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What are NTMs?

* NTMs are relatively large size magnetic islands that develop
slowly at mode rational surfaces with low (m,n) mode numbers in
high temperature tokamak plasmas.

* Like the classical TMs they are current driven but the current
source 1s the bootstrap current - a neoclassical (toroidal
geometry driven) source of free energy.

* They limit the attainable f in a tokamak to values well below the
ideal MHD limit - hence they are a major concern for all reactor
grade machines 1.e. long pulse (steady state) devices.




Tokamak Instabilities
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Tearing Modes and Magnetic Reconnection

keB=0

“Tearing”’ of a current sheet



Classical Tearing Modes

e Asymptotic theory- uses two regions of the plasma e
0.6
Outer region - marginal ideal MHD - kink mode 0
eInner region - include effects of inertia, resistivity <] \
nonlinearity, viscosity etc. N —_—
0 04 08 12 18 :

e Matching between inner and outer region
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Magnetic island evolution in classical tearing modes

e Near mode rational surface k-B=0,
B, = B(r=r,) - B4(ng//m)(r-r)a, o= 6 - (n/m)g

OB = 0B, sin(ma) r
e Leads to the formation of a magnetic island

e Island width w = 4(8B, r./ B, ng/)*/?

e when w > resonant layer thickness - nonlinear effects important

e Nonlinear evolution — Rutherford regime

dw
dt




e The form of the Rutherford equation can be traced to
the form of Ohm’s Law which governs the inner region
solution, e.g.

0A
Ey=nJ By~ —— ] Jy ~ —=V?A
=l n By n ||
Voo
BB _ Nop = [T
i w at

o In high temperature tokamaks neoclassical effects need to
be retained



Modified Ohm’s Law

1
< B> = nJ”JrneB <B-V-m>
U
Bootstrap
current
ft
1 fle 1 dp ue
<B-V- -m,>~ J
neBB " v. By dfr' |

Electron viscous stress which describes damping of poloidal
electron flows - new free energy source. Has dependence on
pressure gradient



BOOTSTRAP CURRENT

Projection into a poloidal plane

generated by trapped particles:
example: banana particles

« electrons drift from flux surfaces
due to the VB-drift

+ electrons with low parallel velocity are

trapped in the toroidal mirror
=> banana orbits

« at the intersection of 2 banana orbits a net
current results due to the density gradient

« passing particles exchange momentum with
trapped particles
=> bootstrap current

similar: helically trapped particles



Modified Rutherford Equation

d_w o (A/ 'D?’LC)
dt g w
2
where D,. = —/€ Ho qu
BH
p'q' <0, D,.>0 Unstable for normal tokamak operation
p'qd >0, Dp.<0 Stable in reversed shear regions
nc Tsﬁ@

e Can be unstable for A’ < 0 = | o st =

— A\ m

e for small islands w ~ /nt




PHYSICS OF NTM

*Plasma pressure profile 1s flattened
within the island - J, is turned off

*This triggers a 6J,, with the same
helical pitch as the island

e the corresponding induced 0B has

the same direction as the initial
perturbation and enhances it

This picture neglects finite perpendicular thermal conductivity within
the island - important for small 1sland widths - leads to threshold size.



Finite perpendicular thermal conductivity effect
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NTM characteristics

dw/dt

“Phase diagram”

“seed” island necessary for growth
— s0 NTM is a nonlinear mode
“subcritical instability”

!

Saturation width proportional to
By - hence limits plasma pressure

How is the seed island created?




Two- fluid model generalization + other effects

The density equation,

% +V.nv=_5,,
The momentum equation,
d .
pd—‘t’ = p[% +(v-V)v] =jeurlB-Vp -V - -II - v, pViv.
The pressure equation:
o _ 5'V v+2[Q \% [1:Vv]
a 3" 3 s B

The generalized Ohm'’s law
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NTM characteristics

» low (m,n) islands that are driven by perturbations
of the bootstrap current.

e Can grow even if A/ < 0 - distinct from classical TMs

e A “seed” island is necessary for growth - so NTM is a nonlinear
mode - no linear analog.

e Saturation width proportional to 3, - hence limits plasma pressure

e NTMs have been observed experimentally on many tokamaks starting
with TFTR in 1995 — associated with degradation in plasma confinement

e Broad agreement with scaling features given by the Rutherford
model

16



Brief Survey of Experimental Observations
on NTMs



Experimental observation of NTMs

- Earliest observations were on TFTR - 1in supershot
discharges

- Mainly (3/2) or (4/3) modes with {<50khz

- Degradation of plasma performance with growth of
NTM

 Characteristics agreed quite well with Rutherford
model estimates

(Z. Chang et al, PRL 74 (1995) 4663)



TFTR

ko = 1.65

8 T c —-——-——
7 m/n=3/2 - -
- - ~
6 B
w(cm) ;I -
4r ECE a j
3 measured -
o F island width ;
] NBI . (a) -

N N\

3.5 4.0
time (sec)

Comparison of “measured” 1sland widths with Rutherford
model estimates.



Island Struciure Can be Measured by Eleciron

Cyclotfron Emission of To Fluctuation Radial Profile

* Magnetic surface distortion 5 is “toroidal” direction

* leads fo Tg fluctuafion

Model
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w also measured by magn. Probes: Y7
. . qu - } Roq o Ralinl Position (cm)
w=4 Q'Bo, =4 B—OS/)_:" OBg‘mn,edge.

(C. Ren, et., 1998)
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Electron Temperature Fluctuation (ev)




TFTR
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Theory - experiment comparison of saturated 1sland widths



D- III- D observations

TIME (ms) Locks  Disrupts

A 3/2 mode 1s excited at t=2250 - saturates beta; at t=3450 a 2/1 mode
grows to large amp, locks and disrupts. Ideal beta limit 1s 3.4

[ O. Sauter et al, PoP 4 (1997) 1654]
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ASDEX UPGRADE
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Figure 3. Wavelet plot of an early NTM immedi-
ately after a sawtooth crash. The NTM frequency
rises during the first 10 ms.

Many experiments have shown a strong correlation between a sawtooth crash
and an NTM excitation



ASDEX UPGRADE
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Figure 4. Oy ,nset - 1, vs. the ion temperature
at the (3, 2) radial position, 7;. Additionally the
scaling, On,onset - Ip o \/1;, is shown [2].



ASDEX U

Figure 1. a) Wavelet plot [6] of an NTM. Dark areas
represent mode activity. Before the onset of the NTM at
2.126 s fishbone bursts are seen. b) Mirnov signals. The
even n signal is dominated by the NTM, the odd » signal
by (1,1) modes. ¢) 8y = FaB/I with 3, = 2ugp/B?;
the arrow indicates the increase of neutral beam injection
power from 5 to 7.5 MW.
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NTMs can also be triggered by fishbone activity

Other triggers: ELMs...
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current driven tearing
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NSTX Results
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Effects of NTMs

« Can degrade confinement — fast temperature flattening across island due
to high parallel thermal conductivity

pressure p(r) unperturbed (w/o island)

(3/2)

magnetic island

I3
/
F——————

N
~
L AL A

0 ria 1

perturbed (with island)

» Can cause disruption if island size becomes comparable to distance between
mode rational surface and plasma edge (depends on beta_poloidal)



Implications for ITER

» Seed island size ~ 5 to 6 cms
« Saturated island size can be about 60 cms limiting By ~ 2.2
* Growth time - 30 s to reach 30 cms & about 150 s to reach 60 cms

» Based on modeling and extrapolation from experiments simulating
the ITER parametric regime

4 ""l""T""l""l""l""—l—f"'I'."'
3.5 JT60-U . ¢
3 \&\o'mo .%
BN . 1] a s ... —
2.5 ‘s v .o ASDEXU
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15F % * T4 ¢ 3
o ITER 1
1
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0.5 o°°°° —j
0L_‘_._‘_L‘_A_‘_._L_,_._ML_.,.._.J....l.A‘.1‘.A‘1A i
4

0 05 1 15 2 25 3 3.5

_ _1110.3
5.2 [\rc _(q—m/n,Ze"-l)]



How to eliminate or control NTMs?

« Directly control NTMs through appropriate feedback control schemes
« ECCD scheme most successful
» Get to the trigger : prevent sawtooth crash, prevent large ELMs etc

 Other ideas: profile control, rotation, mode coupling etc




How to Stabilize an NTM?

*Principal Idea: Restore the suppressed bootstrap current
within the island

elocalized current drive -- ECCD, LHCD, NB(?)

*localized heating - helical temperature variations
modify current profile

localized density deposition - also changes pressure



e« Ohm’s law with auxiliary current

BO0)= (B4 o (BT, + ().

* Modified Rutherford Equation

0.82 dw 1 A +Dnc Daux
. dt _ T, Ps W W2 77aux' -
]aUXILLOR 16

Naux 1S an efficiency factor

Daux= ! b
sppg T



New “phase diagram™

» Stable and unstable 3
fixed points corresponding
to saturated island sizes

2
nauxDaux>% ((DA”f) X Condition for complete stabilization
a2 Py




Local Heating Effects

3 6T,
oJ) =5 T Jio» helically resonant temperature variations
dw 1 | , D,.
0.82 dt = T Alpg+ W ~ WD peqt | 5
16 qs RIU“()JII() S()p,f
l)heat=

S q: ¢: n TeX_L

D, .
lete stabilizati t 1bl w = ' ’
Complete stabilization not possible satH— AT Ty
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NTM Control Requires Achieving and Sustaining
Dynamic Island/ECCD Alignment

17 Detect Mode Onset

\

Locate Island

Locate ECCD Deposition

Align

l

No

Detect Island

Suppression

No

I Yes

Maintain Alignment

%@ D.Humphreys, R. La Haye

\

Search&Suppress

OR

Target Lock

> Active Tracking



Active Tracking of q-Surface Motion Enables

Preemptive NTM Suppression
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ITER NTMs stabilisation goals

]. .
12 S0 OPErOn | Ful stabilisation |-+ SN 1 ITER burn curves with
. with 10 MW ; ; ECCD at q=3/2 (A) and g=2 (B)
10@° NN ~./ S Full stabilisation | |
; 1 j with 20 MW (O. Sauter, H. Zohm, EPS 2005)

—Sketch of paths with partial
stabilisation

0 5 10 15 20 25 30
Impact on Q in case of continuous stabilisation (worst case):

* Q drops from 10 to 5 for a (2,1) NTM and from 10 to 7 for (3,2) NTM

* with 20 MW needed for stabilisation, Q recovers to 7, with 10 MW to Q > 8

* note: if NTMs occur only occasionally, impact of ECCD on Q is small



Active NTM stabilisation in ITER m

» Upper ECRH system for active stabilisation of (3,2) and (2,1) islands under development

e Current deposition calculated by means of the TORBEAM code [Poii et al., CPC 1999]
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Importance of trigger mechanism (1)

JET #58884
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Importance of trigger mechanism (2)

Controlling sawteeth changes significantly 3 ..

1t harmonic minority ICRH
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Sauter et al, PRL 2002



Power ramp-down studies

qos=2.54 case does not disrupt even with 2/1 mode
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Plasma Rotation effects on NTMs ?

Some recent experimental observations



* Near-toroidal beams Plan View of DIII-D Tokamak
inject energy and momentum

* net torque varied by ratio of co
to counter beams

» Changes in tearing mode
saturated amplitude observed

Y ) Present capability:
/ Co-NBI 12.5 MW
Cir-NBI 5 MW

ehybrid scenario
esawteething, ELMy H-mode



Plasma Rotation Measured by Charge Exchange
Recombination of CVI Line
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Tearing Mode (and Island) Measured by
Mirnov Probe Arrays (and Electron Cyclotron Emission)

| MIRNOV
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DIII-D
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m/n=3/2 Hybrid Scenario NTM Bigger with Less Flow Shear
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Rotation shear appears to play a
crucial role in the dynamics of
3/2 NTMs. Sign of shear?

Corautio: Toroidal Rotasion shot 135867 Sme: 37150000 Corrected

300"

”'m.j\\

200"

150"

R (mdsec)

1090

S.090°

02

q=3/2

! t_/

o4

os

PR O e YTV TR S ——— T
bmﬂ"'\ N FREQ

drert 15867 01900
* 0 220000

Rotation shear )
reverses

Earlier
time point




Reduction of 3/2 island size with increasing flow shear in
Sawtoothing H mode discharges (DIII-D)
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Experimental exploration of Rotation Effects on NTMs

« Similar observations have been made on other tokamaks e.g. JET, AUG, NSTX

« Joint experiments involving a number of machines and analysis involving
multi-machine data currently underway as part of ITPA MHD Stability Topical
Group initiative

» Story so far......

« definite evidence of shear flow effect on NTM onset and saturation
» some subtle differences between 2/1 and 3/2 behavior
» dependence on sign of shear still an unresolved issue
* Underlying mechanism?
* inner layer / outer layer modification
* linear/nonlinear
» poloidal/toroidal

A Challenging Problem for Theorists!



How can flows affect NTMs?

« Flows can influence both outer layer and inner layer dynamics for
resistive modes.

» They can also bring about changes in linear coupling mechanisms
such as toroidal coupling between harmonics.

 Past nonlinear studies — mainly numerical — and often limited to
simple situations (e.g. poloidal flows, non-self consistent) reveal
interesting effects like oscillating islands, distortion in eigenfunctions
etc.

» Also some analytic work on the the effect of flow on the
threshold and dynamical properties of magnetic islands which are
relevant to NTMs

Refs: Chen &Morrison, '92, 94; Bondeson & Persson, '86,’88,’89; M.Chu,’98
Dewar & Persson, '93; Pletzer & Dewar, '90,’91,’94;Smolyakov '93,’95
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Flow effects on the inner layer dynamics

e Two fluid model

» Flow terms are additional inertial contributions and modify the
the polarization current term

The generalized Ohm'’s law

L0 q
E+vAB= nm o+ — =+V.+ VY =(Vp,+V-II,),
—— \]L €qw(1 +v) 0t | Z ma( Pat o)
wdeal MHD resistive MHD /N - /

h

electron inertia closures



Modified Rutherford Equation for NTMs

Neoclassical current

Pressure/curvature
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Experimental evidence suggests that (J5 and — do not
change significantly with changing flow L'P

So something is happening to A/

What is the dependence of /\’ on flow shear?



Heuristic Model

e rotation shear provides additional drive to alter field line pitch
e can increase or decrease field line bending energy and thereby

change A/
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LsTa Simplest empirical form

Can one see this scaling from theoretical models ?

e RMHD code
e Newcomb eqgn. with flow




Code NEAR

* NEAR — fully nonlinear toroidal code that solves a set of
RMHD egns. and contains neoclassical viscous terms as well
as toroidal flow

e Has been benchmarked to reproduce linear (classical) tearing
mode dynamics as well as nonlinear saturated behaviour

e |t has also reproduced well the dynamics of NTMs — e.g.
threshold dynamics, scaling with 3, island saturation etc.

e Have examined the scaling of A/ with toroidal flow shear
for classical tearing modes



Model Equations (GRMHD)
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Equilibrium flow

e Neoclassical closure

BO X V&,
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e appropriate for long mean free path limit
e reproduces poloidal flow damping
e gives appropriate perturbed bootstrap current

+ Vjjbr



Numerical simulation

e GRMHD eqns solved using code NEAR — toroidal initial value
code — Fourier decomposition in the poloidal and toroidal
directions and central finite differencing in the flux coordinate
direction.

e Equilibrium generated from another independent code TOQ,

e Typical runs are made at S ~ 10°, low (3, sub-Alfvenic flows

e Linear benchmarking done for classical resistive modes

e For NTMs threshold, island saturation etc. benchmarked in the
absence of flows.

e Present study restricted to sheared toroidal flows
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Determination of A/

e Linear growth rate :

v = C (A )¥/553/5

e Nonlinear growth close to saturation

Wy W
dt /4

sat

e Cross check linear and nonlinear results without flow and
make runs with flow



Profile with positive flow shear at (2,1) surface
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* Looked at single helicity mode dynamics
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Results from NEAR
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Newcomb Equation with sheared flow:

dr? dr dr F2  F2  Fdr dr

h; and g; are additional contributions due to flow

HZ— + (dH + hf> W _ [ 9 o L1d <H£)] =0

e Limit: h, , g, = 0, Furth, Rutherford, Selberg equation
[Phys. Fluids 16, 1054 (1973)]

* Limit: slab geometry, (1/r) 2 0, d/dr 2 d/dx, m/r [¥] k,
Chen-Morrison Equation [Phys. Fluids B 2, 495 (1990)]
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Summary of numerical results

The value of A/ quite sensitive to the magnetic and flow profiles

1.6

* Quantitative comparisons with NEAR results are presently in
progress



Outstanding Theoretical and Experimental Issues

eIsland width threshold

e perpendicular heat transport - local model - improvements
necessary - active ongoing theoretical effort

* neoclassical/ion polarization effects - several open
theoretical questions (role of drift waves, 10n viscosity
effects at high temp, the exact value of the mode

frequency, role of energetic 1ons etc.) - experimental
determination also a challenge.



*Seed Island formation

» ‘standard’ NTM 1nitiated by outside MHD event - proper
modeling necessary

* ‘seedless’ NTMs have been seen on TFTR/MAST
*coupling to an 1deal perturbed mode
A’ > 0 modes nonlinearly saturating at small levels?
*Small scale 1slands modulated by 1on population?

* turbulence induced trigger



*Local Current Drive stabilization
*works well when island O point is hit - optimization
methods being worked out.

*Non-resonant Helical perturbation
» works well experimentally but mechanism not well
understood theoretically
* slows down rotation - affects other modes e.g. resistive
wall mode

 Interaction of fast particles with NTMs — open problem

e Plasma Rotation Effects on NTM - open problem



Concluding Remarks

 NTMs are large size magnetic 1slands driven by neoclassical effects
* Basic physics fairly well understood - modified Rutherford eqn.
 Can have a major impact on tokamak performance by limiting 3

» Experimentally widely observed in several tokamaks

« ECCD method of stabilization works well and 1s understood

« Still many experimental features (seed 1sland, FJs, non-resonant
stabilization etc.) are not well understood.

*Active area of research offering opportunities for theoretical and
experimental insight into reconnection and MHD control issues.



Some useful references

« O. Sauter et al, Phys Plasmas 4 (1997) 1654
« C.C. Hegna, Phys Plasmas 5 (1998) 1767

* ITER Physics Basis , Nucl. Fusion 47 (2007) Chapter 3 section 2.2
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