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Plan of the talk

e Linear plasma surface waves
e Gradov-Stenflo equation

 New periodic solutions to the Gradov-
Stenflo equation



Linear electrostatic surface plasma
waves
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Properties

1) Propagation paralell to the surface z =0

2) Restricted basically to that surface (since k > 0)
3) Satisfy Ve(eVgp)=0

4) From the later: continuity of

g% at z=0
017



Linear dispersion relation
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 Reasonable agreement with experiments

* Physics of low-temperature bounded
plasmas: not as well developed as that of
high-temperature fusion plasmas

 Many industrial applications (e.g. TV
screens)




Nonlinear plasma surface waves

» A veritable zoo of special solutions

e Some sort of expansion in powers of the
amplitude of the electrostatic potential

—

nonlinear corrections to the dielectric
function



The Gradov-Stenflo equation
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Derivation

Sharp plane plasma boundary at z = O, or: a plasma
with a fixed homogeneous ionic background for

Z > 0 and vacuum for z < 0.

Scalar potential:  4(x, z,t) exp[i(kx — wt)]



Forz > 0:
¢ =g (xt) expl -k z+ [ dz'k,(x,2)].
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¢0 . a slowly varying envelope.

Plus the analytic continuation for z < 0.



 From the cold plasma
fluid equations and a

perturbative
treatment: , ) ,
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* Previously known exact solutions: stationary localized structures
(without the ~y and ~ A  terms).

O. M. Gradov and L. Stenflo, Phys. Fluids 25, 983 (1982).

Similar to the recently derived oscillon solutions (in an external
periodic flow oscillating at twice the natural surface wave
frequency), but that's another history!



A peculiar property

e Remark:

@, =0

« Remember Kibble's objection in the
context of dissipative quantum
mechanics

* The scalar potential is small, but
nonzero!



A conservation law

It can be shown that

d
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Exact periodic solution
- Let  w =Ing,

* A modified nonlinear
Schrodinger equation:
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Madelung transformation

w = Aexp(lS),
A=A(X), S=S(X),
X = X—Ut,
o=In(A/A), A >0



Sagdeev potential
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Stable or bistable oscillations







Near the bottom trajectories:
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Near separatrix trajectories:

LA

b b ko ke
o
B<
<
8
><‘<
3
<
8
<

8 :
6
A
EEEEA
Ao
2
0]
0] 20 40 60
X
lﬂﬂa/ Ml _AARARHH ol anlln, |
=1 IR A
0 20 40 _ 60 80 100

80

100



To conclude

Madelung transformation for the Gradov-
Stenflo equation

—

exact translating oscillatory solution

Possible improvements: dissipative or
transverse effects; physical modeling of
parameters; moving boundaries...



