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1. Introduction 

 
Flow plumes play an important role in fluid mechanics with applications including 
different parts of the Earth, industry and the environment. In these note we will be 
concerned with compositional plumes. A compositional plume is here defined as uni-
directional flow of a fluid in a column of finite thickness rising in another fluid of 
different composition and much larger length scale.  
 
After briefly summerising the relevance of such plumes to different parts of the earth, 
we investigate the general properties of these plumes and we will not consider any 
detailed study of any one particular application. Also, we will restrict our analysis to 
plumes with sharp boundaries so that the material transported by the plume flow is 
compositionally very different from that of the surrounding fluid. This allows us to 
bring out the main properties of the dynamics more clearly. 
 
The relevance of plumes to industry is mainly in metallurgical applications (Copley et 
al. 1970, Huppert 1990. Plumes are very important for studying the earth. Their first 
application to earth includes mantle convection (Morgan 1971, Loper and Stacey 
1983, Ribe and Christensen 1994, White and McKenzie 19995, Steinberger 2000). 
Here they are believed to explain the flows between the plates (Zhao 2004) and also 
the powerful flows associated with hotspots and volcanic eruptions (Sleep 1990, 
Duncan 1991, Nolet et al. 2007) as well as in material transport (e.g. basalt) in the 
mantle (Hauri et al. 1994, Bonneville et al. 2006).  The plume flows are also related to 
the reversals of the geomagnetic field (Loper and McCartney 1983, Larson and Olson 
1991). 
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Figure 1. A schematic representation of Earth regions (with core standing for both fluid outer and solid 
inner cores) and hotspot types. 
 

 
 
 
Figure 2. A schematic representation of mantle plumes and hotspots distribution 
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Figure 3. Schematic representation of a plume rising through the mantle to cause a volcanic eruption at 
an active hotspot. 
 
 
In the late seventies, Loper and Roberts revived the suggestion first made by 
Verhoogen (1961) that the solidification of the outer core fluid to form the solid inner 
core released latent heat that contributed to the energy source for powering the 
geomagnetic field of the earth. Loper and Roberts (1978) and Roberts and Loper 
(1978) developed a theory for the solidification process at the inner-outer core 
boundary. Although the temperature at the inner core surface is much higher than at 
the top of the outer core, the solidification takes place at the inner core boundary due 
to the increased pressure with depth. The fluid outer core is an alloy composed mainly 
of the heavy component of molten iron and lighter elements which are believed to 
include sulphur, oxygen, nitrogen, hydrogen etc. The heavy iron component of the 
outer core fluid alloy solidifies first thus forming a thin layer on the surface of the 
inner core of mixed solid crystals (mainly of iron) and fluid other components. This 
layer of mixture of solid and fluid is called a mushy layer. Such a layer has been 
investigated in detail by Hills et al. (1983) in a fundamental paper on this subject.  
The solidification process releases latent heat giving rise to a heat flux out of the layer 
and into the fluid core. Such release of energy has implications on fluid motions in the 
core and the regeneration of the geomagnetic field by dynamo action (Loper 1978, 
Loper and Roberts 1979, 1981).  
 
The mushy layer has been studied recently by many researchers because of its 
relevance to Earth and industry. The reader is directed to reviews for further 
references (Loper 1987, Worster 1997). 
 
The process of solidification continues with time and it has been shown that when 
such a layer increases to a certain level the top-heavy situation created by the 
solidification of the heavy component (so the mushy layer has lighter fluid compared 
to the overlying alloy), it becomes unstable (Worster 1992). The instability of the 
mushy layer takes the form of thin filaments of light fluid rising through the outer 
core fluid. These filaments are compositional plumes transporting the light fluid 
components from the mushy layer through the outer fluid core alloy.  The instability 
of the plumes rising into the outer core may result in the break-up of these plumes into 
blobs that stir the outer fluid core producing small-scale motions which may produce 
helicity and α − effect thus contributing to the geodynamo (Moffatt 1989, Moffatt and 
Loper, 1994).  
 
It is then clear that there is considerable geophysical interest in compositional plumes. 
This indicates a need to understand the basic properties of compositional plumes. 
Rather than study a particular situation with a particular application, we will embark 
on studying the basic dynamical properties of compositional plumes. The effects of 
magnetic fields and rotation acting separately or together on the plume will also be 
examined. 
 
The process of the formation of the mushy layer and the instabilities associated with it 
are illustrated using the famous aqueous ammonium Chloride (NH4+H2O) solution, 
first used by Copley et. al. (1970) and later by Huppert (1990) and others. When such 
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a solution prepared at 50 0C with a concentration of 28% by weight and placed on a 
ice-cold surface, the mushy layer can be seen to develop and when it is thick enough, 
instability appears and plumes rise into the melt. The plumes themselves are 
sometimes seen to disintegrate. Such a process may also be considered a form of 
instability. This provided the motivation for the study of the stability of these 
compositional plumes under laboratory and geophysical conditions (Eltayeb and 
Loper, 1991,1994, 1997, Eltayeb and Hamza 1998, Classen  et al. 1999, Eltayeb 1999, 
Eltayeb et. al. 2004,2005, Eltayeb 2006). 
 
 
 
 

 
 
 

Figure 4. Aqueous ammonium chloride solution (Huppert, 1990). 
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Figure 5. Aqueous ammonium Chloride solution (Eltayeb and Loper, 1991). 
 

 
 
2.Formulation 
 
Consider a column of light material of thickness 2x  rising in a two-component, 
electrically conducting and less buoyant fluid of infinite extent. Both fluids possess 
the same kinematic viscosity,ν , thermal diffusivity, κ , magnetic diffusivity, η . The 
material diffusion is negligible.  The equation of state of the system has the form 
  (2.1) ρ ρ α β= − − − −0 0/ 1 ( ) (T T C C0 )

in which ρ  is the density, T  is the temperature, C  is the concentration of light 
material, α  is the coefficient of thermal expansion, β  the coefficient of 
compositional expansion and a subscript denotes a reference value. The other 
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equations of the system are, respectively, those of linear momentum, heat, induction, 
material diffusion, continuity and Gauss' law: 
  (2.2) ( ) 2 1

0 0 ˆ/ 2t pρ ρ ν μ−⎡∂ ∂ + ⋅ + × ⎤ = −∇ + ∇ + ∇× × −⎣ ⎦u u u ω u u B Β z∇ gρ

B
0

  (2.3) 2/T t T Tκ∂ ∂ + ⋅ = ∇u ∇
  (2.4) / ( )t η∂ ∂ = ∇× + ∇B u × B
 /C t C∂ ∂ + ⋅ =u ∇  (2.5) 
 0,    0⋅ = ∇ ⋅ =u B∇  (2.6) 
Here u  is the velocity, p  the pressure,  the magnetic induction, T  the temperature, 

 the time, ω  the angular velocity, 
B

t μ  the magnetic permeability,  the uniform 
gravitational acceleration and  is a unit vector in the direction opposite to that of the 
gravity. Note here that we have used a tilde to refer to dimensional variables. 

g
ẑ

 
We intend to investigate a solution of these equations in the form of a uni-directional 
flow rising vertically (i.e. in a direction opposite to that of gravity) in a column of 
finite thickness surrounded by in infinite fluid having the same material properties.  
The first step is to cast the equations into dimensionless form. To do this, we note that 
the system (2.2)-(2.6) allows a static solution in which the flow, temperature and 
magnetic induction are 
  (2.7) 0,   ,   ,   T z T C Cγ= = = + =0u 0 B B 0

where  is the coordinate measured vertically upwards, is a constant and the 
pressure is governed by  

z
0

B

 [ ]ˆ 1op g zρ αγ∇ = − −z  (2.8) 
This solution can be used to identify the characteristic units of the relevant variables. 
It transpires that the appropriate length scale for the problem is the salt finger length 
scale defined by  

  (2.9) ( 1/4/L νκ αγ= )g

)

We take the difference between the concentrations of the column and surrounding 
fluid, , as the characteristic unit of concentration of light material. Our interest lies 
in motions due to this difference in concentration and for this reason we take a unit of 
velocity, U , as  

dC

 ( 1/2/dU C gβ κ αγν=  (2.10) 
and in order to maintain a balance between compositional buoyancy and temperature 
stratification, we take /Cβ α  as a unit of temperature. Finally, the unit of pressure is 

taken as ( 1/43
0 /dC g )ρ β νκ αγ  and that of magnetic induction is 0B . The appropriate 

time scale for the instabilities is the convective time scale 
  (2.11) / /ct L U CgLν β= =

The dimensionless equations can now be written as: 

 ( )2
0 0

1 ˆ
m

D QcR p C C T T
Dt R C

τ
σ β

⎛ ⎞
+ = −∇ +∇ + ⋅∇ + − + − −⎜ ⎟

⎝ ⎠

u ω×u u B B z  (2.12) 

 2ˆ/RDT Dt Tσ + ⋅ = ∇u z  (2.13) 
 / ( )m mR t Rσ σ∂ ∂ = ∇× +∇B u × B B  (2.14) 
 =/ 0DC Dt  (2.15) 
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 0,    0∇⋅ = ∇ ⋅ =u B  (2.16) 
Here the variables without a tilde are dimensionless and we used the mobile operator 

 .D
Dt t

∂
≡ + ∇
∂

u  (2.17) 

The equations (2.12)-(2.16) involve five dimensionless numbers : the Prandtl number, 
σ , the magnetic Prandtl number, mσ , R  ( measure of compositional buoyancy), the 
Taylor number, Ta (which is a measure of rotation), and the Chandrasekhar number, 

( which is a measure of the magnetic filed). They are defined by Qc

 
2 22 2

22
,    ,    ,    ,    ,m

L LULR Ta Qcν νσ σ τ
κ η ν ν μρν

⎛ ⎞
= = = = = =⎜ ⎟

⎝ ⎠

0ω B
η

 (2.18) 

As we are interested in plume flows, we assume solutions of the form  
 ( ) ( ) ( )†ˆ, , , , , ,x y z t w x x y z tε= + +u 0 z u  (2.19) 

 ( ) ( ) ( )†, , , , , ,bp x y z t p p x p x y z tε= + +  (2.20) 

 ( ) ( ) ( )†, , , , , ,bT x y z t T T x T x y z tε= + +  (2.21) 

 ( ) (†
0, , , , , ,m )x y z t Re x y z tσ ε= +B B b  (2.22) 

 ( ) (†
0, , , ( ) , , ,C x y z t C C x C x y z tε= + + )  (2.23) 

where 

 ( ) ( ) ( )22
0 0

0 0,       
2 2b b

m

Qcz z z z z z
p p T T 0

R R RC σ σ σβ
− − −

= − + + = +
B

 (2.24) 

The variables with subscript 'b' refer to the state (2.7) while the variables with an 
'overbar' constitute a mean state driven by thermal and viscous diffusions and those 
with a dagger superscript correspond to perturbations of small amplitude ε . 

The unit vectors along the magnetic field and rotation are assumed of the form 

 ( ) ( )0
ˆˆ 0, , ,    0, ,H z H zB Bω ω= =ω B  (2.25) 

in which  
 2 2 2 21,        + 1H z H zB Bω ω+ = =  (2.26) 

Note that both rotation vector and magnetic induction have no components in the 
x −direction. This is because non-zero components for a basic state depending on x  
only is associated with difficulties that complicate the situation and we will not dwell 
on them here.  
 
We now substitute from equations (2.19)-(2.23) into equations (2.12)-(2.16) to obtain 
equations involving both mean state variable and fluctuating variables. If we neglect 
all terms proportional to 2ε  or smaller, and take the mean of the equations we obtain 
the mean state equations as 

 ( )H
dp w x
dx

ω τ= −  (2.27) 

 
2

2

d w T C
dx

− =  (2.28) 

 
2

2 0d T w
dx

− =  (2.29) 

Equations (2.28) and (2.29) can be combined in 
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2

2 ,           d Y iY iC Y T iw
dx

− = = −  (2.30) 

The basic state equation for C  is automatically satisfied (because the material 
diffusion has been neglected). It is then left to us to choose the form of C .  We will 
deal with this later. 
 
If we subtract equations (2.27)-(2.29) from equations (2.12)-(2.16) after using (2.19)-
(2.24) and neglecting terms proportional to 2ε , we obtain the linearised perturbation 
equations of the problem as  

 
( ) ( )

( )

2 † † † † † †
0

† †
†

ˆ ˆˆ

ˆ ˆ            

Qc C T p

R w Dw
t z

τ∇ + ⋅∇ + + −∇ −

⎡∂ ∂
= + + ⋅⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

u B b z ω×u

u u u x z
⎤  (2.31) 

 ( )
† †

2 † † †ˆ T TT R w
t z

σ ˆ DT
⎡ ⎤∂ ∂

∇ − ⋅ = + + ⋅⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

u z u x  (2.32) 

 ( ) ( )
†

2 † † †
0ˆ ˆ ˆ. m R Dw

t
σ

⎡ ⎤∂
∇ + ∇ = − ⋅⎢ ⎥

∂⎢ ⎥⎣ ⎦

bb B u x b z  (2.33) 

 
† †

0C Cw
t z

∂ ∂
+ =

∂ ∂
 (2.34) 

  (2.35) † 0,    =0⋅ = ∇ ⋅u b∇ †

We are now required to solve the equations (2.27)-(2.30) for the basic state after the 
form of C  has been prescribed and then examine the stability of the basic state 
solution using equations (2.31)-(2.35) together with the appropriate boundary 
conditions. 
A good understanding of the dynamics of plumes is perhaps acquired by first studying 
an idealised model and then improving it gradually. This will help us to understand 
the dynamical significance of the various factors affecting the dynamics of the 
plumes.  
 

3. The Cartesian plume 
 
Consider a Cartesian system of coordinates ( ), ,O x y z  in which Oz  is vertically 
upwards and  are horizontal. Assume a top-hat profile for the basic state 
concentration of light material.  

,Ox Oy

 0
0

0

1      if   
0      if   

x x
C C

x x
⎧ <⎪− = ⎨ >⎪⎩

 (3.1) 

This represents a column of light material, of dimensionless thickness 02x ,  rising in 
an infinite less buoyant fluid (see Figure 6). This model is called the "Cartesian 
Plume" for convenience. 
The column is bounded by two vertical interfaces at 0x x= ±  across which the 
concentration of light material C  experiences sudden jumps. This is not a very 
realistic form of basic concentration profile but it is a very good approximation to 
plume carrying material of a very different nature from its surroundings. The two 
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vertical interfaces remain material surfaces and the boundary conditions at every 
interface are: 

(i) continuity of velocity 
(ii) continuity of magnetic field 
(iii) continuity of linear momentum 
(iv) continuity of temperature 
(v) continuity of heat flux 
(vi) continuity of magnetic flux 
(vii) the interface is a material surface 

 

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

w̄ (x)
z 

y 

−x
0
 x

0
 

ω 
B 

g 

C
0
 C

0
 C0 +C̄

T̄ (x)

 
Figure 6. The geometry of the model. The plume is contained between the two discontinuous vertical 
lines at 0x x= ± , shown here for . 0 0.5x =
 
 

3.1 The basic state of the Cartesian plume  
 
The basic state equations (2.30) and (2.27) can easily be solved subject to the 
conditions that  , to get  , /Y dY dx

 ( )
0

0

0 0

cosh( ) 1,                                        
,

exp( )sinh( ),                                 

kxe kx x
Y x

k x kx x x

−⎧ − <⎪= ⎨− − >⎪⎩

x
 (3.2) 

and  

 ( )
( )

0
0

0 0

sin( ) / ,                                
Im

exp( )sinh / ,                    

kx

H

e kx k x xp x
k x kx k x xω τ

−⎧ <⎪= ⎨ − >⎪⎩∓
 (3.3) 

where  
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  (1 ) / 2k i= +  (3.4) 
The solution (3.2) and (3.3) is illustrated in Figure 7.  We see that the pressure 
which is non-zero only when the rotation vector is inclined to the vertical is an 
odd function of x  while the flow and temperature are both even in x .  
 
The flow is oscillatory and this has an effect on the flow within the plume. If the 
plume is wide, the flow within the plume can slow down in the middle of the 
plume or even reverse direction. This has the effect on the material transport 
which can decrease for certain thicknesses of the plume. 
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Figure 7. The profiles of the basic state of the Cartesian plume variables , ,w T p  for 3 different 

plume thickness. Note the reverse flow when 0 5.0x =  

 
 
The basic state (3.2) is associated with material, heat and buoyancy fluxes 
governing the transport of light material upwards and heat downwards resulting in 
a total  flux, . These fluxes are defined by  BF

( ) ( )0 0
1 1,    ,    

2 2m H BF w C C dA F w T T dA F F F
L L H mα β

∞ ∞

−∞ −∞
= − = − =∫ ∫ +  (3.5) 

where the integrals are taken over a specified area and  is a measure of the 
horizontal length of the interfaces. We use the characteristic units of 

, 

L

( )1/42 2 3 3 3/dC gβ κ να γ ( )1/42 3 3/dC gβ ακ νγ , ( )1/42 2 3 3 3/dC gβ ακ να γ  of heat, 
respectively, material and buoyancy fluxes to get the expressions  

 1 1,   ,    
2 2m H BF wCdx F wTdx F F

∞ ∞

−∞ −∞
= = =∫ ∫ m HF+  (3.6) 

Using the expressions (3.2) and (3.1) in (3.6) we obtain 
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 ( ) ( ){ }0 2
0 0

2 1 cos 2 sin 2
4

x
mF e x x− ⎡ ⎤= − +⎣ ⎦  (3.7) 

 ( ) ( ) ( ){ }0 02 2
0 0 0 0

1 3 2sin 2 1 cos 2 sin 2
4 16

x x
HF x e x e x x− − ⎡ ⎤= + − + +⎣ ⎦

 (3.8) 

 ( ) ( ) ( ){ }0 02 2
0 0 0 0

1 2sin 2 1 cos 2 sin 2
4 16

x x
BF x e x e x x− − ⎡ ⎤= + − +⎣ ⎦  (3.9) 
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Figure 8. The profiles of the fluxes of the basic state of the Cartesian plume. 
 

 
The dependence of these fluxes on the thickness of the plume is illustrated in 
Figure 8.  We find that the material diffusion increases from 0 at  to a 
maximum value of 0.36883 at 

0 0x =

0x = 2.21102 and then decreases to a local 
minimum of 0.35291 at 0x =4.44103 and increases again to 0.35358 at 0x = 6.72 

before it decreases slowly to a limiting value of 2 / 4  as . The negative 
heat flux decreases from 0 at 

0x →∞

0 0x =  to a minimum of -0.28277 at  0x = 2.632 
before it increases to a maximum of -0.26408 at 0x = 4.913 and then decreases 

gradually to -3 2 /16  as .  The total buoyancy, , which is the sum of 
the material and heat fluxes also oscillates as 

0x →∞ BF

0x  increases. It increases from 0 to a 
maximum of 0.12893 at 0x = 1.221 and then decreases to 0.08048 at 0x = 2.99 
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before it increases to a local maximum of 0.08905 at 0x = 5.116 and then 
decreases to a local minimum of 0.08835 at 0x =7.35 before it increases slowly to 

a limiting value of 2 /16  as . The ratio, = 0x →∞ rF /H mF F  behaves in a way 
similar to the buoyancy flux; it acquires two local maxima of 0.77718, 0.75103 at 

0x  = 2.886, 7.264, respective, separated by a local minimum of 0.74786 at 0x = 
5.052 and approaches the value 0.74999 as . This shows that the material 
flux always exceeds the numerical value of the heat flux resulting in a positive 
buoyancy flux for all . This result will have a profound result on the 
stability of the plume flow, as we shall see later. It is interesting to note that the 
normalised buoyancy flux, , also vanishes for 

0x →∞

0 0x ≠

BXF 0 0x =  and increases to a 
maximum of 0.13926 at  before it decays to 0 as . 0 0.66x = 0x →∞
 
3.2 The stability of the Cartesian plume  
   
It is of interest to examine the stability of the plume flow obtained above. The 
stability problem has been discussed in detail by Eltayeb and Loper (1994). Here 
we will give the main points of the analysis. 
 
Eltayeb and Loper found that instability sets in for all non-zero values of the 
forcing parameter R . They then adopted an expansion in the small parameter R  
in order to examine the linear stability of the plume. 
The stability of the system is examined by assuming that the surface at 0x x=  is 
given a small harmonic disturbance of the form  
 [ ]0 exp ( ) . ,   x x t i my nzε= + Ω + − +c c  (3.10) 
in which c.c. stands for the 'complex conjugate'. Here Ω  is the growth rate and 

 are the wavenumber components in the ( ,m n ) ,y z plane. The disturbance (3.10) 
will propagate into the infinite fluid so that  

 
{ }

( ) ( ) ( ) ( ){ } [ ]

† † † †, , ,

         , , , exp ( ) .

p T C

x inp x T x C x t i my nz c c= − Ω + − +

u

u
 (3.11) 

and the interface at 0x x= −  will be disturbed to take the form  
 [ ]0 exp ( ) . ,   x x t i my nzηε= − + Ω + − +c c  (3.12) 

where η  is an amplitude factor to be found. 
 The stability analysis will determine a dispersion relation for the growth rate 

 as a function of the wavenumbers , and the parameters Ω ,m n 0 , ,x σ η . 
 Let us consider the simple case in which the magnetic field and rotation are 
both absent first in order to explain the stability analysis in some detail. 

 
3.2.1 Standard Cartesian plume 
 
Suppose that †

0 0= = =ω B b  so that there is no magnetic field and no rotation. We 
find it convenient to define   

 ( ), ,inu nv w= − −u ,  (3.13) 
and express the perturbation equations in component form: 
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 u Dp R uΔ − = Ω  (3.14) 
 v mp R vΔ + = Ω  (3.15) 
 2w T C n p R w inw u⎡ ⎤′Δ + + + = Ω −⎣ ⎦  (3.16) 

 T w R T inT uσ ⎡ ⎤′Δ − = Ω −⎣ ⎦  (3.17) 

 0CΩ =  (3.18) 
 0Du mv w+ + =  (3.19) 
Here we have defined 

 ( )2 2 2, ,dD D m n inw
dx

= Δ = − − Ω = Ω− x  (3.20) 

Using equations (3.14)-(3.16) and (3.19), we derive the useful relation  
 2p T Rinw u′Δ − = . (3.21) 

The boundary conditions can be stated as (see Eltayeb and Loper, 1991) 

 ( ) ( )
( )

0 0

0

0 0

(i) , , , , 0   as    ,
(ii) , , , , ,   are continuous across   ,

 ,

(iv) i ( ) i .
x x

u v w T p x
u v w T p DT x x

iii Dw C x

nu x nw x

εη
± ±

→ →∞

= ±

=

− = Ω−

 (3.22) 

where the angular brackets in (3.22),(iii) denotes the jump defined by  
 ( ) ( )0X X X

α
α α 0= − − + . (3.23) 

Now that we have transformed the equations and boundary conditions in the form of 
ordinary differential equations with appropriate boundary conditions, we use the small 
parameter, R, in an expansion scheme: 

 ( ) ( ) 1

0 1
, , ,      s s

s
s s

sf t f t R R
∞ ∞

−

= =

= Ω =∑ ∑x x Ω

)

, (3.24) 

in which ( ,f tx  stands for any of the perturbation variables and  is the position 
vector. The difference in the exponent of 

x
R  from that in the expansion (4.17) used 

originally by Eltayeb and Loper (1991) is to accommodate the different time scale 
used here while preserving the notation for Ω . 
 
The method of solution now proceeds by using the anstaz (3.24) into the equations 
(3.14)-(3.21) and the boundary conditions (3.22) and then equating the coefficients of 
the different powers of R to zero to obtain a hierarchy of systems of equations which 
can be solved seriatim. The standard Cartesian plume requires consideration of the 
first two such problems in order to close the eigenvalue problem.  We shall now 
consider these two problems, but before we do that we note that equation (3.18) 
implies that  

 0C = , (3.25) 
everywhere. 

Problem 0 
The coefficients of 0R  give the system 

 2
0 0 0 0w T n pΔ + + = , (3.26) 

 0 0 0T wΔ − = , (3.27) 
 0 0 0p TΔ − = , (3.28) 
 0 0 0u DpΔ − = , (3.29) 
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 0 0 0v mpΔ + = , (3.30) 
 0 0 0 0Du mv w+ + = . (3.31) 

This set of equations splits into two subsets. One subset is composed of equations 
(3.26)-(3.28), the other contains the rest of equations. The former set can be solved 
first. However, before we proceed to solve the equations, we note an important 
observation. The first set of equations involves the variables  and the 
equations governing this subset contain only even derivatives. This means that the 
solutions of this set fall into two uncoupled categories of even and odd solutions in 

0 0 0, ,w T p

x . When we examine the second subset of equations, we find that  has the same 
parity as  while  has a different parity. This means that one category is 
associated with  even and  odd. This will be referred to as the even 
solution or the varicose mode. The other solution is associated with odd  
and even  and will be referred to as the odd solution or the sinuous (or meandering) 
mode. 

0v

0 0 0, ,w T p 0u

0 0 0 0, , ,w T p v 0u
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0u
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Figure 9. The profiles of the plume interfaces for the two types of solutions of the perturbation 
equations 
The consequence of the parity property is that the two interfaces are either in-phase 
corresponding to the sinuous mode in which case  

 1η =  (3.32) 
or out-of-phase giving a varicose mode and then  
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 1η = −  (3.33) 
The two forms of undulations are illustrated in figure 9.  
The significance of the parity property is that we can solve the problem in the semi-
infinite interval [0,∞ ) using the parity conditions at 0x =  and the boundary 
conditions at   0x x= . We find that 

when   00 x x≤ <  :            

 

{ }

{ } 0

0 0 0 0

3
3 2

1

, , ,

cosh ;         for varicose mode
, , ,

sinh ;         for sinuous mode
j

jx
j j j j j

j j

w T p v

x
A e

x
λ

λ
μ μ μ λ

λ
−

=

⎧ ⎡ ⎤⎪ ⎣ ⎦= − ⎨
⎡ ⎤⎪ ⎣ ⎦⎩

∑
 (3.34) 

 . (3.35) 0
3

0
1

sinh ;         for varicose mode

cosh ;         for sinuous mode
j

jx
j j

j j

x
u A e

x
λ

λ
λ

λ
−

=

⎧ ⎡ ⎤⎪ ⎣ ⎦= ⎨
⎡ ⎤⎪ ⎣ ⎦⎩

∑

and when 0x x> : 

 
{ }

{ } [ ]
[ ]

0 0 0 0

3
03 2

1 0

, , ,

cosh ;         for varicose mode
, , ,

sinh ;         for sinuous mode
j x

j j j j j
j

w T p v

x
A e

x
λ λ

μ μ μ λ
λ

−

=

⎧⎪= − ⎨
⎪⎩

∑
, (3.36) 

 , (3.37) 
3 0

0
1 0

cosh ;         for varicose mode

sinh ;         for sinuous mode
j

jx
j j

j j

x
u A e

x
λ

λ
λ

λ
−

=

⎧ ⎡ ⎤⎪ ⎣ ⎦= − ⎨
⎡ ⎤⎪ ⎣ ⎦⎩

∑

where  

 
2

2
,

2 2 3
j

j
j j

A
n

μ
λ μ

=
⎡ ⎤+⎣ ⎦

 (3.38) 

 ( )1/23 2 2 20,     j j j jn mμ μ λ μ+ + = = + + n  (3.39) 
The expression for the growth rate is obtained from the boundary condition (3.22),(iv) 
as  

 ( ) 0
3

21
0

1

1
2

j x
j j

j

w x A e
in

λλ −

=

Ω
= ± ∑  (3.40) 

The solution of problem 0 is now complete. The growth rate 1Ω , as in  (3.40), is  
purely imaginary indicating that the disturbance is neutral at this degree of 
approximation. In order to determine the stability we must consider the next order 
problem. 
 

Problem 1 
 
The coefficients of 1R  give  

 2
1 1 1 1 0 0w T n p R w inw u⎡ ⎤′Δ + + = Ω −⎣ ⎦  (3.41) 

 1 1 1 0 0T w R T inT uσ ⎡ ⎤′Δ − = Ω −⎣ ⎦  (3.42) 

 1 1 2 0p T Rinw u′Δ − =  (3.43) 
 1 1 1u Dp R u0Δ − = Ω  (3.44) 
 1 1 1v mp R v 0Δ + = Ω  (3.45) 
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 1 1 1 0Du mv w+ + =  (3.46) 
The boundary conditions take the form  

 
1 1 1 1 1

1 1 1 1 1 1 1 0

1 0 2

(i) , , , , 0   as    ,
(ii) , , , , , ,Dw   are continuous across   ,
(iii) i ( ) .

u v w T p x
u v w T p DT x x

nu x

→ →∞

= ±
− = Ω

 (3.47) 

This system can be solved in the form of complementary function and particular 
integral for each variable and the application of the boundary conditions yields a 
dispersion relation for the growth rate 2Ω . Alternatively, a solvability condition can 
be derived to obtain an expression for 2Ω . The calculations are lengthy and laborious 
but straightforward.  It can be written that  

 , (3.48) 2 0 0 1 0( , ; ) ( , ; )P P Pc m n x c m n xσΩ = +
so that the growth rate is linear in Prandtl number.  Here the P is a parameter denoting 
parity so that there are two expressions one for the varicose mode and the other for the 
sinuous mode. The detailed derivation of (3.48) can be found in Eltayeb and Loper 
(1994) or as a special case of Eltayeb et al. (2005) Appendix A. 
 
It turned out that the expressions 0 1,P Pc c  are both real so that 2Ω  represents growth if 

 giving instability or decay when 2 0Ω > 2 0Ω <  representing stability.   For every 
fixed pair ( 0,xσ ), 2Ω  is maximized over the wavenumber pair ( ),m n  to identify the 
maximum growth rate 0( , )c xσΩ  and the associated wavenumbers . Once the 
wavenumbers of the preferred mode are found, we can calculate 

,c cm n

1cΩ  to obtain the 
phase speeds  

  (3.49) 1 / ;        / ;     ( 0)z c c y c z cU in U n U m m= Ω = ≠

The set (  defines the preferred mode of instability. It is found that the 
Cartesian plume is unstable for all values of 

), , ,c c c zm n UΩ

0,xσ   even when .    0x →∞
The vertical wavenumber of the preferred mode is always non-zero. The horizontal 
wavenumber, , can take non-zero values and the instability is 3-dimensional in 
which case the waves propagate in a direction inclined to the vertical. If, however, 

 and the instability is 2-dimensional, the waves propagate vertically. The 
instability then takes one of four types of mode: vertical varicose, ,  oblique 
varicose, , vertical sinuous, , and oblique sinuous, . The instability is 
summarised in a stability regime in Figure 10.   

cn

cm

0cm =

vV

oV vS oS
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Figure 10. The regions of mode preference for the instability of the Standard Cartesian plume. The 
broken curve represents the position of the overall maximum growth rate for given σ . Note that the 
values of 0x  vary between 1.4 and 1.7. 
 
 
 
 
The growth, ,  of the preferred mode is a function of the two parameters cΩ 0,xσ . It 
is interesting to examine its dependence on these two parameters. For fixed σ , 

increases as cΩ 0x  increases from 0 reaching a maximum, maxcΩ , before it decreases 
rapidly at first and then slowly  but always remaining positive as .  
varies between 1.4 and 1.7. The smaller values occur for small 

0x →∞ maxcΩ
σ  and belong to the 

sinuous vertical mode, , while the larger values occur for large vS σ  and the oblique 
varicose mode (see Figure 11). As σ  increases from 0, maxcΩ  initially decreases  but 
as σ  exceeds 4.0 it begins to increase with the increase of σ . However, as 0x  
increases for large values, the growth rate decreases with σ . 
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Figure 11. The dependence of the growth rate, cΩ , of the preferred mode on the thickness of the 
plume for different values of σ . Note that the dotted curve corresponds to σ = 3.0 and the broken one 
to σ = 4.0. 
 
 
 
3.2.2. Magnetic Cartesian plume 
 
When a magnetic field is introduced into the Cartesian plume, the relevant equations 
are obtained from (2.31)-(2.35) by setting 0H zω ω= = . The boundary conditions are 
given by (3.22) with the addition of the continuity of the magnetic field everywhere. 
For detailed expressions for the equations and boundary conditions see Eltayeb et al. 
(2004, 2005).  
 
The basic state is the same as for the standard Cartesian plume with the addition of the 
uniform ambient magnetic field .  The solution has the same structure as that 0B
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obtained for the Standard Cartesian plume with the zeroth order solution taking the 
form 

{ }

{ } 0

0 0 0 0

3
3 2 2

1

, , ,

cosh ;         for varicose mode
, , , i

sinh ;         for sinuous mode
j

jx
j j j j j

j j

w T p b

x
A e

x
λ

λ
μ μ μ δμ

λ
−

=
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⎡ ⎤⎪ ⎣ ⎦⎩

∑
 (3.50) 

 

{ } { }
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23
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sinh ;         for varicose mode, i
,

cosh ;         for sinuous mode
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λμ δμ
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μ δ λ
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=
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∑  (3.51) 

For 00 x x≤ < ; and  

{ }

{ } [ ]
[ ]

0 0 0 0
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, , ,

cosh ;         for varicose mode
, , , i

sinh ;         for sinuous mode
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μ μ μ δμ
λ

−

=

⎧⎪= − ⎨
⎪⎩

∑
 (3.52) 

{ } { }23 0

0 0 2 2
1 0

cosh ;         for varicose mode, i
,

sinh ;         for sinuous mode
j

jj j x
x j j

j j j

x
u b A e

Q x
λ

λμ δμ
λ

μ δ λ
−

=

⎧ ⎡ ⎤− ⎪ ⎣ ⎦= − ⎨+ ⎡ ⎤⎪ ⎣ ⎦⎩
∑  (3.53) 

for 0x x> . Here we have defined  

 
( )
2 2

2
,

2 2 1 3
j

j
j j

Q
A

Q n

μ δ

λ μ δ

+
=

2⎡ ⎤+ +⎣ ⎦
 (3.54) 

 ( ) ( )1/23 2 2 21 0,     j j j jQ n m nμ μ δ λ μ+ + + = = + + 2 , (3.55) 

 21
c

v

QQ
B

=
+

. (3.56) 

The next order problem leads to a solvability condition giving a real growth rate : 2Ω

( ) ( ) ( ) (2 0 20 0 2 0 2 0, ; , , , , ; , , ; , , ; ,m i m mm n x Q m n x Q m n x Q m n x Qσ σ σ σΩ = Ω + Ω + Ω )
 (3.57) 

The instability problem gives rise to the same four modes of instability encountered in 
the Standard Cartesian plume but here affected by the presence of the magnetic filed, 
as represented by Q, and by magnetic diffusion, as represented by mσ . We will 
discuss the main features on the instability introduced by the field. 
 
The unexpected result here is that the magnetic field is unable to stabilise the system, 
although it tends to decrease the magnitude of the growth rate. Indeed, it is found that 
the system is unstable for all values of the parameters 0 , , ,mx Qcσ σ , although the 
regime diagrams suffer some changes of mode arrangement. A sample is given in 
figure 12 .  
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Figure12. The regime diagram in the 0x σ−  plane illustrating the regions where the different modes 

are preferred for a horizontal magnetic field (Bv = 0.0) when 0.0mσ = . (a), (b), (c), and (d) 
correspond to Qc taking the values 0.0, 0.20, 1.0 and 100.0, respectively. The discontinuous curve 
refers to the position of the global maximum with growth rate maxΩ  We note that the horizontal 
magnetic field tends to suppress the vertical modes for small values (≤ 1.2) of x0 and enhance them for 
large x0. The vertical wavenumber is about unity for the vertical mode when x0 is small and is less than 
unity for all other modes. The horizontal wavenumber, on the other hand, is rarely in excess of 0.4.  
 
 
The inclination of the field plays an important role in the stability problem. The 
introduction of a vertical component to a model with a horizontal field introduces two 
factors: (i) it suppresses the vertical sinuous mode for moderate to large values of 0x  
at the expense of the oblique sinuous mode and suppresses the oblique sinuous mode 
for small values of 0x  at the expense of the vertical sinuous mode. There is very little 
influence on the varicose mode (see Figure 13) and (ii) for certain moderate values of 
field inclination, the growth rate is enhanced (see figure 14). The influence of 
magnetic diffusion is always stabilizing (see figure 15). However, its effect on the 
type of unstable mode depends on the strength of the magnetic field. For small fields, 
it suppresses the vertical sinuous mode present for small values of 0x , but it enhances 
the same mode for large amplitudes of the field (see figure 16). 
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Figure 13. The x0-σ regime diagram in the case Qc=1.0, σm =0.0 illustrating the effect of increasing the 
vertical component of field as follows: (a) Bv = 0.02,  (b) Bv = 0.1, (c) Bv = 0.2, (d) Bv = 0.5. Compare 
(a) with Figure 4(c) for Bv = 0.0. While the varicose vertical mode disappears once the vertical field is 
non-zero, the regions of preference of the sinuous mode are only partly suppressed for small vertical 
fields as in (a). Further increase in Bv leads to further suppression of the sinuous vertical mode for large 
x0 but at the same time a new sinuous vertical mode appears for smaller (less than about 1.2) x0 and 

4.0σ ≥ . This new vertical mode region expands into smaller x0 direction and eventually extends to 
the region for oblique varicose mode present for small x0 (see (c)). Further increase of Bv to about 0.4, 
leads to the migration of this region towards the σ-axis and eventually to the complete disappearance of 
the vertical mode. 
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Figure 14. The critical mode parameters ( , , ,c c c cm n δΩ ) as a function of the vertical field inclination 
Bv for xo = 1.8,  σ = 5.0, σm  = 0.0 for different values of Qc. This is a case in which the vertical field 
enhances the growth rate in a certain range of inclination. We observe the changing profile of the 
growth rate as Qc increases. 
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Figure 15. An illustration of the conflicting influences of the vertical field and magnetic diffusion on 
the preferred mode of convection as experienced at a point (1.8, 5.0) in the oblique varicose mode 
region in the regime diagram.  Here (a) σm = 0.0, (b) σm = 0.5, (c) σm = 1.0,  (d) σm = 4.0, and the 
Arabic numerals refer to the value of Qc.  We note that in the absence of magnetic diffusion (i.e. when 
σm= 0) the vertical field component can enhance instability (as in (a)) but an increase in magnetic 
diffusion acts to suppress this destabilizing influence so that when σm is about unity, the enhancement 
of growth rate by the vertical component of field has completely disappeared and thereafter the 
maximum possible growth rate for field strengths is the value in the absence of the field. Such a value 
can only occur for a certain value of Bv which depends on σ. The wavenumbers experience a jump for 
the modes with the two local maxima. However, for the cases which touch the line for Qc = 0 the 
wavenumbers vary continuously (see Figure 14). 
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Figure 16.  . The influence of magnetic diffusion on the xo -σ regime diagram when the field is inclined 
to the vertical. Here   Bv = 0.5 and (a) Qc = 1.0, σm = 0.0, (b) Qc = 1.0, σm = 5.0, (c) Qc = 10.0, σm = 0.0 
(d) Qc = 10.0, σm = 5.0. The increase of magnetic diffusion here suppresses the vertical sinuous mode 
when Qc is small and gives rise to it for small x0 when Qc is large. The discontinuous-dotted curve 
again refers to the position of the overall maximum. 
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Figure 17. Illustration of the dependence of the critical mode of the rotating Cartesian plume on the 
Taylor number, 2τ , and the direction of the rotation vector, as measured by Hω . The jump in the 
wavenumbers indicates a change of mode from varicose for small τ  to sinuous for large τ . The figure 
is drawn for  and four values of 0 3.0x = Hω  as labelled. The change of parity depends on the value 

of 0x : there is no change of mode for small 0x  (<~1.5) in which case the varicose mode is preferred. 

Note that ncγ is always negative. 

 

 
3.2.3 Rotating Cartesian plume 
 
 Here we examine the influence of rotation acting alone on the Cartesian plume 
(Eltayeb and Hamza 1998, Classen et al. 1999). It is found that the two Prandtl 
numbers do not enter the stability problem here. The zeroth order problem here gives 
the relation  
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( ) ( )
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0
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1

0 02
1

33
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1
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2 3

        cosh
2 3
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j

j j
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j

j j j

w x x e
in n

m x
n

λ

λ

μ
λ

μ

μ
γτ λ

λ μ

−

=

−

=

Ω
= +

+

+
+

∑

∑ e
 (3.58) 

in which  
 H zm nγ ω ω= −  (3.59) 

In contrast with the pervious the two cases, the expression for ( )1 / inΩ  is complex 
and hence the stability of the problem can be decided at this level of approximation. It 
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is noteworthy that the new term that gives ( )1 / inΩ  an imaginary part is proportional 
to the horizontal wavenumber  and rotation rate. This means that the presence of 
rotation increases the order of magnitude of the growth rate from 

m
( )O R  in the 

absence of rotation to  in its presence. This means that rotation enhances the 
instability of the plume.  An increase in the horizontal component, 

( )1O

Hω , of rotation 
tends to inhibit instability but the system is always unstable (Figure 17). It is also 
found that the horizontal component of rotation tends to suppress the sinuous mode 
for small values of τ  (Figure 18). 
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Figure 18. The regime diagram for the stability of the rotating Cartesian plume in the ( 0,x τ ) plane. 
The curves divide the plane into regions where the sinuous mode is preferred (within the curve) and 
another region where the varicose mode is preferred (outside). The curves for different values of Hω , 
as labelled, are superimposed. Note the tendency of the horizontal component of rotation to suppress 
the sinuous mode for small τ . 
 
 
 
3.2.4. Rotating magnetic Cartesian plume 
 
The rotating magnetic plume provides an example of a compositional plume under the 
simultaneous action of magnetic field and rotation. We have seen that the magnetic 
field acting alone tends to inhibit instability but can also, by its vertical component, 
promote instability. However, the growth rate remains ( )O R , as in the absence of the 
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field. The presence of rotation on the other hand, increases the order of the growth 
rate to  and instability is present at that order for all values of the thickness of 
the plume and is independent of the Prandtl number.  

( )1O

 
The combined action of field and rotation is primarily dominated by the presence of 
rotation. Instability is present for all values of the parameters and the growth rate has 

 values. The instability is independent of both Prandtl numbers ( )1O , mσ σ . However, 
the interaction of the two constraints has its significance. The conflicting influences of  
the vertical component of magnetic field and the horizontal component of rotation  is 
illustrated in Figure (figure 19). 
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Figure 19. The dependence of the critical growth rate on the inclinations of the magnetic field and 
rotation vector. The continuous (discontinuous) curves refer to the varicose (sinuous) mode. The labels 
i-v, respectively, refer to  : in (a) ( , , HQc τ ω ) taking the values  (5.0, 1.0, 0.5), (5.0, 5.0, 0.5), (5.0, 5.0, 

0.0), (2.0, 2.0, 0.5), (4.0, 4.0, 0.5) and in (b) ( , , zQc Bτ ) corresponding to  (1.0, 5.0, 0.0), (5.0, 5.0, 
0.5), (1.0, 5.0, 0.5), (5.0, 1.0, 0.5), (5.0, 1.0, 0.0). 
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3.3 Cylindrical plume 
 
When a plume of cylindrical cross-section of radius, , is studied, the results are 
qualitatively similar to those obtained for the Cartesian plume with the main 
difference being that the horizontal wavenumber is an integer ( see Eltayeb and Loper 
1997).  

0r

 
 
3.4 Helicity and α -effect of the Cartesian plume 

 
The unstable motion of compositional plumes may be relevant to the Earth's outer 
core. Motions in the iron-rich molten outer core of the Earth interact with the 
magnetic filed there to produce electromotive force (e.m.f) that helps regenerate 
the magnetic field of the earth. This process is called the geodynamo. 
 
It is known that the helicity of the small–scale of motions is conducive to dynamo 
action particularly when the magnetic Reynolds number is small. Here the helicity 
is defined by  
 ( ) ( ).H x = ∇×u u  (3.60) 
where the double angular brackets denote averaging over  and . It can be 
shown that  

y z

 ( ) (1Re
2

H x n nu v mw u vDw w Dv∗ ∗ ∗ ∗ )⎡ ⎤= − + −⎢ ⎥⎣ ⎦
 (3.61) 

Noting the parity of solutions of the Cartesian plume, we clearly see that  is 
an odd function of 

( )H x
x  with the consequence that the total helicity, , defined 

by  
totH

  (3.62) ( )totH H x
∞

−∞
= ∫ dx

vanishes whatever the values of the parameters of the problem.  
 
However, the cylindrical plume possesses a helicity function that has no definite 
parity (Eltayeb 1999) and as a result the total helicity is non-zero. 
 
Another important property of the small-scale motions in an electrically 
conducting fluid is the α − effect. This can be defined simply by assuming the the 
magnetic field and velocity fields have mean parts  depending on a large 
scale 

,B U

sL  and fluctuating parts  which vary on a short length scale . The 
equation of induction 

,b u
(2.14) then gives 

 [ ] 2 2
m m m R

t t
σ σ σ∂ ∂

+ = ∇× + + + +∇ +∇
∂ ∂
B b U×B u×B U×b u×b B b  (3.63) 

If we average this equation over the two coordinates ,x y , we obtain  

 [ ] 2
m m mR R

t
σ σ σ∂ ⎡ ⎤= ∇× + ∇× +∇⎣ ⎦∂

B U×B u×b B  (3.64) 

The quantity u×b  is the mean electromotive force due to the fluctuations at 
small length scale i.e. the small-scale motions 
 =E u×b  (3.65) 
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This quantity can be evaluated from the perturbation equations and expressed in 
the form  
 ;     , 1, 2,3.i ij jE f B i jα= =  (3.66) 
using tensor notation for the components of vectors (Malkus and proctor 1975). 
Thus the perturbations can produce a source in the direction of the ambient field 
and hence may help maintain the mean magnetic field. Such an effect is known as 
the α − effect. The mean electromotive (e.m.f) force E is a measure of it. We 
define the total e.m.f. by  
 ( ) ˆ. H y zE x B E B E= = +0E B z  (3.67) 

 ( ) ( )Im ,      Imy x z z yE n w b u b E n u b v b∗ ∗ ∗ ∗= + = + x  (3.68) 

We also find that  is odd in ( )E x x . The behaviour of the helicity and α − effect 
functions is illustrated in Figure 20. Note the discontinuity of the vorticity at the 
interfaces due to its dependence on  † /w x∂ ∂ . 
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Figure 20. The helicity, H, and α –effect, E, for a sample of the parameters:  Qc =1.0, 0 2.0,x =
τ =0.5, , 0.2zB = 0.5Tω = . Figures (a) and (c) correspond to P= 1.0 and (b) and (d) refer to P = -
1.0. The curves i – iv correspond, respectively, to the wave number pair (m, n) taking the values 
(0.2,0.5), (0.5,0.2), (0.5,0.5), (1.0,1.0). We see that the change in parity influences the α –effect more 
than the helicity. 
 
 
However, the helicity and e.m.f. the cylindrical model do not possess any parity and 
hence their total values are non-zero. See Eltayeb (1999). 
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4. Two interacting plumes 
   
It is quite possible that plumes may not always occur in isolation and it is of 
interest to examine their interaction. In particular, the layer of a few hundred 
kilometres thickness believed to exist at the inner-outer core interface of the Earth 
composed of mixed heavy iron-rich solid crystals and light fluid releases its light 
fluid component in the form of plumes which rise into the outer fluid core.  
 
In order to gain some understanding of the interaction of these plumes, we 
consider a pair of them here in the absence of rotation and magnetic field. 
 
Consider a basic concentration of light material of the form 

 

0

0 0

0 1

1 1

1

0 if            
1 if
0 if ,

if
0 if            

x x
x x x
x x cC
c x d

x d

< −⎧
⎪ − < <⎪⎪ < <= ⎨
⎪Γ < <⎪

>⎪⎩

 (4.1) 

where  
  (4.2) 1 0 1 0,      2c x d d x d x= + = + + 1

The geometry of the two-plume model is illustrated in Figure 21. 
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Figure 21. The profile of the basic concentration of the light material giving rise to two plumes. The 
two plumes divide the fluid into five regions as labelled. Region I is the primary plume, thickness 

02x ,  while region II is the secondary plume, thickness 12x . 
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The basic state equations (2.27)-(2.30) are solved with C  given by (4.1) subject 
to the conditions that  , /Y dY dx

  (4.3) 

( )

( )

5 5 0

1 1 1 0 0

3 3 3 0 1

2 2 2 1 1

4 4

exp ,                                          ,
cosh( ) sinh( ) 1,      - ,
cosh( ) sinh ,           ,
cosh( ) sinh( ) ,      c ,
exp( ),      

Y A kx x x
Y A kx B kx x x x
Y A kx B kx x x c
Y A kx B kx x d
Y A kx

= <

= + − < <

= + < <

= + −Γ < <
= − 1                                 ,x d>

−

in which  
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( ) ( )
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1 1

1 1 1 1
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3 1 0 3 1

4 1 0

sinh ,              sinh ,
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sinh sinh( ),      sinh sinh( ),

sinh sinh( ),   

kxkq kq

kx kx

kq kq

kq

A e kx e B e kx

A e kq kx B e kq kx

A e kx kx B e kx kx

A e kx kx

−− −

− −

− −

= −Γ + = −Γ

= Γ − = −Γ +

= −Γ − = −Γ +

= −Γ − ( )5 1   A sinh sinh( ),kqe kx k−= −Γ −

0

0

0x

 (4.4) 

with  
 ( )0 1,     1 i / 2q x d x k= + + = +  (4.5) 

 A sample of the profiles of the basic flow and temperature are given in Figures 22 
and 23. 
 
 
The basic state fluxes can be shown to be  

 ( ) ( ) ( )0 12 22
0 1

1 1Im 1 4 sinh sinh 1
2

kx kxkq
mF e kx e kx e

k
− −−⎧ ⎫⎡ ⎤= − − − Γ +Γ −⎨ ⎬⎣ ⎦⎩ ⎭

 (4.6) 

 ( 2
0 0

1 Im
4BF A B= − +Γ +Γ )0C  (4.7) 

where 

( )

( ) ( ) ( ) ( )

( )

0 0

0 1

1 1

2 2
0 0

0 0 0 1 1 1

2 2
0 1

1 1 ,
2

12 sinh sinh sinh sinh ,

1 1 ,
2

kx kx

kx kxkq

kx kx

A x e e
k

B e x e d kx kx x e kx kx
k

C x e e
k

− −

− −−

− −

= + −

⎧ ⎫⎡ ⎤⎡ ⎤= − + − +⎨ ⎬⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭

= + −

0 (4.8) 

and  
 H BF F Fm= −  (4.9) 

The fluxes here depend on four parameters 0 1, , ,x x d Γ . They have a complicated 
dependence on these parameters. A sample is given in figures 24-26. 
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Figure 22. The profiles of the vertical basic flow, ( )w x , for some representative values of 

0 1, , ,x x d Γ . The labels refer to the value of Γ  with the curve without label being for , while 

the figures (a), (b), (c), (d) correspond to 

0.5Γ =

( )0 1, ,x d x  taking the sets of values (2.0,2.0,2.0), 

(5.0,2.0,1.0), (2.0, 2.0, 5.0),  (2.0,5.0,1.0), respectively. Note that the curves for Γ  =0.0 correspond to 
the solution of the single plume, and that when the plume is wide the flow can reverse within the 
plume, as in (c). 
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Figure 23. The profiles of the basic temperature, ( )T x , for representative values of 0 1, , ,x x d Γ . The 

labels refer to the value of Γ  with the curve without label being for 0.5Γ = while the figures (a), (b), 
(c), (d) correspond to ( )0 , ,x 1d x  taking the sets of values (2.0,2.0,2.0), (2.0,2.0,1.0), (2.0, 2.0, 5.0), 
(2.0,5.0,1.0), respectively. 
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Figure 24.  The buoyancy flux, , of the two plume model in the (BF 0 1,x x ) plane for (  ) taking 
the values: (a)  (1.0,0.5); (b) (1.0,1.0); (c) (2.0,0.5); (d) (3.0,0.5). Here + sign refers to a local maximum 
and - sign corresponds to a local minimum. . The overall maximum values of  in the form 

,d Γ

BF

( 0 1, , B )x x F  take the values: (a) (1.39,2.21,0.13293) (b) (1.66,1.66,0.19648); (c) (1.32,1.65,0.17658); 
(d) (1.25,1.44,0.18446). The overall minimum value is 0 at the origin for all cases.  
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Figure 25. The material flux, , for the same data as in Figure 5 above. The extremum values data in 

the form (
mF

)0 1, , mx x F  takes the values: (a) (2.22,0.0,0.36883); (b) (2.62,2.62,0.4743) (c) 
(2.37,2.53,0.4085); (d) (2.28,2.35,0.45362). The overall minimum value is 0 at the origin for all cases. 
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Figure 26.The heat flux, HF , for the same data as in Figure 5 above. The overall minimum value, 

expressed in the form ( )0 1, , Hx x F , takes the values: (a) (2.63, 0.0,-0.28277); (b) (3.12, 3.12,-0.3205); 
(c) (2.78, 3.01,-0.28245): (d) (2.61, 2.91,-0.32848). ). The overall maximum value is 0 at the origin for 
all cases. 
 
 
The stability problem here can be dealt with using the same method adopted for the 
single plume. The zeroth order problem has the solution  

 ( ) ( ) ( ) ( ){ } { } ( )
3

3 2
0 0 0 0

1

, , , , , , ;      =4,5j xi i i i i
j j j j

j

w T p v m A e iλμ μ μ −

=

= −∑  (4.10) 

 

 (4.11) 

( ) ( ) ( ) ( ){ } { } ( ) ( ) ( ) ( )
3

3 2
0 0 0 0

1

, , , , , , cosh sinh ;  =1,2,3i i i i i i
j j j j j j j

j

w T p v m A x B x iμ μ μ λ λ
=

⎡ ⎤= − +⎣ ⎦∑

 ( ) ( ) (
3

4,5 4,5
0

1
expj j j

j
u A λ λ

=

= ∑∓ )x−  (4.12) 

  (4.13) ( ) ( ) ( ) ( )
3

0
1

sinh( ) cosh ;     =1,2,3i i i
j j j j j

j

u A x B x iλ λ λ
=

⎡ ⎤= +⎣ ⎦∑
where the superscript 'i' refers to the region in as in Figure 21. 
 
The application of the boundary conditions at the four interfaces 0 1 1, ,x c d±  yields a 
quartic equation for the growth rate 1Ω  in place of (3.40) obtained for the single 
plume. 

 
4 3 2

1 1 1 1
1 2 3 0

i i i i
D D D D

n n n n
Ω Ω Ω Ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
4 =  (4.14) 

in which 
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  (4.20) ( ) 0 0 11

1 2 3
j j jx x c

j jA S e e e eλ λ λ λη η η− − − −⎡ ⎤= − − Γ + Γ⎣ ⎦
1j d

1j d

1j d−

1j d−

1j d

1j d

1j d

1j d−

  (4.21) ( ) 0 0 11
1 2 3

j j jx x c
j jB S e e e eλ λ λ λη η η− − − −⎡ ⎤= + − Γ + Γ⎣ ⎦

  (4.22) ( ) 0 0 12
1 2 3

j j jx x c
j jA S e e e eλ λ λ λη η η−⎡ ⎤= − − Γ + Γ⎣ ⎦

  (4.23) ( ) 0 0 12
1 2 3

j j jx x c
j jB S e e e eλ λ λ λη η η−⎡ ⎤= − + + Γ + Γ⎣ ⎦

  (4.24) ( ) 0 0 13
1 2 3

j j jx x c
j jA S e e e eλ λ λ λη η η− − −⎡ ⎤= − − Γ + Γ⎣ ⎦

  (4.25) ( ) 0 0 13
1 2 3

j j jx x c
j jB S e e e eλ λ λ λη η η− − −⎡ ⎤= − + − Γ + Γ⎣ ⎦

  (4.26) ( ) 0 0 14
1 2 3

j j jx x c
j jA S e e e eλ λ λ λη η η−⎡ ⎤= − − Γ + Γ⎣ ⎦

  (4.27) ( ) 0 0 15
1 2 3

j j jx x c
j jA S e e e eλ λ λ λη η η− −⎡ ⎤= − − Γ + Γ⎣ ⎦

 

 
( )

2

22 2 3
j

j
j j

S
n

μ
λ μ

=
+

 (4.28) 

Here ,j jμ λ  are again given by (3.39). Using the properties of jμ it can be shown that 
the all coefficients of (4.14) are real. Now the roots of any quadratic with real 
coefficients are either real or fall in pairs of complex conjugates. In general  

 1
1 Re Imin n

in in
1Ω Ω⎧ ⎫ ⎧Ω = − ⎫

⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭

⎬  (4.29) 

 
Thus the roots of (4.14) are either all real in which case ( )1Im / i 0nΩ =  and is 

purely imaginary or there is at least a pair of complex conjugate roots for ( ) . In 
1Ω

1 / inΩ
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the former, the disturbance is neutral and the two plumes have a number of possible 
neutral modes that propagate with constant amplitudes. In the latter case, the 
imaginary parts of the complex root have different signs and 1Ω  as in (4.29) will have 
one root with positive imaginary and the other with positive real part. The root with 
the negative imaginary part gives an unstable mode whose amplitude grows 
like . The condition for instability then is that equation ( 1exp Im / in− Ω⎡⎣ )n ⎤⎦ (4.14) 
possesses complex roots. 
 
The analysis shows that the quartic equation can always possess complex roots for 
some values of the wavenumber pair ( ). Some of the results are illustrated in 
Figures 27 and 28.  

,m n

The stability problem on the two plumes is then characterised by an increase in the 
order of magnitude of the growth rate for certain values of the parameters. The 
identification of those regions in the space of the parameters 0 1, , ,x x d Γ  is extremely 
complicated. Here we summarise the main results: 

(i) When instability exists, as Γ  increases from 0, the growth rate, cΩ , of the 
preferred mode increases gradually reaching a maximum before it 
decreases to 0 at some value ( )0 1, ,x x dΓ  which can be less than 1.0 in 
some cases. 

(ii) For given 0 1, ,x x Γ  the growth rate, when instability exists, increases with 
d  reaching a maximum before it decreases to 0 at some , and  
sometimes  it appears again as d increased further  but generally with a 
much smaller growth rate. 

( )0 1, ,d x x Γ

(iii) For given 0 , ,x d Γ  the growth rate increases from 0 as 1x  increases from 0 
reaching a maximum before it decreases to 0  and further increase of 1x  
will see the appearance of instability again for large  1x . Instability can 
persist even if 1x →∞ . 
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Figure 27. The preferred mode parameters as functions of Γ  when 0 13.0, 5.0x x= =  for different 

values of , as labelled. Note that the broken curve in  refers to the d ,z cU n 5.0d = . 
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Figure 28.  The preferred mode parameters as functions of Γ  when 0 15.0, 3.0x x= =  for 

different values of d , as labelled. The dotted, broken, broken-dotted and solid curves refer to 
, respectively. 1, 2,3,5d =
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Figure 29. The types of profiles of the interfaces for the most unstable mode for some sample 
parameters  ( 0 1, , ,x x d Γ ). The data for the parameters for each sub-figure are shown in Table 1.  
 
 

Energy considerations 
 

The energy equations for the single interface derived in Eltayeb and Loper 

(1991) can be generalized to this case to get, in the present notation,  

 [ ][ ] ( ) ( ) (Re Re ReM T M T )R E E D D R M Hσ σΩ + = − + + + + J  (4.30) 

 [ ][ ] ( ) ( ) (Im Im ImM T WT WU )R E E nR E E R M Hσ σΩ − = − + + + J  (4.31) 
where  

 
( )

2
2 22 2

2

dd      d ,
d

di d ,     d ,     d ,
d

M M

WU

E x D m n x
x

wM uw x E w x B w T x
x

∞ ∞

−∞ −∞

∞ ∞∗ ∗

−∞ −∞ −∞

⎡ ⎤
= = + +⎢ ⎥

⎢ ⎥⎣ ⎦

= − = =

∫ ∫

∫ ∫

uu u

u
∞

∫
 (4.32) 

 
( )

2
2 22 2,        ,

i ,          ,     

T T

WT

dTE T dx D m n T dx
dx

dTH u Tdx E w T dx
dx

∞ ∞

−∞ −∞

∞ ∞∗

−∞ −∞

⎡ ⎤
= = + +⎢ ⎥

⎢⎣

= − =

∫ ∫

∫ ∫ 2

⎥⎦  (4.33) 

 

( ) ( )

( ) ( )

0

1 1

0 0

1 1

d d
d d

d d    
d d

0x x

c d

w wJ w x w x
x x

w ww c w d
x x

∗ ∗

−

∗ ∗

= − +

+ +

 (4.34) 
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where the jump  is defined in (3.23) above. 
When we substitute the expansion scheme defined by (3.24) into the two 

equations (4.30) and (4.31),  and equate the coefficients of the different powers of R  

to zero, we obtain a hierarchy of systems of two coupled equations determining the 

growth rate and vertical phase speed at different orders of magnitude in R . The 

zeroth order equation from (4.30) represents a balance between the term ( )  

representing the total (viscous and thermal) diffusion and the term 

0 0M TD D+

( )0Re J  

representing the transfer of compositional energy from the basic state through the 

variations of the basic state concentration, C , of the light material. This balance does 

not involve the growth rate directly. It shows that the compositional buoyancy is the 

primary force balancing diffusion. The next order balance gives  

 [ ][ ] ( ) [ ]0 0 1 1 0Re ReM T M T 0E E D D Mσ σΩ + = − + + + H

1

 (4.35) 
in which the subscript 1 in 1,M TD D  refers to the second order terms ( i.e. of order 

R )  in an expansion of these terms  in R. Note that there is no ( )O R  term for J  in 

(4.34) since  is continuous across the interfaces. This balance is between the term 1Dw

[ ](Re M TR E EσΩ + ) representing the rate of change of total (kinetic + potential) 

energy density on one hand and the excess of total transfer of energy ( kinetic + 

thermal) from the basic state to the waves through the basic state velocity and 

temperature gradients over second order loss of energy due to diffusion.  This is the 

same expression obtained for the single Cartesian plume. In the case of the single 

plume, the solution falls into two uncoupled categories of even and odd solutions in 

x . As a consequence, the zeroth order solution has the variables  having 

one parity while  has a different parity. The first order solution is associated with 

 having the parity of  and  having the parity of . Since 

both 

0 0 0 0, , ,w T p v

0u

1 1 1 1, , ,w T p v 0u 1u 0 0 0 0, , ,w T p v

,w T  are even in x , all the integrals on the right-hand side of (4.35) vanish in the 

case of the single plume. For the two plumes, on the other hand, such a clear division 

of parity is absent particularly when the two plumes are not identical (also see figure 

17 below). As a result the integrals on the right-hand side of (4.35) do not vanish and 

consequently a non-zero growth rate is obtained.  Even when the two plumes have the 

same thickness and the same strength (i.e., 1.0Γ = ), the four interfaces can possess 

solutions which lack symmetry. For example two interfaces can take varicose mode 

Eltayeb_Thedynamics of plumes_trieste_20-24july2009  Page 39 of 42 5 July 2009 



parity while the other two take sinuous mode parity (see figure 17 (a)). While either 

plume can possess symmetry or anti-symmetry individually, the two plumes taken 

together may not possess symmetry or anti-symmetry. It can then be concluded that 

the nature of the instability for the two plumes is the same as that of the single plume 

but the lack of parity in the solution is the cause of the change of order of magnitude 

of the growth rate. 

  
The helicity 

 
The local helicity function, ( )H x , vanishes everywhere for two-dimensional 

modes (i.e. when ). While the helicity of a single plume is an odd function of 0m = x  

and hence its integral over the whole range of x  vanishes even when , this may 

no longer be applicable when the motions are three-dimensional in the presence of a 

second plume. However, it was found here that the instability is mostly two-

dimensional (i.e. m  =0) and only in small intervals of some cases is the instability 3-

dimensional and consequently the total helicity is non-zero. 

0m ≠
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