The Abdus Salam
International Centre for Theoretical Physics

2052-24

Summer College on Plasma Physics

10 - 28 August 2009

Introduction to Nonlinear Gyrokinetic Theory

T.S. Hahm

Princeton Plasma Physics Laboratory
Princeton University
UsA4

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it



Introduction to Nonlinear Gyrokinetic Theory

T.S. Hahm

Princeton University, Princeton Plasma Physics Laboratory, USA

12 August Summer College on Plasma Physics
Trieste, Italy



This Lecture

e Properties of Tokamak Micro-turbulence

e Modern Nonlinear Gyrokinetics:

— Emphasis on Conservation Laws
— Systematic Derivation
— Single Particle Dynamics
and Gyrokinetic VlIasov Equation
— Gyrokinetic Maxwell's Equation
and Pullback Transformation

e Further Extensions



Microinstabilities in Tokamaks

* Tokamak transport is usually anomalous,
even in the absence of large-scale MHD

« Caused by small-scale collective instabilities
driven by gradients in temperature, density, ...

* Instabilities saturate at low amplitude due to
nonlinear mechanisms

* Particles E x B drift radially due to fluctuating
electric field

%ﬁp;pl



Amplitude of Tokamak Microturbulence

TFTR Fonck, Mazzucato, et al. Relative fluctuation levels (%)

E | | | -
4f m- BES ’% 20C —m— fA/n
W

o[ - Reflectometry : o— T/T % :

@ 1.5F ]

E Bl E /3 ¥ { % 1

& i ¥ - H .
E 4 e ﬁa%ﬂ 1

~0.01 } o | ]

§ w § 0.5F @ -

! ] - ]

_ T 5

0.0 e i
s 0.4 0.6 0.8 1. 03 04 06 07 08 09

ib-—l

r/ a Normalized radius r/a

* Relative fluctuation amplitude dn / n, at core typically
less than 1%

At the edge, it can be greater than 10%
« Confirmed in different machines using different
diagnostics
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kK-spectra of tokamak micro-turbulence
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-from Mazzucato et al., PRL '82 (u-wave scattering on ATC)
Fonck et al.,, PRL'93 (BES on TFTR)

-similar results from

TS, ASDEX, JET, JT-60U and DIII-D
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Properties of Tokamak Core Microturbulence

*on/ny~1%

* k. pi~ Ky p; ~0.1-0.2

* k;, < 1/gR << k,: Rarely measured
.(D'k°uE~A(D~(D*pI

Broad-band = Strong Turbulence

Sometimes Doppler shift dominates in rotating
plasmas
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L'aspect Cinématique de la Théorie Gyrocinétique

GTS simulation of ITG Turbulence: S. Ethier, W. Wang et al.,
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Electrostatic Microinstabilities in Tokamaks

Classification:
Free energy

Spatio-temporal Scales

(wavelength, frequency
direction, rough mag.)

Accessibility Mechanism
for Instability

Trapped lon Mode

Trapped ion precession

—~ *
nT — pe W e resonance (coll-less)
(ITG-TIM) T, Collisions btwn trapped and
passing ions (dissipative)
lon Temp. Grad. Mode . Bad curvature or
> P < Wi Negative compressibility
T,
Trapped Electron Mode | 0 < o* Trapped electron precession
n or T, | e resonance (coll-less)
Collisions btwn trapped and
passing e's (dissipative)
Electron Temp. G Mode * Bad curvature or
> Pe < Wipe

T

e

Negative compressibility
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Standard Nonlinear Gyrokinetic Ordering |.

Frieman and Chen, Phys. Fluids 1982

Minimum number of ordering assumption

* w/Q ~ Kk /K, ~ ¢, <<1;from spatio-temporal scales of fluctuations

* k,p; ~ 1 for generality:

Short wavelength modes (with higher v,,,) can affect

the modes at NL peak (k,p, ~ 0.1 ~ 0.2) through NL coupling.

—w ~ k,v; for wave-particle resonance

i.e., Landau damping

* of/fy ~ edd/T, ~ 1/k L, ~ g, << 1; from small relative fluctuation amplitude

- k €d¢/T, ~ 1/L;: ExB Nonlinearity ~ Linear Drive

- dn/ny ~ p/L ~ roughly experimental values.
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Standard Nonlinear Gyrokinetic Ordering |l.

* While the physics origins of ¢, , and ¢, are different,
the maximal ordering for NL GK corresponds to ¢, , ~ ¢,

* &, >> €, leads back to the Linear Gyrokinetics:

Taylor-Hastie, Plasma Phys. 10, 419 '68
Rutherford-Frieman, Phys. Fluids 11, 569 '68
Tang, Nuclear Fusion 18, 1089 '78
Antonsen-Lane, Phys. Fluids 23, 1205 '80
Horton, Rev. Mod. Phys 71, 735 '99

* With g, , << ¢,, one cannot recover
the linear dispersion relation of instabilities:

Self-sustained Turbulence, BS from BDS

Scott, Phys. Rev. Lett. 65, 3289 ‘90



Conventional Nonlinear Gyrokinetic Equation

[eg., Frieman and Chen, Phys. Fluids 1982]

* Foundations of Tokamak Nonlinear Kinetic Theory
for analytic applications, ballooning codes...

* Number of assumptions minimum
« Based on direct gyro-phase average of Vlasov equation

Lots of algebra and book keeping
* Direct expansions in ¢: Self-consistent up to O(e?) —
Should be fine for linear phase and saturation due to ExB
nonlinearity
- Velocity space nonlinearity: V, 8¢ d,,0f ~ O(e?)
Energy, phase space volume not conserved.
* May not be able to describe long term behavior accurately
Topic of Current Research: [Villard, Hatzky, Sorge, Lee, Wang, Ku]
— Physics responsible for the difference?
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Conventional Nonlinear GK Derivation:Heuristic

« Transforming to guiding center variables, R = x + p, u = v,%/2B,

v=yvb+ (e1 cos 0 + e, sin 0), one can write the Vlasov equation as
J Exb ¢

_f"' v,b- _f _f"'(q/m)Eng”f Qo”Qf 0

« Since Q >> w, to the lowest order Q(4/90)f=0

« Writing f = {(f)+ £ withf =(f)>> fin which (-J)indicates gyrophase
average,

% J Exb o 0 J
5<f>+vnb.§_R<f> B 0,)R<f>+(q/m)Eu N, <f>_9£f=0

which is a solubility condition for (/).

» Gyro-phase averaging, one gets an electrostatic NL GK equation in
a uniform B field:
=

L A UL L NP -

-0
ot JR B R v, 7)

* Frequency-wave number expansion and amplitude

expansion,and geometric expansion (if it were included) are

all lumped together in this procedure. If one modifies an ordering, 5
needs to do the derivation all over again %jl’l’l’l



Conventional (old-fashioned) Derivation of
Non-linear Gyrokinetic Equation

e Closely follow Guiding Center transformation by
P.J. Catto, Plasma Phys. 20, 719 (1977)

e Resulting equation
Frieman and Chen, PF 25, 502 (1982)
Lee, PF 26 556 (1983)

e Purpose: illustrate basic physics and
mathematical complexity
involved in this conventional method.



Consider uniform B = Bb to emphasize nonlinear effects

e Goal: from
1, 0 1 o
[8t+v &Jr_(EJF VXB) 8V] f(x,v,t)=0 6D Vlasov Eqn
get
with " ;
E—Oand%<f> —

1~ v2 /(2B) : magnetic moment, an adiabatic invariant at lowest order

e Assumption:

—w K Qci
—k” <<kJ_N,OZ~_1
—0f/fo~dn/ng~edp/T, < 1



Guiding Center Transformation a la Catto

(x,v) = (R, v, 1, 0), 0 : gyrophase-angle

R:x—p,p:bé",Q:;—Bc
vj=b-v,u=0v}/(2B)
6 defined by v — UHBijéL

€| = —€9cosf —eysinb

e, =ejcost —eysinf

“

Note that for uniform B,
3 13 3
d’xd’v = _B_ dudfdvd’R

B : “phase-space volume”



Then, we would like to express (% and (‘9% in G.C. space

i.e., in terms of 1, vl R, and 0;

0 _8R. 0 _’_6’,&8 +av” 0 _|_(99. 0
ox Ox OR 0x0u ox dv  Ox 00

8_6R_6+6u8+8v”6+80.6
ov  ov OR 0Ovopu ov v v 00

— important to check what quantities are held constant when taking partial derivatives

Since
%, b
g :O,EUH =0, =— =0, and R =x — i
OX | _const x|, _const OX |, _const £2

% — only the 1st term on the R.H.S. survives =

2_1. o 0
ox =~ OR OR




Also, noting that

% x=const e é% x:constv.f) =b %u —vB
e Rhar s ab
a%_lsaingaau_b;éL;+Igb;R
-
V.(%:vug;.a%wra% | (1)
%E'a% N %<E°82+E:BVL£L_E.2; VL(‘;?@) +CEBX2B°8?1(2)
QVJCB'ai - O+O_QVXBB'22XVL50+Q(VX3)XB'&%
9 9

_ oY .9 (3)



We also want to express ¢(x) and E(x)
in terms of (R, L, Vi, 0)

¢(x) = ¢(R + p(0)) =

dp  Ox (9¢ (9p 0p v, [kb _E-VL
00 90 |g ox 00 ox Q Ox ()
.. the 2nd term of RHS of Eq. 4.2)
q E- V| (‘9 6gb 8

m B Ou _E E) 90 0u
Collecting all terms in Egs. (1)-(3),

0 0 ExB 0 0 g€ O¢p 0 Vg-v, 0
b _ R — —
ot YPTOR TTBT AR mv”%vu % mBason " oa) ! !
(4)
—W ik’HUH kL VR kHUH (?) Q &Z) (le




e Term (1) can be shown to be the 1st order correction to u
1e.,

0
dp dp  dp) d Ui)a) _ VS_) . d ()

= — (=)W= L. g
T T T P ACY:. 5 a0
where
d w4, @ (1) 0 d 1 _ 4n0 (0
%VLZE(VL xB+E ):>VJ_°%VL:EEJ_°VJ_

e Term (i1) similarly, 1st order correction to the gyrophase

(1)

0, 1.e., gyration speed is slightly nonuniform due to E*,”,
—Not of primary physical interest

e Now, we perform perturbation theory:

with 56
W €
Q> w~ kg~ <1 k) <k ~p;



e Eq. (4)=

of 0 ~ 0 ExB 0 q 0 g2 0¢ O
02, il b . : -2 _ —
90, (8t TP SR T AR w8y mBoson)! =
——
Largest term
(3)
Let f = f© + fM 4+ ... with expansion parameter § ~ £ ~ kg” ~ |6T’¢
o O-th order = Q2 f(¥ = 0 = f( is independent off),
" f =)+ facs () = & §d6{- - Jgyrophase average
with fO = (f), fV = fac < fO = (f)
e 1-st order =
0 0 .0 ExB 0 q 0 g2 0¢ O
Q—f(l) + | =+ UHb . +c . — —V||¢ — f(o) =0
00 ot R B2 O0OR m Ov  mB o0
(2) (b)
(6)
(a) and (b) can be combined into
s, 0¢ 0
00| fae - L2900 5y

0 mB 90 O



e Taking gyro-phase average of Eq. (6): (--)=2L§da9---

Ot} =0

0 ~ 0 0 0
b 5hx Ve - th Lo =0 @

Finally, the electrostatic NLGK vlasov equation in uniform B

e (¢) contains the Finite Larmor Radius (FLR) effect!
although it’s gyrophase-averaged

¢< ) R + p Z ¢k€ Z ¢k€ikL-R€ik‘Lpsin9
k
Fourier-Bessel Expansion:

: : 1 ,
<ezk¢psm9> _ 2—%6”5:%(/&/))6% _ J()(]ﬁ_,O)

7



e Widespread Misconception: “Gyrokinetic Theory throws

away the gyrophase-dependent information”

e Part of Reasons: Conventional (old-fashioned) derivation
1s rather opaque (much more complex in general geometry
in nonuniform B)

Illustration in this note is a bit “modernized” version than

the original papers up to mid 80’s.

— Hard to identify the role or necessity of #—dependent
information

— Also, most attention was paid to the nonlinear GK-
“Vlasov” Equations.



Gyrokinetic Poisson Equation

e Maxwell’s Eqns are still fine!
but was NOT written in g.c. coordinates (R)

e So we need to express n;(x) in terms of (f)(R, v, p)

(R, v, 1, 0) = (x, V)

“Pull-Back” Transformation for GK Maxwell’s Eqn
(ES = Poisson)

(x, v) = (R, v, p, 0)

“Push-Forward” Transformation for GK-Vlasov



V¢ = —4dme[ni(x) — ne(x)]
e n,;(x) : typically obtained from GK Eqn

e n.(x) : from adiabatic response for pure - ITG
or from drift-kinetic or bounce-kinetic
or from some other fluid eqns for more realistic case
“GK” required for ETG

TLZ(X) - /d?)sz'(X, v, t)
— /d?’x’d?’vfi(xl, v)i(x — x)
= /d?’RdudUHd@Bfi(R, s Ul 0)0(R + p — x) (3)

not quite the same
/ d’Rdudo  B{f)(R, w, v|)



Since
fZ(R7 Hs U||7(9> - <f> +fAC'(R7 Hs UH7(9)7

we need to know “f40o” as well.
Back to Eq. (6):

0 qop 0p O L d -
O |fac = A Se )|+ ) =0
and Eq. (7)
d (0)
T (f) =0
~ (0)
9 06 06 O i d B
Q@[f —@%@Uﬂ (a—a ><f>—0
d d (O) [44 7
T ¢ —(9)

integrating Eq. (9)

©)

(10)



Polarization Density

Eq. (8) =

ni(x) = /dBRd,udvdHB<f>5(R + p — X)

N 4
~~

ni,gc<x>

+ / d3RdudedeBmiB (6 — (&) %5(}{ +p—x)

Mol (x)

\ - 4

e n; ,(x) : G.C. density at particle position

e n,,(x) : Polarization Density, one can dvaluate exactly for (f) oc e #B/T,
1.e.,“Maxwellian in p1 oc v7”



Nonlinear Gyrokinetics for Large Scale Computation

* Direct simulation of actual size fusion plasmas in realistic geometry
using the primitive nonlinear plasma equations (Vlasov-Maxwell), is far beyond the
computational capability of foreseeable future.

* For turbulence problems in fusion plasmas, the temporal scales fluctuations much
longer than the period of a charged particle's cyclotron motion, while the spatial
scales and gyro-orbits are much smaller than the macroscopic length scales: —
details of the charged particle's gyration motion are not of physical interest —
Develop reduced dynamical equations which capture the essential features

« After decoupling of gyro-motion, gyrokinetic equation describes evolution of gyro-
center distribution function, independent of the gyro-phase, 0, defined over a five-
dimensional phase space (R, v, u). =

save enormous amounts of computing time by having a time step greater than the
gyro-period, and by reducing the number of dynamical variables.

* In gyrokinetic approach, gyro-phase is an ignorable coordinate, magnitude of the
perpendicular velocity enters as a parameter in terms of an adiabatic invariant u

* Nonlinear gyrokinetic equations are now widely used in turbulence simulations.g

~PPPL



Modern Nonlinear Gyrokinetics

e Starting from the original Vlasov-Maxwell system (6D), pursue
“Reduction of dimensionality” for both computational and analytic
feasibility.

» Keep intact the underlying symmetry/conservation of the original
system.

* Perturbation analysis consists of near-identity coordinate
transformation which “decouples” the gyration from the slower
dynamics of interest in the single particle Lagrangian, rather than a direct
“‘gyro-phase average” of Vlasov equation.

 This procedure is reversible:

The gyro-phase dependent information can be recovered when it is
needed.

%ijI'?Pl



Phase Space Lagrangian Derivation of Nonlinear Gyrokinetics

[since Hahm, PF 31, 2670 '88, followed by Brizard, Sugama,...]

» Conservations Laws are Satisfied.
* Various expansion parameters appear at different stages
—Flexibility in variations of ordering for specific application

 Guiding center drift calculations in equilibrium field B:
Expansionin 65 =p;/ Lg ~p;/ R.

 Perturbative analysis consists of near-identity
transformations to new variables which remove the gyro-
phase dependence in perturbed fields 6A(X), d¢(x) where x
=R +p:

Expansion in ¢, = e[6¢ - (v /C)oA /T, ~ dB/B,.

 Derivation more transparent, less amount of algebra 8
%jl'l'l'l



Single Particle Phase Space Lagrangian

[Littlejohn, Cary '83,...]

e Fundamental 1-form (phase space Lagrangian in
non-canonical variables)

v = (eA(x) + mv) - dx — (m/2)v?dt
e Transformation to guiding center variables:
x=R+p, pu= vi/QQ, 0 = tan_l(%),...

'V'.
e [ he zero-th order phase space Lagrangian

for guiding center:

vo = (eA(R) + mv”b(R)) -dR + %d@ — Hpdt

angle variable 6 is ignorable
action is an adiabatic invariant u

Hy = pB 4 (m/2)vjf



Euler-Lagrange Equation

e From variation of phase space Lagrangian:
do d

O _q d_
dit dt

Decoupling of gyromotion, adiabatic invariant

0

dR. dv
—eB*x% — mbd—t” = uVB

Where B* = VX(A -|— %’U”b) =B -|— %’U”VXb
e Decompose via bx and B*, to get

dR B* b
— = ’U”— —|— E—><VB,
dt B* e B*
and
vy _ _wB

dt m B*

VB



More on Guiding Center Drift

Frequently asked question:
“Where is the curvature drift?”
Using an identity B* = B*b + %vnb x (b-V)b:

dR B*b 4+ vb x (b-V)b b

——UH c H —|—E—XVB

dt B* e B*
Infrequently asked question: “Do conventional guiding
center drifts conserve energy?”

dR v _

I
E = ”U||b —|‘ Veurv + VgradBa di _Eb'VB

do not conserve energy exactly, while our E-L eqgns do.
B* is a manifestation of Hamiltonian structure
B* is the density of phase-volume, d°Z = B*dudfdv d°R




Lie Perturbative Analysis 1.

[from Hahm, PF 31, 2670 '88]

Consider electrostatic fluctuation only (for illustration):
dp(x) = dp(R + p)

While gyromotion has been decouple in the zero-th order
phase space Lagrangian, it appears again in the perturba-
tion. Since it is O(ey4), we can remove it via near-identity,
phase-space preserving Lie transform.

In addition to zero-th order ~g, v1 = —edd(R + p)dt
Perform Lie-perturbation:

1 =91 — L1vo + d51

where (L17v)y = g'{(% — 2311), transformation of 1 form




Lie Perturbative Analysis II.

One can choose the gauge function S; and the generator

g1 such that the gyrophase is removed from [

oS dv
Q45— %1 dR.gg, d—ﬂa%nsl = &(6¢p— < 3¢ >)

Using €, << 1, we obtain
dS1 = G(d¢— < d¢ >)db

1= —e <09 >dt

where < ... > is the gyrophase average %f(...)
Note that decoupled gyrophase information is kept in S1
and g1 to be used later when necessary.



Lie Perturbative Analysis III.

Now, =T —e < d¢p > dt,
H = Ho+ H1 = uB + (m/2)vf + e < §¢ >
Euler-Lagrange Equation

dR B* b u
—=y— + —Xx(=VB+V <) :
pr U”B*_I_B* (e +V < >)
and
dv 1 B*
— = ———(uVB 4+ eV < ¢ >)
m B*
B* correction in the last term crucial for momentum pinch
The second order perturbation in €p ™ p/Lyp is necessary

for energy conservation.



Gyrokinetic Vlasov-Poisson System

 With Euler-Lagrange Eqns, Gyrokinetic Vlasov equation for
gyrocenter distribution function F(R,u,v))is:

OF  dR <. v, oF

o di dt v,

=0

Note reduction of dimensionality achieved by (aF/96)=0,
du/dt=0

» Self-consistency is enforced by the Poisson's equation. Debye
shielding is typically irrelevant, one must express the ion particle
density n,(x) in terms of the gyrocenter distribution function F(R,u,v,)

* Lee [PF 26, 556 '83] has identified the polarization density (in
addition to the guiding center density). It was a key breakthrough in
advances in GK particle simulations.

6ni(x) = 6ngc + pi2 VLNOVJ_(eéq)/Ti)

g%P;Pl



Pullback Transformation

» Widespread Misconception: “Gyrokinetic theory throws away
the gyrophase dependent part of F.”

* The gyrophase dependent information is kept in the gauge
function S, or a generator g,.

* This can be used reversibly whenever one wants to calculate
a quantity in the particle frame from the gyrocenter distribution
function.

[ dZ(T;F(Z)KR)S' (R -x+p) = K(x)

« Examples include the polarization density, diamagnetic
current, and other quantities related to finite Larmor radius

effects.
10
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Polarization Density

More systematic derivation of GK Poisson’'s eqgn started
since Dubin et al.,[PF 26, 3524 '83] via pullback trans-
formation:

V26 = —4re] / dZ (T6f) 63(R — x + p) — dne(x, )],

where
051\ O0Fp
TESf =6 ( _>
Gof =of + 56 ) on

Contribution to the ion particle density which involves S4
IS the general form of polarization density. After lineariza-
tion,

+ [% (VS1) x b] - VFy

edd edd -
{k*2\p;} leno +{1-Tod)}— Kno = 6N — onex
1 1
It is obvious that the polarization density statisfies
o 0
ZnPol 4+ . nOVpOl =0

ot ox



Conservation of Energy
and Phase-Space Volume

It is straight-forward to show the Liouville’s theorem:

dR LA
(Hdt>+av”< ”dt>_o

The invariant energy for GK Vlasov-Poisson system is ob-
tained by transforming the energy constant of the original
Vliasov-Poisson system [Dubin et al.,'83]

E = /d6ZF(MB + —v”) + /d6z fe(z) = mev?

1 BaErL s (70 (2552 1 Livsa . V&
-|—87r/d x |E| —I—QQ/d 7 F, <3u<6¢ )+ (V6D x b v5¢>>

Note that the sloshing energy (last term) can be obtained
from perturbation up to O(efb).



Extensions to Edge

[for core transport barriers — Hahm, Phys. Plasmas 3, 4658, '96]

Expansion in €ER ~ pZ/LE ~U %
e From p;, ~ Lp ~ Lg,

; ed(0)
UR ~ Ugyy ~ g—;’UT,&-, ™ ™~ 1.

e |S—1| ~ 1 (banana orbit distortion), w—fz ~ e% (circular gyro-orbit)

where wg = (RB‘)) 2 ( 3-) [Hahm-Burrell, PoP *95]

S~1+4 (B—G)Q?{Z [Hmton Klm, Furth-Rosenbluth, Shaing,...]

e [ he zero-th order phase space Lagrangian
B
70 = (eA + mug + myyb) - dR + %d@ — Hodt
with a guiding-center Hamiltonian



Summary

Modern Nonlinear Gyrokinetic Theory has provided a firm
theoretical foundation for recent remarkable advances in
gyrokinetic simulations and associated theories.

Its elegance and relative simplicity have contributed to
deeper understanding of the gyrokinetic system, not only
improving treatment of familiar ones, but also indentifi-
cation of novel physics effect.

Significant example: Turbulent Convective Pinch
of Toroidal Momentum

It should be useful for even more complicated systems
where several expansion parameters exist.

~PPPL
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References on Nonlinear Gyrokinetic Theory 1.

e [ heoretically-oriented Recent Review
Brizard and Hahm, Rev. Mod. Phys. 79, 421 '0O7

e Pioneering paper on conventional NL GK
Frieman and Chen, PF 25, 502 '82

e NL GK for particle simulation:
Lee, PF 26, 556 '83

e Proto-type Modern NL GK using Hamiltonian method:
Dubin, Krommes, Oberman, and Lee, PF 26, 3524 '83
Hagan and Frieman, PF 28, 2641 '85
Yang and Choi, Phys. Lett. A 108, 25 '85 (Electrostatic)
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References on Nonlinear Gyrokinetic Theory II.

e Modern NL GK using phase-space Lagrangian
Lie perturbation method:
Hahm, PF 31, 2670 '88 (General geometry, electrostatic)
Brizard, J. Plasma Phys. 41, 541 '89
(General geometry, electromagnetic)

e NL GK for strongly rotating plasmas:
Hahm, PF-B 4, 2801 '92 (in slab)
Brizard, PoP 2, 459 '95 (in terms of toroidal rotation)
Hahm, PoP 3, 4658 '96 (in terms of E,)

e Energy conservation theorem:
Brizard, PoP 7, 4816 '00
Sugama, PoP 7, 466 '00 (introduction of field theory)



References on Topics related to Modern NL GK
using phase-space Lagrangian Method

e Bounce-averaged Nonlinear Kinetic equation
Fong and Hahm, PoP 6, 188 '99 (electrostatic)
Brizard, PoP 7, 3238 '00 (electromagnetic)

e High frequency linear gyrokinetic theory:
Qin and Tang, PoP 11, 1052 '04 (recovery of compressional Alfven
wave, elucidation of differential geometrical meaning of pullback

transformation)





