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Microinstabilities in Tokamaks

• Tokamak transport is usually anomalous,     

even in the absence of large-scale MHD 

• Caused by small-scale collective instabilities 

driven by gradients in temperature, density, … 

• Instabilities saturate at low amplitude due to 

nonlinear mechanisms 

• Particles E x B drift radially due to fluctuating 

electric field 
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Amplitude of Tokamak Microturbulence

• Relative fluctuation amplitude �n / n0 at core typically 

less than 1% 

• At the edge, it can be greater than 10% 

• Confirmed in different machines using different 

diagnostics
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k-spectra of tokamak micro-turbulence 

k� �i ~ 0.1 - 0.2 

-from Mazzucato et al., PRL '82 (μ-wave scattering on ATC)

  Fonck et al., PRL '93  (BES on TFTR)

-similar results from 

 TS, ASDEX, JET, JT-60U  and DIII-D 
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Properties of Tokamak Core Microturbulence

• �n / n0 ~ 1% 

• kr �i ~ k� �i ~ 0.1 - 0.2 

• k|| < 1/qR << k�: Rarely measured 

• � - k • uE ~ �� ~ �*pi:

Broad-band � Strong Turbulence 

Sometimes Doppler shift dominates in rotating 

plasmas
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L’aspect Cinématique de la Théorie Gyrocinétique 

GTS simulation of ITG Turbulence:  S. Ethier, W. Wang et al., 
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Classification:

Free energy

Spatio-temporal Scales 

(wavelength, frequency

direction, rough mag.)

Accessibility Mechanism 

for Instability

Trapped Ion Mode

n, Te,

(ITG-TIM) Ti

	 �� ~ �*e

Trapped ion precession 

resonance (coll-less)

Collisions btwn trapped and 

passing ions (dissipative)

Ion Temp. Grad. Mode 

Ti

> �i < �*pi
Bad curvature or 

Negative compressibility 

Trapped Electron Mode 

n   or   Te

	 �i < �*e
Trapped electron precession 

resonance (coll-less)

Collisions btwn trapped and 

passing e-s (dissipative)

Electron Temp. G Mode

Te

> �e < �*pe
Bad curvature or 

Negative compressibility

Electrostatic Microinstabilities in Tokamaks
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�Standard Nonlinear Gyrokinetic Ordering I.

� Frieman and Chen, Phys. Fluids 1982

� Minimum number of ordering assumption 

• 
/�i ~ k||/k� ~ �k,
 << 1; �from spatio-temporal scales of fluctuations 

• k��i ~ 1 �for generality: 

Short wavelength modes (with higher �lin) can affect 
the modes at NL peak (k��i ~ 0.1 ~ 0.2) through NL coupling. 

�
 ~ k||vTi for wave-particle resonance 

i.e., Landau damping 

• �f/f0 ~ e�
/Te ~ 1/k�Lp ~ �
 << 1; �from small relative fluctuation amplitude 

  - k e�
/Te ~ 1/Lp: ExB Nonlinearity ~ Linear Drive 

  - �n/n0 ~ �/L ~ �roughly experimental values.
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�Standard Nonlinear Gyrokinetic Ordering II.

�• While the physics origins of �k,
 and �
 are different, 

the maximal ordering for NL GK corresponds to  �k,
 ~ �


• �k,
 >> �
 leads back to the Linear Gyrokinetics:

Taylor-Hastie, Plasma Phys. 10, 419 '68 

Rutherford-Frieman, Phys. Fluids 11, 569 '68 

Tang, Nuclear Fusion 18, 1089 '78 

Antonsen-Lane, Phys. Fluids 23, 1205 '80 

Horton, Rev. Mod. Phys 71, 735 '99 

• With �k,
 << �
, one cannot recover 

 the linear dispersion relation of instabilities: 

Self-sustained Turbulence, BS from BDS

Scott, Phys. Rev. Lett. 65, 3289 ‘90 
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� Conventional Nonlinear Gyrokinetic Equation 

[eg., Frieman and Chen, Phys. Fluids 1982] 

• �Foundations of Tokamak Nonlinear Kinetic Theory 

for analytic applications, ballooning codes... 

• Number of assumptions minimum 

• Based on direct gyro-phase average of Vlasov equation 

Lots of algebra and book keeping 

• Direct expansions in �: Self-consistent up to O(�2) �

Should be fine for linear phase and saturation due to ExB

nonlinearity

• Velocity space nonlinearity: �|| �
 �v||�f ~ O(�3)

Energy, phase space volume not conserved. 

• May not be able to describe long term behavior accurately 

Topic of Current Research: [Villard, Hatzky, Sorge, Lee, Wang, Ku] 

� Physics responsible for the difference?
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�Conventional Nonlinear GK Derivation:Heuristic

• �Transforming to guiding center variables, R = x + �, μ = v�
2/2B,

v = v||b + (e1 cos � + e2 sin �), one can write the Vlasov equation as 

• Since � >> 
, to the lowest order �(�/��)f=0

• Writing              , with                in which     indicates gyrophase 

average,

which is a solubility condition for    . 

• Gyro-phase averaging, one gets an electrostatic NL GK equation in 

a uniform B field: 

• �Frequency-wave number expansion and amplitude 

expansion,and geometric expansion (if it were included) are

all lumped together in this procedure. If one modifies an ordering, 

needs to do the derivation all over again

	

	t
f + v||b �

�

�R
f +
E �b
B

�
�

�R
f + (q /m)E||

�

�v||
f ��

�

��
f = 0

f = f + f̃ f = f >> f

~

K

�

�t
f + v||b �

�

�R
f +

E �b
B

�
�

�R
f + (q /m)E||

�

�v||
f ��

�

��
f = 0

~

f

�

�t
f + v||b �

�

�R
f +

E �b

B
�
�

�R
f + (q /m) E||

�

�v||
f = 0



Conventional (old-fashioned) Derivation of
Non-linear Gyrokinetic Equation

∙ Closely follow Guiding Center transformation by

P.J. Catto, Plasma Phys. 20, 719 (1977)

∙ Resulting equation

Frieman and Chen, PF 25, 502 (1982)

Lee, PF 26 556 (1983)

∙ Purpose: illustrate basic physics and

mathematical complexity

involved in this conventional method.



Consider uniform B = 𝐵b̂ to emphasize nonlinear effects

∙Goal: from[
∂

∂𝑡
+ v ⋅ ∂

∂x
+

𝑞

𝑚

(
E +

1

𝑐
v ×B

)
⋅ ∂

∂v

]
𝑓 (x,v, 𝑡) = 0 6D Vlasov Eqn

get (
∂

∂𝑡
+

𝑑R

𝑑𝑡
⋅ ∂

∂R
+

𝑑𝑣∥
𝑑𝑡

∂

∂𝑣∥

)
⟨𝑓⟩(R, 𝜇, 𝑣∥, 𝑡) = 0 5D GK Eqn

with
𝑑𝜇

𝑑𝑡
= 0 and

∂

∂𝜃
⟨𝑓⟩ = 0

𝜇 ≃ 𝑣2⊥/(2𝐵) : magnetic moment, an adiabatic invariant at lowest order

∙Assumption:

– 𝜔 ≪ Ω𝑐𝑖

– 𝑘∥ ≪ 𝑘⊥ ∼ 𝜌−1𝑖

– 𝛿𝑓/𝑓0 ∼ 𝛿𝑛/𝑛0 ∼ 𝑒𝛿𝜙/𝑇𝑒 ≪ 1



Guiding Center Transformation à la Catto

(x,v)→ (R,v∥, 𝜇, 𝜃), 𝜃 : gyrophase-angle

R = x− 𝝆, 𝝆 = b̂×v
Ω , Ω = 𝑒𝐵

𝑚𝑐

𝑣∥ = b̂ ⋅ v , 𝜇 = 𝑣2⊥/(2𝐵)

𝜃 defined by
⎧⎨
⎩

v = 𝑣∥b̂ + 𝑣⊥ê⊥
𝑒⊥ = −ê2 cos 𝜃 − ê1 sin 𝜃

ê𝜌 = ê1 cos 𝜃 − ê2 sin 𝜃

Note that for uniform B,

𝑑3x𝑑3v = 𝐵︸︷︷︸ 𝑑𝜇𝑑𝜃𝑑𝑣∥𝑑3R
𝐵 : “phase-space volume”



Then, we would like to express ∂
∂x and ∂

∂v in G.C. space
i.e., in terms of 𝜇, 𝑣∥,R, and 𝜃;

∂

∂x
=

∂R

∂x
⋅ ∂

∂R
+

∂𝜇

∂x

∂

∂𝜇
+

∂𝑣∥
∂x

∂

∂𝑣∥
+

∂𝜃

∂x
⋅ ∂
∂𝜃

∂

∂v
=

∂R

∂v
⋅ ∂

∂R
+

∂𝜇

∂v

∂

∂𝜇
+

∂𝑣∥
∂v

∂

∂𝑣∥
+

∂𝜃

∂v
⋅ ∂
∂𝜃

→ important to check what quantities are held constant when taking partial derivatives

Since

∂

∂x
𝜇

∣∣∣∣
v=const

= 0,
∂

∂x
𝑣∥

∣∣∣∣
v=const

= 0,
∂

∂x

∣∣∣∣
v=const

𝜃 = 0, and R = x− b̂× v

Ω

∂
∂x → only the 1st term on the R.H.S. survives⇒

∂

∂x
= I ⋅ ∂

∂R
=

∂

∂R



Also, noting that

∂

∂v

∣∣∣∣
x=const

𝑣∥ =
∂

∂v

∣∣∣∣
x=const

v⋅b̂ = b̂,
∂

∂v
𝜇 = v⊥/𝐵

∂

∂v
R =

∂

∂v
(x− b̂× v

Ω
)→ − ∂

∂v
(
b̂× v

Ω
) =

I× b̂

Ω

∂

∂v
= b̂

∂

∂𝑣∥
+

v⊥
𝐵

∂

∂𝜇
− b̂× ê⊥

𝑣⊥

∂

∂𝜃
+

I× b̂

Ω

∂

∂R
⇒

v ⋅ ∂

∂x
= 𝑣∥𝑏̂ ⋅ ∂

∂R
+ v⊥ ⋅ ∂

∂R
(1)

𝑞

𝑚
E ⋅ ∂

∂v
=

𝑞

𝑚

(
𝐸∥ ⋅ ∂

∂𝑣∥
+

E ⋅ v⊥
𝐵

∂

∂𝜇
− E ⋅ b̂× v⊥

𝑣2⊥

∂

∂𝜃

)
+

𝑐E×B

𝐵2
⋅ ∂

∂R
(2)

𝑞v ×B

𝑚𝑐
⋅ ∂

∂v
= 0 + 0− Ω

v ×B ⋅B× v⊥
𝐵2𝑣2⊥

∂

∂𝜃
+ Ω

(v × b̂)× b̂

Ω
⋅ ∂

∂R

= Ω
∂

∂𝜃
− v⊥ ⋅ ∂

∂R
(3)



We also want to express 𝜙(x) and E(x)
in terms of (R, 𝜇,v∥, 𝜃)

𝜙(x) = 𝜙(R + 𝝆(𝜃))⇒

∂𝜙

∂𝜃
=

∂x

∂𝜃

∣∣∣∣
R

⋅ ∂𝜙
∂x

=
∂𝝆

∂𝜃
⋅ ∂𝜙
∂x

=
v⊥
Ω
⋅ ∂𝜙
∂x

= −E ⋅ v⊥
Ω

∴ the 2nd term of RHS of Eq. (4.2)

𝑞

𝑚

E ⋅ v⊥
𝐵

∂

∂𝜇
= −1

𝑐
(
𝑞

𝑚
)2
∂𝜙

∂𝜃

∂

∂𝜇

Collecting all terms in Eqs. (1)-(3),

[
∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+ 𝑐

E×B

𝐵2
⋅ ∂

∂R
− 𝑞

𝑚
∇∥𝜙 ∂

∂𝑣∥
+ Ω

∂

∂𝜃
− 𝑞Ω

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
− Ω

v𝐸 ⋅ v⊥
𝑣2⊥

∂

∂𝜃

]
𝑓 = 0

(4)

−𝑖𝜔 𝑖𝑘∥𝑣∥ k⊥ ⋅ v𝐸 𝑘∥𝑣∥

(
𝑒𝜙

𝑇𝑒

)
Ω (𝑖) (𝑖𝑖)︸ ︷︷ ︸

ugly!



∙ Term (i) can be shown to be the 1st order correction to 𝜇
i.e.,

𝑑𝜇

𝑑𝑡
=

𝑑𝜇(0)

𝑑𝑡
+

𝑑𝜇(1)

𝑑𝑡
⇒ 𝑑

𝑑𝑡
(
𝑣2⊥
2𝐵

)(1) =
v
(0)
⊥
𝐵
⋅ 𝑑
𝑑𝑡
v
(1)
⊥ (𝜃)

where

𝑑

𝑑𝑡
v
(1)
⊥ =

𝑞

𝑚
(v

(1)
⊥ ×B + E(1))⇒ v

(0)
⊥ ⋅ 𝑑

𝑑𝑡
v
(1)
⊥ =

𝑞

𝑚
E

(1)
⊥ ⋅ v(0)

⊥

∙ Term (ii) similarly, 1st order correction to the gyrophase

𝜃, i.e., gyration speed is slightly nonuniform due to E
(1)
⊥ ,

→Not of primary physical interest

∙Now, we perform perturbation theory:
with

Ω≫ 𝜔 ∼ 𝑘∥𝑣∥,
𝜔

Ω
∼ 𝑒𝛿𝜙

𝑇
≪ 1, 𝑘∥ ≪ 𝑘⊥ ∼ 𝜌−1𝑖



∙ Eq. (4)⇒

Ω
∂𝑓

∂𝜃︸︷︷︸
Largest term

+

(
∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+ 𝑐

E×B

𝐵2
⋅ ∂

∂R
− 𝑞

𝑚
∇∥𝜙 ∂

∂𝑣∥
− 𝑞Ω

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇

)
𝑓 = 0

(5)

Let 𝑓 = 𝑓 (0) + 𝑓 (1) + ⋅ ⋅ ⋅ , with expansion parameter 𝛿 ∼ 𝜔
Ω ∼

𝑘∥𝑣∥
Ω ∼ ∣𝑒∣𝜙

𝑇𝑒

∙ 0-th order⇒ Ω ∂
∂𝜃𝑓

(0) = 0⇒ 𝑓 (0) is independent of𝜃,

∴ 𝑓 = ⟨𝑓⟩+ 𝑓𝐴𝐶 , ⟨⋅ ⋅ ⋅ ⟩ = 1
2𝜋

∮
𝑑𝜃{⋅ ⋅ ⋅ }gyrophase average

with 𝑓 (0) = ⟨𝑓⟩, 𝑓 (1) = 𝑓𝐴𝐶 ≪ 𝑓 (0) = ⟨𝑓⟩
∙ 1-st order⇒

Ω
∂

∂𝜃
𝑓 (1)︸ ︷︷ ︸

(a)

+

⎛
⎜⎜⎜⎝ ∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+ 𝑐

E×B

𝐵2
⋅ ∂

∂R
− 𝑞

𝑚
∇∥𝜙 ∂

∂𝑣∥
− 𝑞Ω

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇︸ ︷︷ ︸
(b)

⎞
⎟⎟⎟⎠ 𝑓 (0) = 0

(6)

(a) and (b) can be combined into

Ω
∂

∂𝜃

[
𝑓𝐴𝐶 − 𝑞𝜙

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
⟨𝑓⟩
]



∙ Taking gyro-phase average of Eq. (6): ⟨⋅ ⋅ ⋅ ⟩ = 1
2𝜋

∮
𝑑𝜃 ⋅ ⋅ ⋅

⟨Ω ∂

∂𝜃
{⋅ ⋅ ⋅ }⟩ = 0⇒[

∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+

𝑐

𝐵
b̂×∇⟨𝜙⟩ − 𝑞

𝑚
b̂ ⋅ ∂

∂R
⟨𝜙⟩ ∂

∂𝑣∥

]
⟨𝑓⟩ = 0 (7)

Finally, the electrostatic NLGK vlasov equation in uniform B

∙ ⟨𝜙⟩ contains the Finite Larmor Radius (FLR) effect!
although it’s gyrophase-averaged

𝜙(x) = 𝜙(R + 𝝆) =
∑
k

𝜙k𝑒
𝑖k⋅x =

∑
k

𝜙k𝑒
𝑖k⊥⋅R𝑒𝑖𝑘⊥𝜌 sin 𝜃

Fourier-Bessel Expansion:

𝑒𝑖𝑘⊥𝜌 sin 𝜃 =
∑
𝑛

𝐽𝑛(𝑘⊥𝜌)𝑒𝑖𝑛𝜃

∴
⟨𝑒𝑖𝑘⊥𝜌 sin 𝜃⟩ = 1

2𝜋

∮
𝑑𝜃
∑
𝑛

𝐽𝑛(𝑘⊥𝜌)𝑒𝑖𝑛𝜃 = 𝐽0(𝑘⊥𝜌)

⟨𝜙⟩ =
∑
k

𝐽0(𝑘⊥𝜌)𝜙k𝑒
𝑖k⋅R



∙Widespread Misconception: “Gyrokinetic Theory throws

away the gyrophase-dependent information”

∙ Part of Reasons: Conventional (old-fashioned) derivation

is rather opaque (much more complex in general geometry

in nonuniform B)

Illustration in this note is a bit “modernized” version than

the original papers up to mid 80’s.

– Hard to identify the role or necessity of 𝜃−dependent

information

– Also, most attention was paid to the nonlinear GK-

“Vlasov” Equations.



Gyrokinetic Poisson Equation

∙Maxwell’s Eqns are still fine!

but was NOT written in g.c. coordinates (R)

∙ So we need to express 𝑛𝑖(x) in terms of ⟨𝑓⟩(R,v∥, 𝜇)

(R, v∥, 𝜇, 𝜃)⇒ (x, v)

“Pull-Back” Transformation for GK Maxwell’s Eqn

(ES⇒ Poisson)

(x, v)⇒ (R, v∥, 𝜇, 𝜃)
“Push-Forward” Transformation for GK-Vlasov



∇2𝜙 = −4𝜋𝑒[𝑛𝑖(x)− 𝑛𝑒(x)]

∙ 𝑛𝑖(x) : typically obtained from GK Eqn

∙ 𝑛𝑒(x) : from adiabatic response for pure - ITG

or from drift-kinetic or bounce-kinetic

or from some other fluid eqns for more realistic case

“GK” required for ETG

𝑛𝑖(x) =

∫
𝑑3v𝑓𝑖(x, v, 𝑡)

=

∫
𝑑3x′𝑑3v𝑓𝑖(x′, v)𝛿(x′ − x)

=

∫
𝑑3R𝑑𝜇𝑑𝑣∥𝑑𝜃𝐵𝑓𝑖(R, 𝜇, 𝑣∥, 𝜃)𝛿(R + 𝝆− x) (8)

not quite the same ∫
𝑑3R𝑑𝜇𝑑𝑣∥𝐵⟨𝑓⟩(R, 𝜇, 𝑣∥)



Since

𝑓𝑖(R, 𝜇, 𝑣∥, 𝜃) = ⟨𝑓⟩+ 𝑓𝐴𝐶(R, 𝜇, 𝑣∥, 𝜃),

we need to know “𝑓𝐴𝐶” as well.

Back to Eq. (6):

Ω
∂

∂𝜃

[
𝑓𝐴𝐶 − 𝑞𝜙

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
⟨𝑓⟩
]
+ “

𝑑

𝑑𝑡
⟨𝑓⟩ ” = 0

and Eq. (7)

𝑑

𝑑𝑡

∣∣∣∣(0) ⟨𝑓⟩ = 0

⇒
Ω

∂

∂𝜃

[
𝑓𝐴𝐶 − 𝑞𝜙

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
⟨𝑓⟩
]
+

(
𝑑

𝑑𝑡
− 𝑑

𝑑𝑡

∣∣∣∣(0)
)
⟨𝑓⟩ = 0 (9)

𝑑

𝑑𝑡
− 𝑑

𝑑𝑡

(0)

∝ “𝜙− ⟨𝜙⟩”
integrating Eq. (9)

𝑓𝐴𝐶(𝜃) ≃ 𝑞

𝑚𝐵
(𝜙− ⟨𝜙⟩) ∂

∂𝜇
⟨𝑓⟩ (10)



Polarization Density

Eq. (8)⇒

𝑛𝑖(x) =

∫
𝑑3R𝑑𝜇𝑑𝑣∥𝑑𝜃𝐵⟨𝑓⟩𝛿(R + 𝝆− x)︸ ︷︷ ︸

𝑛𝑖,𝑔𝑐(x)

+

∫
𝑑3R𝑑𝜇𝑑𝑣∥𝑑𝜃𝐵

𝑞

𝑚𝐵
(𝜙− ⟨𝜙⟩) ∂⟨𝑓⟩

∂𝜇
𝛿(R + 𝝆− x)︸ ︷︷ ︸

𝑛𝑝𝑜𝑙(x)

∙ 𝑛𝑖,𝑔𝑐(x) : G.C. density at particle position

∙ 𝑛𝑝𝑜𝑙(x) : Polarization Density, one can dvaluate exactly for ⟨𝑓⟩ ∝ 𝑒−𝜇𝐵/𝑇 ,

i.e.,“Maxwellian in 𝜇 ∝ 𝑣2⊥”



6

�Nonlinear Gyrokinetics for Large Scale Computation

• �Direct simulation of actual size fusion plasmas in realistic geometry

using the primitive nonlinear plasma equations (Vlasov-Maxwell), is far beyond the 

computational capability of foreseeable future.

• For turbulence problems in fusion plasmas, the temporal scales fluctuations much 
longer than the period of a charged particle's cyclotron motion, while the spatial 

scales and gyro-orbits are much smaller than the macroscopic length scales: �

details of the charged particle's gyration motion are not of physical interest �
Develop reduced dynamical equations which capture the essential features 

• After decoupling of gyro-motion, gyrokinetic equation describes evolution of gyro-

center distribution function, independent of the gyro-phase, �, defined over a five-

dimensional phase space (R, v||, μ). �
save enormous amounts of computing time by having a time step greater than the 

gyro-period, and by reducing the number of dynamical variables.

• In gyrokinetic approach, gyro-phase is an ignorable coordinate, magnitude of the 

perpendicular velocity enters as a parameter in terms of an adiabatic invariant μ�

• Nonlinear gyrokinetic equations are now widely used in turbulence simulations. 
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�Modern Nonlinear Gyrokinetics

• �Starting from the original Vlasov-Maxwell system (6D), pursue 

“Reduction of dimensionality” for both computational and analytic 

feasibility. 

• Keep intact the underlying symmetry/conservation of the original 

system.

• Perturbation analysis consists of near-identity coordinate 

transformation which “decouples” the gyration from the slower 

dynamics of interest in the single particle Lagrangian, rather than a direct 

“gyro-phase average” of Vlasov equation. 

• This procedure is reversible:

The gyro-phase dependent information can be recovered when it is 

needed.



8

Phase Space Lagrangian Derivation of Nonlinear Gyrokinetics

�[since Hahm, PF 31, 2670 '88, followed by Brizard, Sugama,…]

• �Conservations Laws are Satisfied.

• Various expansion parameters appear at different stages

��Flexibility in variations of ordering for specific application 

• Guiding center drift calculations in equilibrium field B:

Expansion in �B = �i / LB ~ �i / R. 

• Perturbative analysis consists of near-identity 
transformations to new variables which remove the gyro-

phase dependence in perturbed fields �A(x), �
(x) where x

= R +�:

Expansion in �
 = e[�
 - (v||/c)�A||]/Te ~ �B||/B0.

• Derivation more transparent, less amount of algebra















9

� Gyrokinetic Vlasov-Poisson System

• �With Euler-Lagrange Eqns, Gyrokinetic Vlasov equation for 

gyrocenter distribution function                is: 

Note reduction of dimensionality achieved by (�F/��)=0,

• �Self-consistency is enforced by the Poisson's equation. Debye 

shielding is typically irrelevant, one must express the ion particle 

density ni(x) in terms of the gyrocenter distribution function

• Lee [PF 26, 556 '83] has identified the polarization density (in 

addition to the guiding center density). It was a key breakthrough in 

advances in GK particle simulations. 

�ni(x) = �ngc + �i
2 ��

•N0��(e�
/Ti)

F(R,μ,v|| )

�F

�t
+
dR

dt
� �F +

dv||
dt

�F

�v||
= 0

dμ /dt = 0

F(R,μ,v|| )
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Pullback Transformation 

• �Widespread Misconception: “Gyrokinetic theory throws away 

the gyrophase dependent part of F.” 

• The gyrophase dependent information is kept in the gauge 

function S1 or a generator g1.

• This can be used reversibly whenever one wants to calculate 

a quantity in the particle frame from the gyrocenter distribution 

function.

• Examples include the polarization density, diamagnetic 

current, and other quantities related to finite Larmor radius 

effects. 

d6� Z (TG
*F(Z))K(R)� 3(R � x + �)�K(x)


















