum (e⁻ + e⁺) spectrum up to ~1 TV.

