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1.1 Introduction

Historically, the plasma equations tended to be referred to an inertial frame of reference ,
for sound reasons: Maxwell’s equations take their simplest, classical forms in such frames,
and there was little motivation to consider electrodynamics in non-inertial systems.

However, there are a number of problems in astrophysics (pulsar/Kerr black-hole
magnetospheres, for example) and in tokamak physics where rapidly rotating plasmas
are encountered. The physics of these systems can perhaps be better understood in
suitable non-inertial frames.

In this talk, a first-principles approach to the formulation and application of the complete,
un-averaged (non-relativistic) plasma equations - Newton-Lorentz; Vlasov; Langevin;

Landau-Fokker-Planck -in such frames will be considered, with particular emphasis on
rapidly rotating systems. It will be shown how reduced equations like, gyrokinetic, drift

kinetic and two-fluid/moment equations are readily obtained from the exact equations.

The applications of the theory to strongly rotating plasmas in tokamaks will be explored.
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1.2 The problem and its solution

The Newton-Lorentz equations of motion of a non-radiating charged particle of mass m

and charge Ze subject only to electromagnetic forces take the following well-known,
simple forms in inertial frames of reference:

dr

dt
= v

m
dv

dt
= Ze[E + v × B]

where E(r, t),B(r, t) are Maxwell fields , satisfying Maxwell’s equations in such frames.

What forms do these equations (in particular, the momentum balance equation) take in
an arbitrarily accelerating, co-moving frame ? Remarkably simple, Solution:

if Kf is an arbitrary non-inertial frame co- moving non-relativistically so that, v = uf + V,
where uf is the “frame velocity” and V(t) is the particle’s velocity relative to the frame,
then the Newton-Lorentz equation of motion in this frame is:

m
dV

dt
= Ze[E∗+V × B∗] where, (1)

E∗ = [E + uf×B] − m

Ze

∂uf

∂t
+
m

Ze
∇(

uf .uf

2
), (2)

B∗ = B + (
m

Ze
)∇×uf . (3)
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2.1Steady, uniform frame rotation

We start with a simple, but important special case.

We will study in the first instance, uniformly rotating frames of reference with a fixed axis of

rotation and constant angular velocity, Ω =Ωez , where,
Klab : r = (x, y, z); r2

⊥ = x2 + y2 represents a standard, Cartesian, inertial frame of

reference with a fixed origin.

The rotating frame is denoted by Krot : R = (X,Y, Z = z). Thus, the rotation axis is
taken along the z-axis.

We consider non-relativistic mechanics and therefore assume that all relevant lengths in
the problem are ≪ c

Ω
, (= the so-called “light cylinder” radius). If, at t = 0, the two

frames were coincident, at any time t, a point P at Klab(x, y, z) has “rotating frame
coordinates” Krot(X,Y, Z) according to the transformation law:

x = X cos Ωt− Y sinΩt (4)

y = X sin Ωt+ Y cos Ωt (5)

z = Z (6)
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2.2 Uniform rotation kinematics: contd.

Differentiating Eqs.(1-3) with respect to t, we obtain the transformation rule for velocities
in the two frames (Klab is assumed to be an inertial frame!):

[
dr

dt
]lab = [

dR

dt
]rot + Ω × R (7)

Key point: The time derivatives are taken in each frame holding its basis vectors constant.
To avoid cumbersome suffix notation we use d

dt
for the “lab” time derivative and ∂

∂t
for

the “rotational frame” time derivative. The arguments apply to time derivatives of any

vector! Hence for the accelerations we have:

dv

dt
= [

∂

∂t
+ Ω×][

∂R

∂t
+ Ω × R]

= (
∂2R

∂t2
) + 2Ω×(

∂R

∂t
) + Ω × (Ω × R)

= (
∂2R

∂t2
) + 2Ω×(

∂R

∂t
) − 1

2
∇Ω2R2

⊥ (8)

where, R⊥ = R − (R.Ω
Ω2 )Ω. We see that Newton’s second law in the rotating frame must

take the form:

m(
∂2R

∂t2
) = 2m(

∂R

∂t
)×Ω +

m

2
∇Ω2R2

⊥ + F (9)
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2.3 Uniform, steady rotation dynamics

The force on the particle is frame-independent, but its components may depend on Ω if
they are written in terms of rotating frame coordinates. We see that in the rotating frame,
as is well-known, we obtain two “pseudo-forces”.

The Coriolis force (velocity dependent but does no work!): 2m( ∂R
∂t

)×Ω, and the

The Centrifugal force (derivable from a potential, and thus a ”conservative field”): m
2
∇Ω2R2

⊥.

These forces are “inertial” in character. They depend only upon the mass of the particle
(and the frame velocity) but not on its charge . In Einstein’s view , they cannot be
distinguished in principle from gravity in their local action. They clearly result from frame
accelerations .

Note carefully that the Coriolis force resembles Lorentz’ v × B force, whilst the centrifugal
force looks like an electrostatic/gravitational force-field. These formal resemblances will
recur throughout the talk.

Note also that the equivalent fields are functions only of position and not of the particle’s
velocity in the frame. This is a very fundamental property of electromagnetic fields in
inertial frames: it remains invariant when we transform to noninertial frames, as we shall
discover.
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3.1 Electrodynamics in a rotating frame

The general theory of relativity [cf. Landau and Lifschitz Classical theory of fields] tells us
how the fields E,B (aka Fµν ) must transform for completely general motions . Fortunately,
if the motion is non-relativistic (as in the present case), we have simpler rules:

Brot = Blab (10)

Erot = Elab + (Ω × R) × Blab (11)

This is exactly what we would guess from special relativity for a “co-moving observer”
with non-relativistic vframe = (Ω × R) relative to the lab. frame.

We can now write down the Lorentz-Newton equations in both frames:

m
dv

dt
= Ze[Elab+v × Blab] [Klab] (12)

m(
∂V

∂t
) = Ze[Erot+V×Brot] + 2mV × Ω +

m

2
∇Ω2R2

⊥ [Krot]

(13)

where V = ( ∂R
∂t

) = v − Ω × R and Brot = Blab = B;Erot = Elab + (Ω × R) × B.

The magnetic field is the same (to O( v
2

c2
) accuracy) in both frames at the same point.
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3.2 Charged particles in rotating frames

Let us consider a situation in which E,B,Ω are all independent of time in the lab.
frame (also in the rotating frame!). A charged particle of mass m and charge Ze then
satisfies the equations:

∂R

∂t
= V (14)

m
∂V

∂t
= Ze[Erot+V × B] + 2mV × Ω +

m

2
∇Ω2R2

⊥

= Ze[Erot +
m

Ze
∇(

Ω2R2
⊥

2
) + V × (B+(

2m

Ze
)Ω)] (15)

From the fact that the fields are time-independent in the rotating frame, we may write,
Erot = −∇Φrot = Elab + (Ω × R) × Blab and introduce the equivalent fields and

potential :

E∗ = −∇Φ∗

Φ∗ = Φrot −
m

Ze

Ω2R2
⊥

2
(16)

B∗ = B+(
2m

Ze
)Ω, consequently, (17)

m
∂V

∂t
= Ze[E∗+V × B∗] (18)
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3.3 Uniform steady rotation: summary

The results derived can be summarised in the following simple theorem which contains
all the relevant physics of charged particles in uniformly rotating frames in non-relativistic
conditions :

1. In a uniformly rotating frame with constant electric and mag netic fields, a charged particle

moves, exactly as in an inertial frame but in “equivalent” mag netic and electric fields, B∗,E∗

[cf. Eqs.(16,17)].

2. The centrifugal force adds to the electrostatic potential i n the frame, a “centrifugal potential”,

and leads to a force which is always directed radially outwar d from the rotation axis.

3. The Coriolis force adds to the stationary magnetic field in th e frame a uniform component

parallel to the rotation axis. The strength of this uniform fi eld relative to the stationary field is

measured by the non-dimensional “rotation parameter”: ρ∗Ω = 2Ω
ωc

where, ωc = (Ze
m

)Blab.

Deductions: The theorem is quite precise about the exact electrodynamic effects of the
Coriolis and Centrifugal forces in Krot. The former simply adds a “vertical field” of order
ρ∗Ω to the field in the inertial system. It is linear in Ω and hence “knows” about the sign
of the rotation (“directionality”).

The Centrifugal potential may be written as,

Φcent = − T
Ze

Ω2R2
⊥

V 2
th

= − T
Ze
M2

Ω;T = 1
2
mV 2

th. It is independent of the sign of the frame

angular velocity and depends only upon the rotation Mach number , MΩ. AT – p.9/49



3.4 Uniformly rotating frames: summary

In Krot with Ω = Ωez , and we write (without confusion!) ∂
∂t

= d
dt

;B = Blab. The
particle executes Larmor gyrations about B∗ with the “effective gyro frequency” ω∗

c and has
an “effective Larmor” radius r∗L:

ω∗
c =

Ze

m
B∗ (19)

B∗ = B[1 + 2ρ∗Ωb.eZ + (ρ∗Ω)2]1/2 (20)

r∗L =
c⊥

ω∗
c

(21)

ρ∗Ω =
2Ω

ωc
=

2mΩ

ZeB
(22)

Here, b = B

B
and c⊥ is the “Larmor gyration velocity” about B∗ = B∗b∗ 6= Blab!

Subject to the usual drift-ordering requirements on the equivalent fields , the particle will
perform all the classical drifts: E∗ × B∗,∇B∗, curvature, and any external force drifts.

Plainly then, adiabatic invariance, energy conservation (latter, if and only if the fields are
time-independent) apply and the “effective magnetic moment” is given by,
E⊥ = 1

2
mc2⊥ = µ∗B∗. Canonical angular momentum conservation also applies if E∗,B∗

are axi-symmetric about the rotation axis .
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3.5 Uniformly rotating frames: examples

Ex. 1: (Larmor) Let Blab = BeZ ,Elab = 0, B uniform and constant. In the lab. we have
uniform “parallel” motion along the Z-axis and “Larmor gyration” with frequency and
radius: ωcZ = ZeB

m
; rL = v⊥

ωcZ
; (e > 0). We can choose the frame rotation rate of Kf

so that B∗ = 0! Then,

Ω = −ωcZ
2

= −ZeB
2m

Erot = ΩRBeR

E∗ = Erot +
m

Ze
Ω2ReR =

ΩRB

2
eR

This centripetal (ie pointing to the axis of rotation) radial field in the rotating frame can
be “cancelled” by the particle rotating about the origin with angular velocity Ω = −ωcZ

2
,

agreeing perfectly with the lab. frame trajectory.

In this “Larmor frame” there is no “field” to gyrate about and the circular motion around
the rotation axis takes place due to the centripetal force embodied in E∗. This result was
known to and used by Larmor to prove his famous theorem! [cf. Landau and Lifschitz

Classical theory of fields sec. 45]
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3.6 Uniformly rotating frames: contd.

Ex.2: In the lab. suppose we have a purely toroidal field with no electric field:,
Blab = R0B0∇φ;Elab = 0. Then the motion in the lab. frame, is “Larmor+uniform
circular+vertical -(gradB+ curvature) drift” giving helical motion of guiding centres.

Now consider a rotating frame with uf = ΩR2∇φ. Then,

B∗ = R0B0∇φ+
2mΩ

Ze
eZ 6= Blab

E∗ =
mΩ2R

Ze
eR

The equivalent magnetic field is purely helical and the electric field, purely radial.

Analysis of the guiding centre motion is an extremely interesting exercise. A special
choice of Ω lead to a purely vertical motion in the rotating frame which transforms back
to the trajectory in the lab. frame.

AT – p.12/49



4.1 Action principle in arbitrary frames

The relativistically invariant “action integral” S for a charged particle of rest mass m

and charge Ze is [cf. Landau and Lifshitz The Classical theory of fields]:

S = −
Z τfin

τin

[mvµv
µ + ZeAµv

µ]dτ (23)

where, the “proper time” is related to the ordinary time (in Minkwoski space-time) by
γdτ = dt; γ = [1 − v.v

c2
]−1/2. The four-velocity is:

vµ = dxµ

dτ
= γ(c,v); vµ = γ(c,−v); vµvµ = c2. and the four-potential is:

Aµ = (Φ
c
,−A). This can be written in a more familiar form:

S =

Z tfin

tin

LIdt

LI = [−mc2(1 − v.v

c2
)1/2 + Ze(v.A − Φ)] (24)

The first term in Eq.(23), represents the particle’s inertia whilst the second is
Schwarzchild’s Lorentz invariant “electrokinetic potential”. The formula is valid in General

relativity , provided the co and contravariant components are related through the
Einsteinean metric tensor gµν . We can, in principle, obtain the correct electrodynamics of
the particle moving in an arbitrary frame from this Lagrangian. For our purposes, in this
talk, it suffices to use its non-relativistic limit, when v2 ≪ c2 holds. AT – p.13/49



4.2 Non-relativistic, non-inertial frames

It is essential to note that both the four-velocity of the particle and the electromagnetic
“four-potential” transform when we “change frames”.

What about more general accelerating frames? Hamilton’s pr inciple of Least Action δS = 0 gets
exact results more simply than elementary kinematics. Let uf be a non-relativistic
flow-field in Klab, varying in space and time. The Lagrangian for a particle (mass m and
charge Ze ) with coordinates X(t) and velocity V(t) referred locally to the flow is
sought . We assume in Kf : V = dX

dt
,X = (X,Y, Z);R2 = X2 + Y 2. Hence,

vlab = V(t) + uf (X(t), t). Let the vector potential in Klab be Alab and the

electrostatic potential, Φlab. These imply: Elab = − ∂Alab
∂t

−∇Φlab; Blab = ∇× Alab.

Special relativity+ general covariance imply (when u2
f ≪ c2 ) the relations:

dtlab = dtf ;Alab = Af ; dx = dX + ufdt; ie, ∂X
∂t

+ uf .∇X = 0.

Φlab − vlab.Alab = Φf − V.Af

Φlab − Alab.uf = Φf (25)

Leading to the familiar transformation rules:

Bf = Blab (26)

Ef = Elab+uf×Blab (27)
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4.3 Lagrangian dynamics inKf

The Lagrangian for the particle in the frame Kf co-moving with the non-relativistic
velocity, uf relative to Klab is then given by:

Lf =
1

2
mV2 + ZeV.[Af+(

2m

Ze
)
uf

2
] − Ze[Φf − m

Ze

uf .uf

2
] (28)

This is obtained by substituting vlab = V + uf in

Llab =
1

2
mv2

lab + ZeAlab.vlab − ZeΦlab (29)

(this is the non-relativistic limit of LI in Eq.(24)) using the transformation rules:
Alab = Af = A; Φf = Φlab − A.uf . Then, Hamilton’s principle, δS = 0 leads to the
Euler-Lagrange equations of motion in Kf :

d

dt
(
∂Lf

∂Ẋ
) =

∂Lf

∂X
(30)

d

dt
(
∂Lf

∂Ẏ
) =

∂Lf

∂Y
(31)

d

dt
(
∂Lf

∂Ż
) =

∂Lf

∂Z
(32)
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4.4 Hamiltonian dynamics inKf

From now on, we will drop the suffix on Lf and take Eq.(28) to be the definition of the
(non-relativistic) Lagrangian in Kf . Returning to Eqs. (30-32), the canonical momenta are
given by setting, (Af = A):

P =
∂L

∂Ẋ
= mV+Ze[A+(

2m

Ze
)
uf

2
] (33)

Using the transformation, H = P.Ẋ − L, the Hamiltonian H of the system in Kf
expressed in terms of the canonical momenta is found to be:

H =
1

2m
[P−Ze(A+(

2m

Ze
)
uf

2
)]2 + Ze[Φf − m

Ze

uf .uf

2
] (34)

Important observations: The flow uf contributes to both the “equivalent” vector and scalar
potentials. The contribution to the “equivalent” vector potential is linear in the flow, whilst
the contribution to the “equivalent” electrostatic potential is linear in the specific kinetic

energy .

Both contributions are proportional to the mass-to-charge ratio of the particle, exhibiting
the fact that they arise from inertial (ie non-electromagnetic) effects of frame acceleration:
thus they are non-zero even in the limit, Ze/m→ 0, (ie, in a neutral fluid).
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4.5 The Euler-Lagrange equations

The Euler-Lagrange equations can be transformed into a more familiar form when we
introduce two equivalent potentials :

A∗ = [A+(
2m

Ze
)
uf

2
] (35)

Φ∗ = Φf − m

Ze

uf .uf

2
= [Φlab − A.uf − m

Ze

uf .uf

2
] (36)

The Euler-Lagrange equations for the system in terms of the equivalent potentials are
derived using the fact that,∇X applies holding V fixed and the vector identity:
∇X(V.A∗) = V.∇XA∗ + V×(∇X×A∗) Then, we obtain the following key relations:

m
dV

dt
= Ze[E∗ + V × B∗] where, (37)

E∗ = Ef − m

Ze

∂uf

∂t
+
m

Ze
∇

uf .uf

2

= Elab + uf×Blab − m

Ze

∂uf

∂t
+
m

Ze
∇

uf .uf

2
(38)

B∗ = ∇×A∗

= Bf+(
2m

Ze
)
Wf

2
(39)
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4.6 Physical interpretation

In these equations Wf = ∇× uf is the vorticity (W for “whorliness”!) in the flow, and
Ef = Elab+uf×Blab,Bf = Blab = B are the usual electromagnetic fields (ie
solutions of Maxwell’s equations) in Kf at the location X(t) of the particle. Consider the
simple example where, uf = Ω × X;Ω = Ω∇Z, and we assume the angular velocity
to be uniform and constant. We obviously recover our earlier results. In this case,
Wf = ∇×uf = 2Ω. In general, Wf is the vorticity in the "frame flow" uf , and is of
fundamental importance: Wf .Wf represents the local flow enstrophy .

Coriolis-like inertial effects are velocity-dependent but can do no work on the particle:
they must be perpendicular to the velocity vector of the particle in the f rame! Hence they
combine with the magnetic field in the Lorentz-Newton equations to give B∗. The
centrifugal-like inertial effects are non-dissipative: they must produce purely conservative

accelerations along and perpendicular to the equivalent magnetic field. They result in
modifications to Φf and give Φ∗. The constant m

Ze
appears in A∗,B∗,Φ∗ since the

frame acceleration depend upon the mass and not the charge of the particle. From nature
of the Coriolis (does no work, always transverse to the velocity) and centrifugal forces
(conservative field), we can guess the form of Eqs.(37), although the expressions for the
equivalent fields [Eqs.(38,39)] are not intuitively “obvious”.

In inertial frames, E,B are functions only of particle position, not its velocity . We have
verified that E∗,B∗ have this same property in an arbitrary non-inertial frame . AT – p.18/49



4.7 Key results: 1

The Lagrangian and Hamiltonian take the same form as in the lab. frame. The frame
flow effectively “adds” to the vector potential. The relative size of this “effective magnetic

field” scales like, ρ∗Ω = 2Ω
ωc

but more generally like,
|Kf |

ωc
. The “effective electric field”

acquires a purely potential "local centrifugal" term, m
Ze

u2
f

2
.and a term proportional to

∂uf

∂t
.

Since the frame electric potential is of order
Tf

e
;Tf = 1

2
miv

2
th, the relative size of the

centrifugal potential is
mM2

f

miZ
, where Mf =

uf

vth,f
is the Mach number of the bulk-ion

[mi, Zie, Tf , vth,f ] flow.

If all the fields appearing in H are explicitly time-independent, it is a constant of the

motion .

Consider cylindrical coordinates (R,φ, Z) in Kf with the Lagrangian:

L =
1

2
m[(Ṙ)2 + (Rφ̇)2 + (Ż)2] + Ze[ṘA∗R + φ̇RA∗φ + ŻA∗Z ] − ZeΦ∗ (40)

If the basic magnetic configuration and the frame flow, uf possess azimuthal symmetry

(say, about the Z-axis), the equivalent potential components are independent of φ.
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4.8 Key results: 2

The corresponding canonical momenta and Hamiltonian are:

PR = mṘ+ ZeA∗R (41)

Pφ = mR2φ̇+ ZeRA∗φ (42)

PZ = mŻ + ZeA∗Z (43)

H =
1

2m
[(PR − ZeA∗R)2 + (Pφ − ZeA∗φ)2 + (PZ − ZeA∗Z)2]

+ZeΦ∗ (44)

From Hamilton’s equations and azimuthal symmetry, we see that Pφ, the canonical

angular momentum relative to the equivalent field (not the laboratory field!) is a constant of the
motion as can be expected from the most elementary kinematic considerations.

If uf is a purely axisymmetric toroidal flow it is divergence-free and only influences the
poloidal equivalent magnetic field. If the rotation is in the co-current direction, it reduces
the effective poloidal field outboard of the magnetic axis and increases it inboard. If the flow
is toroidal and depends only upon R, the Coriolis contribution is a purely vertical field .

A significant toroidal vorticity in the background poloidal flow would change the equivalent
toroidal magnetic field . This may be relevant to ITBs/ETBs.
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5.1 The Vlasov equation inKf

All charged particles with the same charge to mass ratio Ze
m

have identical dynamics in given

fields Φf ,Af ,uf , for the same initial positions and velocities.

The Vlasov equation satisfied by the distribution function, f(X,V, t) in the frame is the
one-particle Liouville equation:

∂f

∂t
+ Σ3

k=1[
∂H
∂Pk

∂f

∂Xk
− ∂H
∂Xk

∂f

∂Pk
] = 0 (45)

Setting, B∗ = ∇× A∗;E∗ = − ∂A∗

∂t
−∇Φ∗, and taking account of Hamilton’s

equations, we see that the Vlasov equation assumes the standard form:

∂f

∂t
+ V.

∂f

∂X
+
Ze

m
[E∗+V × B∗].

∂f

∂V
= 0 (46)

Note that E∗,B∗ contain the standard electromagnetic (Maxwell ) fields as well as the
“pseudo-fields” due to the frame velocity uf and its vorticity Wf , and depend on m

eZ
.

but not on V.

The particles perform “parallel”, “Larmor” and “drift motions” with respect to the equivalent

fields, not the Maxwell fields! This distinction between inertial and non-inertial frames is
exact and should be respected in charged particle dynamics in Kf .
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5.2 Drift orbit theory in Kf

The derivation of "drift orbit" theory (and associated gyrokinetics, subject to usual
orderings) in Kf :

1. Start with the exact Lagrangian (cf. Eq.(28)): L(R(t),V(t),A∗,Φ∗).

2. Write down the "averaged Lagrangian" taking out the fast gyromotions about the
equivalent field B∗ (this is the so-called " Whitham averaged Lagrangian approach ";cf.
Collisional transport in magnetized plasmas, Helander and Sigmar , p. 100 et seq.).

3. Obtain the adiabatically invariant "magnetic moment" µ∗; (E∗
⊥ = µ∗B∗)

4. Set up the gyrokinetic Hamiltonian in its canonical variables. The collisionless
gyrokinetic equation follows from the corresponding Liouville equation.

The drift orbit equations can be written down “informally”: introduce the unit vector

b∗ = B∗

B∗
then,V ∗

‖
= V.b∗. The guiding centre velocity V∗

gc =
dR∗

gc

dt
satisfies:

m
dV∗

gc

dt
= ZeB∗V

∗
gc×b∗ + ZeE∗ − µ∗∇B∗ (47)

V∗
gc = V ∗

‖ b∗ + [
E∗

B∗
− (

µ∗∇B∗

ZeB∗
) − (

1

ΩcZ

dV∗
gc

dt
)]×b∗ (48)

from which all relevant information about gyrokinetics in Kf follows! E∗,B∗ are
“gyro-averages” since they must satisfy the “drift ordering” for Eq.(47) to be valid.
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5.3 Collisionless gyro/drift kinetics inKf

We write, following Hazeltine and Meiss (cf. Plasma confinement)

V∗
gc = V ∗

‖ b∗ + vD (49)

E =
1

2
m(V ∗

‖ )2 + ZeΦ∗ + µ∗B∗ (50)

Then the collisionless drift-kinetic equation (for example) takes the form:

∂F

∂t
+ (V ∗

‖ b∗ + vD).∇F + [Ze
∂Φ∗

∂t
+ µ∗

∂B∗

∂t
− ZeV ∗

‖ b∗.
∂A∗

∂t
]
∂F

∂E
= 0 (51)

The gyro-averaging of the exact equations is standard (cf. Bernstein and Catto , Phys.
Fluids 28, 1342 (1985).) The only (but essential!) difference is that we must use
E∗,B∗,Φ∗ and start from Eq.(47)!

We obtain, the correct, collisionless, electromagnetic, non-linear gyrokinetic equation of
Bernstein-Catto (cf. their Eq.(44) without collisions, using their notation for variables and
averages):

∂F

∂t
+ << ṙ′ >> .∇′F+ << u̇′ >>

∂F

∂u′
= 0 (52)
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5.4 Collisional theories inKf

Setting up the Landau-Fokker-Planck-Rosenbluth collision terms is standard and no different
to their derivation in the presence of gravitational fields in inertial systems! See
Lifschitz-Pitaevski Physical kinetics and paper by Bernstein and Catto cited.

For a test-particle/impurity species [mZ , Ze] the corresponding Langevin equations are:

mZ
dVZ

dt
= Ze[E∗+VZ×B∗] +

m

τZi
(ui−VZ) + fLangevin (53)

where ui is the “background ion” plasma flow in Kf , and not to be confused with uf ,
the “frame flow”! τZi is the momentum relaxation rate for the impurity species.

The term involving τZi is the Einstein drag force whilst the last term is the random
Langevin stochastic force , characteristic of Brownian motion theory [cf. Stochastic
processes in physics and chemistry by N.G. van Kampen ].

This equation has already been used in the lab. frame with great success by Ken

McClements and Robert McKay (cf. R.J. McKay et al, Plasma Phys. Control. Fusion, 50,
065017, (2008), also paper submitted (2009) to PPCF) to investigate trace impurity
transport in MAST in static fields. Collisions with other species (eg. electrons) are easily
included.
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5.5 Applications: JET

In typical JET conditions: B ≃ 3 T; Ip ≃ 3 MA; TD ≃ 10 keV; Ω ≤ 3 × 105 rads/s;
viφ ≤ 1000 km/s. Then for background Deuterons , ρ∗Ω = 2Ω

ωcD
≤ 4 × 10−3. Hence, any drift

effect of the Coriolis force (using our velocity space coordinates) on the background ions
is negligible as the vertical field it creates is of order 12 mT (120 Gauss)≪ Bpol ≃ 0.5 T.
Since, vthD ≃ 1000 km/s, Mf ≃ 1. There should therefore be a strong centrifugal
potential which is definitely not a flux function.

Thus, we conclude that all effects on charged particles with m
eZ

≃ mD
eZD

in JET due to

strong rotation must arise largely from the frame electric fields and the centrifugal terms
( Φ∗ and equivalent drifts associated with them in Kf ).

For partially stripped, massive impurities (eg. tungsten) with m
eZ

≃ 10 × mD
eZD

, the

“vertical field” is about 25-40 per cent of the poloidal field in JET and possibly
comparable with typical vertical fields. The rotational effects on transport, especially
asymmetries, are likely to be significant.
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5.6 Applications: MAST, STs

In typical MAST conditions: B ≃ 0.5 T; Ip ≃ 1 MA; TI ≃ 1 keV; Ω ≃ 5 × 105 rads/s, the
effect of the Coriolis "equivalent poloidal field" is likely to be of the order of 1-10 percent
of the poloidal field even for deuterons. The background ions will see different flux
surfaces (especially in the low field side) as compared with electrons. This implies that
rather pronounced asymmetries in transport properties of the background plasma are
likely with co and counter rotation under the conditions considered-see McClements and

McKay paper submitted to PPCF.

For impurities with m
eZ

≥ 10 × mD
eZD

like tungsten (partially stripped under these

conditions), we can indeed see large effects of fast rotation. Since the equivalent fields
have a linear (as well as quadratic) dependence on Ω one should be able to observe
significant asymmetries in impurity transport arising from co/counter rotation.

The assessment of turbulent transport in these non-inertial frames can also be carried
out rather effectively using the gyro-averaging procedure suggested in this paper, using
appropriately defined equivalent fields in suitably chosen (possibly differentially rotating
co-moving) frames involving “diagnostic” impurities (eg. argon).
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6.1 Applications-tokamak frame flows

Theory of the frame flow and the equilibrium electrostatic po tential: cf. Thyagaraja and McClements ,
Phys. Plasmas, 13, 062502 (2006). The equilibrium two-fluid momentum balance
equations of the plasma in Klab (pure electron-deuteron, quasi-neutral, steady,
dissipationless, negligible electron inertia) are:

∇pi = −(
mi

Zie
)Zinie∇(

v2
i

2
) − Zinie∇Φ + Zinievi×(B+

mi

Zie
Wi)(54)

∇pe − ne∇Φ = −neve×B (55)

whence,

∇p+ ne∇[(
mi

Zie
)(

vi)
2

2
] = j×B + ne(

mi

Zie
)[vi×Wi] (56)

where, ρmi = mini;Zini = ne = n; j = ne(vi−ve) = 1
µ0

∇×B;Wi = ∇× vi.

In the physically realistic cases (neglecting electron inertia, and when viφ ≫ vpol), the
following equations apply :

RBφ = F (Ψ) (57)

∇p =
min(viφ)2

R
∇R+ [

Rµ0jφ − FF ′

µ0R2
]∇Ψ (58)
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6.2 Applications-tokamak flow equilibria

We obtain the “solubility condition” on Eq.(58):

∂p

∂l
= (

Bpol

Bpol
).∇p =

min(viφ)2

R

∂R

∂l
(59)

A whole class of solutions have been identified, given the velocity profile. They
determine p, n,Φ as functions of Ψ, R (given Ti,e) in the poloidal plane self-consistently .
The above equation was solved exactly and two limiting cases were identified: rigid body
rotation, such that Ω depends only on poloidal flux Ψ; and “Keplerian” rotation, in
which the mechanical toroidal angular momentum per unit mass of the ion fluid is a flux
function. In the rigid body case Φlab is related to Ω by the expression

eΦlab = eΦ0(Ψ) +
Te

2(Te + Ti)
miΩ(Ψ)2R2, (60)

where Φ0 is a flux function and mi is bulk ion mass. In the Keplerian case one
obtains an expression of the form:

eΦlab = eΦ0(Ψ) − Te

2(Te + Ti)

miλ(Ψ)2

R2
, (61)

where λ(Ψ) = R2Ω. Thus, in both cases Φlab is not a pure flux function.
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7.1 Relation to previous work-I

Artun and Tang [ Phys. Plasmas 1, 2682 (1994)] consider frame toroidal flow velocities
uf = ωR(Ψ)R2∇φ, and derive from a transformed Vlasov equation (Eq. (12) in their
paper) a gyrokinetic equation. They retain laboratory frame position coordinates xlab

while introducing a shift of origin in velocity space, vrot = vlab − uf (note that our
uf = V of Artun and Tang). unlike our X,P, these are not canonical coordinates.

As we have shown, both our kinematic approach and Hamilton’s principle deliver
expressions of definitive simplicity for both the Vlasov equation and the Newton-Lorentz
equations in Kf . The Vlasov equation employed by Artun and Tang contains, in
addition to the transformed Maxwell fields, velocity-dependent terms and ∂/∂x, the
gradient operator in the laboratory frame rather than the rotating frame.

In principle, the results derived by these authors should agree with any obtained from
our equations, if carried to all orders, since both sets of equations are obtained from the
inertial frame equations by purely mathematical manipulations. However, our equations
exhibit a far simpler, canonical structure and reveal real physical characteristics of the
motion.
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7.2 Relation to previous work-II

Brizard [ Phys. Plasmas 2, 459, (1995)., 40, 731 (1998)] considered the derivation of the
nonlinear collisionless gyrokinetic equation for toroidally rotating axisymmetric tokamaks.
Notations: Brizard lab. frame variables (x,v) with “frame flow” velocity us. Brizard’s
moving frame [our Kf ] coordinates: (r, c) are equivalent to our (X,V).

Derivation uses a phase-space Lagrangian Lie-transform perturbation method; no
discussion of exact Lagrangian or transformation of the complete Newton-Lorentz
equations or associated full Vlasov equation.

In lieu of us Brizard uses a first-order approximation to it, u0 = u0‖b + (1/B)b×∇Φ0

where Φ0 is a flux function, and introduces a particle velocity u∗
0 ≡ u0 +Wb, where W

is the particle velocity parallel to B, and an effective magnetic field

B∗ ≡ ∇× A∗ = B +
m

Ze
∇× u∗

0. (62)

This depends on both the particle’s position and its velocity parallel to the magnetic field in
Klab.

Brizard’s “effective field” differs from our equivalent field B∗, which, for given flow uf ,
depends only on the particle position . We have proved that (cf. Eq.(37)) in Kf the
particle gyrates with respect to B∗, not B(or B∗).

AT – p.30/49



7.3 Relation to previous work-III

The consequences of Brizard’s analysis are exhibited in his Eqs. (18-19) for the drift
orbit of the particle in the co-moving frame (X is the guiding center position):

Ẋ =
b

eB∗
‖

×∇H +
B∗

mB∗
‖

∂H

∂W
, (63)

Ẇ = − B∗

mB∗
‖

· ∇H, (64)

H = eΦ + µB +
1

2
mu∗

0 · u∗
0, (65)

is Brizard’s guiding-center Hamiltonian and B∗
‖

is the component of B∗ parallel to B

B∗
‖ = B

„

1 +
b

Ω
· ∇ × u∗

0

«

. (66)

Note two key differences between Eq. (71) our Eq. (48):

1. The “parallel” component of Ẋ ≡ Vgc in Eq. (71) is taken along B∗ rather than B∗.

2. The perpendicular component is orthogonal to B rather than B∗; the exact
Lorentz-Newton equations [our Eq. (37)] suggest that B∗ should be regarded as the
most “natural” effective field in Kf from point of view of particle orbit theory.
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7.4 Relation to previous work-IV

As we have proved, all particle drifts and adiabatic invariants should be defined with respect
to the equivalent fields in Kf : E∗,B∗, defined by, Eqs.[35,36], and which are functions
only of particle position .

The physical reason for this is straightforward: in the laboratory frame the motion of a
charged particle is determined solely by the E and B fields satisfying Maxwell’s
equations. In any inertial frame moving with constant velocity u relative to the laboratory,
the motion is determined in the non-relativistic limit by the potentials, Alab and
Φlab − A · u.

When the co-moving frame is an accelerating one, “inertial forces” contribute to both A∗

and Φ∗. In these circumstances it is inadvisable to use B as the magnetic field in an
orbit theory calculation, even if the differences between B,B∗ and B∗ are small, since
“secular terms” arise, which when suppressed properly to all orders lead to our results.

We show that the canonical action conjugate to the gyrophase, denoted by µ∗ which
equalsE⊥

B∗
, in leading order, and not µ is conserved to all orders (demonstrated

generally by Kruskal ), if the drift ordering applies in Kf relative to the spatio-temporal
variations of E∗,B∗. This can be explicitly verified with exact solutions in simple
configurations.
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7.5 Relation to previous work-V

Peeters et al [ Phys. Rev. Letts., 98, 265003 (2007); Phys. Plasmas, 16, 012505 (2009),
Phys. Plasmas 16, 042310 (2009).] base their work on Brizard’s.

Defining,

B∗

B∗
‖

= b +
mv‖

ZeB∗
‖

b × (b.∇)b +
2m

ZeB∗
‖

Ω⊥ (67)

The key gyro-orbit equations of Peeters et al (which they state is in the co-moving
system-equivalent to our Kf ) for a charged particle of mass m and charge Ze with
coordinates, X, dX

dt
≡ Vgc is:

dX

dt
= v‖b +

2mv‖

ZeB∗
‖

Ω⊥ − mΩ2R

ZeB∗
‖

b×∇R

+
mv2

‖

ZeB∗
‖

b × (b.∇)b +
µ

Ze

b ×∇B
B∗

‖

+
b ×∇ < φ >

B∗
‖

(68)
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7.6 Relation to previous work-VI

These equations are rather different in appearance from Eqs.(37,47), in our paper. As in
Brizard, the material derivative u∗

0.∇u∗
0, µ,b enter. Mathematically, they are

presumably equivalent to our equations (both have the same starting point!) but have a
more complicated structure due to the presence of u∗

0(X, v‖).

The velocity vector is represented in terms of a component parallel to Blab and a
perpendicular one which contains the “Coriolis drift” (the second term in Eq.(68)) in this
reperesentation. Since v‖ appears in B∗

‖
in a complicated non-linear manner, it is not

immediately obvious whether this representation is mathematically equivalent to ours.

Although one can indeed treat the Coriolis terms as “perturbations” to V × Blab in the
orbit equations, as done by Brizard et al, this does not seem very natural, nor does it
have a simple physical interpretation, as in our representation.
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8.1 Discussion: general observations

The Lorentz-Newton equations of motion in Klab:

m
dvlab

dt
= Ze[Elab+vlab×Blab]

In a uniformly translating frame , vlab = V + uf :

m
dV

dt
= Ze[Ef+V × Bf ]

= Ze[Elab+uf×Blab+V × Bf ]

In an arbitrarily accelerating frame , Kf ,

m
dV

dt
= Ze[Ef+V × Bf ] + Fcent + FCor

= Ze[Elab+uf×Blab+V × Bf ] + Ze[Ecent + V × BCor]

Ecent =
m

Ze
[−
∂uf

∂t
+ ∇

uf .uf

2
]

BCor =
m

Ze
∇× uf

E∗ = Ef + Ecent = Elab+uf×Blab + Ecent

B∗ = Bf + BCor = Blab + BCor
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8.2 Discussion-II

We have used use the exact Lagrangian/Hamiltonian, Eqs.(28-34) and the
Newton-Lorentz equations, Eqs.(38-40) as a starting point. Our equations are valid for
arbitrary ρ∗Ω. Gyro-averaging can be done, a la Bernstein-Catto-Helander-Sigmar starting
with these equations to obtaine reduced equations..

We have derived the exact Newton-Lorentz equations kinematically, for uniform rotation, and

exactly from Hamilton’s principle for arbitrary non-inert ial, non-relativistic frame motions . The
results are remarkably simple and intuitively obvious, not to mention physically correct.

Our derivations are simpler, more general, and more natural than previous ones of drift orbit
theory. All reduced models follow from Whitham theory and rigorous asymptotics. The
gyro-averaged drift orbit equations are characteristics of the gyrokinetic equation. Hence
the latter can be correctly obtained if the former are deduced by uniformly valid
perturbation expansions based on the exact Newton-Lorentz equations.

The adiabatic invariance (to all orders) of µ∗ properly defined as canonical conjugate
action to gyrophase and the correct Pφ, E invariances are automatically guranteed in

appropriate conditions . Trapping, drifts, orbits, mirror points etc in Kf are all sensitive to
both magnitude and direction of the equivalent fields E∗,B∗.

In an ITB of an ST,
Wf

Ωci
≃ 106

ρiΩci
≃ 1, or possibly a sizable fraction thereof. Our

derivations provide a useful starting point for analysing such situations. AT – p.36/49



9.1 Conclusions: I

We have demonstrated, using Hamilton’s Principle that:

1. The motion of the charged particle is exactly as in an inertial frame except that the
Lorentz-Newton equations of motion involve the “equivalent frame fields” E∗,B∗

which depend both on the frame Maxwell fields (derived from Φf ,A ) and the
effective fields due to the centrifugal and Coriolis terms generated by the frame flow,
uf .

2. The effect of the Coriolis force in the equations of motion in a non-inertial frame is to
introduce an additional vector potential, 2m

Ze
uf . If uf is a pure toroidal rotation,

depending only on R,it adds an equivalent vertical field to the magnetic field in a
tokamak. If the angular velocity of rotation Ω =

vφ

R
is uniform in space, the effective

vertical “Coriolis” field is also uniform and BCor ≃ ρ∗ΩB = 2Ω
ΩcI

B, relative to the total

tokamak field B.

3. The flow (if steady) modifies the electrostatic potential. The frame potential
Φf = Φlab − A.uf is seen by electrons to a good approximation. The equivalent
potential Φ∗ differs from the frame potential due to centrifugal potential, m

Ze

uf .uf

2
.

4. Only the vorticity of the frame flow Wf = ∇×uf contributes to the equivalent B∗

field, whilst the compressibility and flow kinetic energy both contribute to the
equivalent potential Φ∗.
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9.2 Conclusions: II

The frame Vlasov, Fokker-Planck/Langevin, drift-orbit, drift-kin etic and gyrokinetic equations are
formally derived exactly as they would be in an inertial frame, except that the equivalent
fields must be used, as noted.

A two-fluid, dissipationless, azimuthally symmetric equilibrium model first investigated by
Thyagaraja and McClements is used to obtain the frame (equivalent) potentials Φ∗,A∗.

Estimates and predictions are made for JET and MAST conditions.

Our theory is valid (except for the drift orbit equations) for any value of the rotation
parameter ρ∗Ω and arbitrary non-relativistic frame flows, including strongly
non-neoclassical poloidal flows with significant shear and provide the frame work for the
study of electrodynamics of charged particles in such non-inertial frames.

Our analysis is, in principle, both experimentally and computationally testable under
tokamak plasma conditions, and can be readily extended to include relativistic flows and
spacetime curvature, thereby making it applicable to extreme astrophysical plasma
environments, such as the magnetospheres of rapidly-rotating pulsars and Kerr
blackholes.
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Appendix A.1: electron physics relations

Te,i are assumed “flux functions” (fast parallel transport).[Nb. Ti may not be, when there
are large flows present].

Two-fluid mass conservation imply: Θi,e(R,Z) such that,

nvi,e = (− 1

R

∂Θi,e

∂Z
)eR + nvi,eφ eφ + (

1

R

∂Θi,e

∂R
)eZ ,

= ∇Θi,e ×∇φ+ nRvi,eφ ∇φ,

Electron momentum balance:

0 = −∇nTe + en∇Φ − enve × B implies

Te lnn = eΦ + he(Ψ)

T ′
e lnn = (Te + he)

′ +
eveφ

R
−
»

eBφΘ′
e

nR

–
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A.2: Two-fluid equilibria

Electron physics yields the relation upon setting 2T = Te + Ti:

T ′
e

2T
ln ptot −

T ′
e

2T
ln 2T − (Te + he)′

2T
+
∂ ln ptot

∂Ψ
=

eΩiφ

2T
.

The system can be closed in the important special case when Ti,e are both flux
functions. Differentiate w.r.t R2 and eliminate ptot:

T ′
e

T

mi(Ω
i
φ)2

8T
+

∂

∂Ψ

 

mi(Ω
i
φ)2

4T

!

=
e

2T

∂Ωiφ

∂R2

New variables: thus let, M2
φ =

mi(R∗Ωi
φ)2

4T
; y = ( R

R∗
)2, where R∗ is a “typical”, fixed

major radius, and define ξ(Ψ):

ξ(Ψ) = exp

»Z Ψ

Ψ0

T ′
edψ

2T

–
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A.3: Two-fluid consistency equation

Reduce the equation to,

∂

∂Ψ

h

ξM2
φ

i

=
∂

∂y

»

eξMφ√
miT

–

.

Setting z = ξ1/2Mφ and x =
RΨ
Ψ0

e

R∗
√
miT

ξ1/2(ψ)dψ we obtain the non-dimensional,

nonlinear p.d.e:

∂z2

∂x
=

∂z

∂y

This equation can be solved exactly by Charpit’s method ! The remarkably simple “complete
integral” depends upon two arbitrary constants:

z =
c− x

2(y + d)
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A.4: Two-fluid solutions

The solubility condition can be satisfied in an infinite number of ways. Consider only
physically transparent cases: regard Ψ, R2 as independent variables. Introducing
V (Ψ, R2) such that:

mi(Ω
i
φ)2

4T
=

∂V

∂R2

Then we obtain:

p = P ∗(Ψ) exp
ˆ

V (Ψ, R2)
˜

∇p =
∂p

∂R2
∇R2 +

∂p

∂Ψ
∇Ψ

∂p

∂Ψ
=

jφ

R
− FF ′

µ0R2

Observing that p, n,Φ are not flux functions, we obtain the Two-fluid Grad-Shafranov

Equation:

»

∂2Ψ

∂Z2
+R

∂

∂R

„

1

R

∂Ψ

∂R

«–

= −R2µ0
∂p

∂Ψ
− FF ′
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A.5: Two-fluid equilibria: general solution

In the general case the variation with Ψ is complicated and depends upon the
temperature profiles. However the ( R

R∗ )2 = y dependence of p, n is uniquely

determined .

A(Ψ) =
c− x(Ψ)

2ξ1/2(Ψ)

p = P ∗(Ψ) exp

»

− A2(Ψ)

(y + d)

–

n = N∗(Ψ) exp

»

− A2(Ψ)

(y + d)

–

eΦ

Te
=

eΦ∗(Ψ)

Te
− A2(Ψ)

(y + d)

Ωiφ =

„

4T (Ψ)

mi

«1/2 A(Ψ)

y + d
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A.6: Special solutions: rigid rotation

For Thyagaraja-McClements general solution reduces in two limiting cases controlled
by a parameter d. If d→ ∞ with Ωiφ is a given flux-function and putting
P ∗(Ψ) = 2N∗(Ψ)T ;m ≃ mi;me ≪ mi,

mi(Ω
i
φ)2

4T
=

mi(Ω
i
φ0)2

4T0
exp

»

−
Z Ψ

Ψ0

T ′
edψ

2T

–

p = P ∗(Ψ) exp

 

mi(Ω
i
φR)2

4T

!

n = N∗(Ψ) exp

 

mi(Ω
i
φR)2

4T

!

eΦ

Te
=

eΦ∗(Ψ)

Te
+
mi(Ω

i
φR)2

4T

Principal features:

1. The angular velocity is flux-function related to temperature

2. Φ is not a flux function, but “feels” the centrifugal force

3. Density, pressure, potential larger on the outboard side .
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A.7: Special solutions: Keplerian rotation

A second special case d = 0: mechanical toroidal angular momentum per ion is a
flux-function, i.e. the ions rotate toroidally in a Kepleria n manner. Density, pressure are higher
on the outboard side just as in rigid rotation! Ωiφ = λ(Ψ)/R2;P iφ = miΩ

i
φR

2 + eΨ

flux-function! Then: λ(Ψ) = 1
µ(Ψ)

h

λ0 − e
mi

RΨ
Ψ0

µ(ψ)dψ
i

;µ(Ψ) = exp
h

−
RΨ
Ψ0

T ′

idψ

4T

i

p = P ∗(Ψ) exp(−miλ
2

4TR2
)

n = N∗(Ψ) exp(−miλ
2

4TR2
)

eΦ

Te
=

eΦ∗(Ψ)

Te
− miλ

2

4TR2

Comparison with (single-fluid) ideal MHD:

1. The angular velocity is a flux-function, but explicitly related to temperature

2. The electrostatic potential, Φ is not a flux function, but “feels” the centrifugal force;
Hinton-Wong, Wesson obtained special cases.

We have thus obtained, Φlab = Φ and related it to vi = uf = Ωiφ(R,Ψ)R2∇φ. It is
now straight forward to work out Φf and proceed with the orbit/Vlasov/gyrokinetics in
Kf . If λ(Ψ) is constant, flow is irrotational , hence B∗ = B!
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A.8: Doesuf have to be incompressible?

In general, uf may not be divergence-free. Quite generally, by the "Helmholtz"
decomposition of a vector field: uf = u∗

f + ∇λf ,

∇.u∗
f = 0 (69)

∇×u∗
f = Wf (70)

∇2λf = ∇.uf (71)

Then,

L∗ =
1

2
mV2 + ZeV.[A+(

2m

Ze
)
u∗
f

2
] − Ze[Φf − m

Ze

[(u∗f )2 + (∇λf )2]

2

− m

Ze
∇.(λfu∗

f )] (72)

The canonical momenta depend only upon u∗
f (also implied by gauge-invariance!) Now, if

Alab satisfies the Coulomb gauge, then A∗ also satisfies it. The equivalent
electrostatic potential is then,

Φ∗ = Φf − m

Ze

[(u∗f )2 + (∇λf )2]

2
− m

Ze
∇.(λfu∗

f ) (73)

Only solenoidal fields contribute to B∗; both irrotational and solenoidal fields contribute to
Φ∗
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A.9: A possible novel application

An application of potential interest in both tokamak and ast rophysics: uf (x, t) can be arbitrary
(subject only to non-relativistic values)! Therefore, define , for given,
Elab(x, t),Blab(x, t), the frame velocity uf (x, t) as the solution of:

m[
∂uf

∂t
+ uf .∇uf ] = Ze[Elab+uf×Blab] (74)

This represents the fluid velocity of a species m,Ze which is cold and dissipationless.
Set, v = uf + V, and apply our results using Eqs.(37-39) to co-evolve uf , V (t)

obtaining the trajectory of the particle in the “lab. space” using,

dx

dt
= uf (x, t) + V

The velocity uf “feels” the Elab×Blab drift and inertial drifts associated with it, precisely
as in ideal MHD! The “E × B”-frame thus defined might provide a better physical
understanding and ease of performing gyrokinetic averages than the lab. frame. If
Elab,Blab have large spatio-temporal gradients locally, this would strongly influence (for
the ions) the equivalent fields, E∗,B∗. cf. Eqs.(38-39).

Consequently, it might be easier to gain a better and more intuitive understanding of
charged particle dynamics in such conditions: shape of things to come?!
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A.10 Fluid equations in non-inertial frames

Starting with the Fokker-Planck-Landau equation in Kf , we may construct a fluid model
for any species, m,Ze. If we set vZ to be the fluid velocity of the species and restrict
ourselves to time-independent frame flows uf and source-free dissipationless steady
equations of motion, we obtain:

∇.nZvZ = 0

mnZW × vZ = −∇pZ −mnZ∇[
vZ .vZ

2
] + ZenZ [−∇Φ∗+vZ×B∗]

3

2
nZvZ .∇TZ + nZTZ∇.vZ = 0

where, W = ∇× vZ ; pZ = nZTZ , E∗,B∗ are defined as usual by Eqs.(35-36) and
Eqs.(39-40). If the collision operators and sources are included we can carry out
classical/neo-classical analysis and determine the stress tensor and the heat-flux vector
to complete the transport equations with source terms in the non-inertial frame.

Φ̂ = Φ + ( m
Ze

)
v2Z
2

; B̂ = B∗ + ( m
Ze

)W implying the pressure balance relation:

1

ZenZ
∇pZ = −∇Φ̂ + vZ×B̂ (75)
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