

2048-12

From Core to Crust: Towards an Integrated Vision of Earth's Interior

20 - 24 July 2009

Seismic tomography and the dilemma of the Earth's heat budget

G. Nolet University of Nice, Sophia Antipolis France Seismic tomography and the dilemma of the Earth's heat budget.

Guust Nolet Géosciences Azur

The heat flux problem (1)

Getting 31 TW across 660

- Whole-mantle convection
- Upward advection of hot rock (plumes)
- Downward advection of cold rock (slabs)
- Conduction (*thermal boundary layer or TBL*) *Question: Does a TBL exclude advection?*?

cooling history

Abbott et al., JGR 1994

- $4^{\circ}K \rightarrow 4^{\circ}Ar$
- 4°Ar does not escape from the atmosphere
- Only about half the predicted 4°Ar is found in the atmosphere
- The rest must be residing *somewhere*.

The heat flux problem (2)

Korenaga, Geophys. Monogr. 2006

Ways to limit the heat flux

- Plates resist convection (Conrad & Hager, 1999, Korenaga 2006)
- Q is not a simple function of T but depends also on plate configuration (Labrosse & Jaupart, 2007)
- Upper and lower mantle convect separately (McKenzie & Richter, 1981) This would imply a thermal boundary layer (TBL) at 660 km.

TBL: what does PREM tell us?

Upper mantle potential temperature range (Jaupart et al, 2008)

Deschamps & Trampert, EPSL 2004

Intermezzo: from onset times to cross-correlations

$$\gamma(t) = \int s(t')u(t'-t)\mathrm{d}t$$

$$\begin{aligned} & \gamma(t) = \int s(t')u(t'-t)dt' \\ & \sigma_{\text{CRLB}}^2 = \frac{3}{8\pi^2} \frac{1+2\text{SNR}}{\text{SNR}^2} \frac{1}{\Delta f^3 T_{\text{W}}} \end{aligned}$$

Body wave cross-correlations

Sigloch & Nolet, GJI 2006

Wave diffraction

ne onder emances de point lamineux A, qui col son centros; Le particulor B. One descelles qui font com apriles Jans la sphere D CF, aura Sait Sea onder particuliers. RCL, qui tourhere tout DCF in Can reaman moment que l'ades principales, emance du point A est pares nues en DCE . le il est clair quil ny aura quer lendroit C der londer KCL quibe: chere londer DCF, Sunnie collar quiced Dans

la droite mener par AB; Willplower que ce marme under Dais andy astres leplus fort Jolonda KCL, parcaques la perhiule B. qui la cagondreas communiques plus son mounement Suivant La lignas ABC quervers aillieurs. Demesmos les autres particules, comprises dans la Spherer DCF aurors Sait charves son on den Mais chasune desces ondes nor pout cotres qu'infiniment feibles compas ree a londe DCF, a la composition de laquelle toutes les autres contribuont par la partie des leur surface qui cot la plas elois quees Ju centre A, en la plus Sorte. Carpeur comgarer plus pro citament la torce Des Tondes CE à celle Des Topoe KCL; Supposes que CENte Soiene charme des parties exales de ces ondes; la raison de lour forces sera composer Speellar qua binder innombrable de la matien otherces qui composent londes HBLet de-eclles da quarres Do BC au quarres des AC. Car Si les par= treales A es B, annone toute toux egaler force de mouncement, la force des l'aparties CEARD Servis reciproquem comme les quarie da frametra BC an quarre da Frametra AC, Mais lacomme lington nombres des partientes qui composent londe HBL; parceques to monuemant de la doute partiente A col anothe dans touter getter onder. Done cest Der ces Doux raison o qu'est compose la raison der la Sorces De la partie CE ala force de la partie Kho

Christaan Huygens (1629-1696)

Wave diffraction

Christaan Huygens (1629-1696)

Wavefront healing:

time delays are slowly annealed

Waves may take detours

Healing of cross-correlation delays (Period=2 s)

A wavefront heals because energy diffracts *around* the anomaly. Can we correct for it?

It is like adaptive optics

adaptive optics

Glen Herriot (NRC-CNRC)

Glen Herriot (NRC-CNRC)

Born theory = first order perturbation of an early arrival

Scattered wave perturbs crosscorrelation

Scattered waves + delay from crosscorrelation > "banana-doughnut" kernels

cross-correlation maximum

Amplitude kernels

modeling waveforms: Single or multiple scattering?

(a) Diffusion simple

Single=early

(b) Diffusion multiple

Multiple =late

Domitille Anache, 2008

Forward scattering retains information

Multiple scattering: ill posed inverse problem

Resolution_gain_ (multiple frequency, delays & amplitudes)

Yue Tian, AGU 2007
Finite frequency P wave images and USArray

Sigloch et al., Nature Geosci., 2008

Finite frequency P wave images and USArray

Farallon stuck in TZ

Slabs do not go gently into that good night

Sigloch et al., Nature Geosci., 2008

Slabs do not go gently into that good night

return flow across a TBL?

Tonga-Kermadec (Deal et al., 1999)

> Japan 42º N (Deal & Nolet, 1999)

Tahiti (Society Isl)

 ΔV_P and ΔV_S converted to ΔT (K)

Thin plumes are not resolved

Plumes are larger than we thought

- Buoyancy flux indicates weak plume flux
- Early estimates limit plume flux to $\sim 3 \text{ TW}$
- Theory predicts narrow (<100 km) plumes
- But such plumes would not show up
- Plume width must be several hundred km

Can we estimate plume flux from tomography?

- The honest answer is: *barely*
- But even a simplified treatment leads to surprising lower limits in plume flux

tace of rotation whose meridian section is a parabola. In this case we speak of a *parabolic velocity profile*. The total volume W issuing per second is obtained by taking the integral $\int v d\mathbf{S}$ over a cross-section. In this case we have

$$W = \int_0^a \frac{p_1 - p_0}{4\eta l} \left(a^2 - r^2\right) 2\pi r \, dr = \frac{\pi \left(p_1 - p_0\right)a^4}{8\eta l}.$$
 (74)

This is Poiseuille's Formula, which states that the quantity of fluid issuing each second is directly proportional to the pressure difference and to the fourth power of the radius of the tube, and inversely proThe method, step 1: isolate a depth section from the 3D model of $\Delta Vp/Vp$

3: from Temperature anomaly to Rise velocity

Sensitivity test: how good is the estimate? $\Delta T \qquad V_z \qquad Q_c$

Plumes are larger than we thought

Tahiti plume at 1600 km depth (Nolet, EPSL 2006)

(Some) plumes broaden below 660 km depth

Nolet et al., 2006

31 TW across 660 ?

Frederik Simons (pers. comm.)

Frederik Simons (pers. comm.)

Frederik Simons (pers. comm.)

Conclusion

- Slabs stalling at 660,
- Plumes widening below 660,
- Plume flux too large in lower mantle,
- Low velocities below the slabs,

• TOMOGRAPHIC EVIDENCE POINTS TO THE 660 BEING A THERMAL BOUNDARY LAYER
• MASS EXCHANGE: ONLY SLABS AND PLUMES

What is the sensitivity of a first break?

Stark & Nikolayev, JGR 1993

What is the sensitivity of a first break?

Helium and hotspots

The earth likes η to be high

An experimental confirmation

DUVALL, BIRCH, & GIZON Astrophys. J., 2006

Whole mantle convection?

Van der Hilst et al., Nature 1991

Or thermal coupling?

Our images are consistent with a convection model that allows local mass transport across the boundary between upper and lower mantle. One should be cautious of such interpretations, however: tomographic images depict variations in seismic velocity, and from the images alone one can not unambiguously discriminate between actual mass transport across the upperlower mantle boundary or velocity perturbations in the lower mantle resulting from thermal coupling in layered convection⁵⁰, possibly combined with a locally depressed 670 km discontinuity.

The Farallon: deep slabs are real

Grand, JGR 1994

Van der Hilst et al., Nature 1997

But do they imply 'whole mantle' convection?

Van der Hilst et al., 1991