
2052-43

Summer College on Plasma Physics

Fernando Haas

10 - 28 August 2009

Universidade Do Vale Do Rio Dos Sinos
Brazil

Self-consistent fluid model for a quantum electron gas



Self-consistent fluid model for a quantum electron gas

G. Manfredi* and F. Haas†
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It is shown that, for a large class of statistical mixtures, the Wigner-Poisson �or Hartree� system can be
reduced to an effective Schrödinger-Poisson system, in which the Schrödinger equation contains a new non-
linearity. For the case of a zero-temperature one-dimensional electron gas, this additional nonlinearity is of the
form ��� 4. In the long-wavelength limit, the results obtained from the effective Schrödinger-Poisson system
are in agreement with those of the Wigner-Poisson system. The reduced model is further used to describe the
stationary states of a quantum electron gas and the two-stream instability.
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I. INTRODUCTION

Understanding the dynamics of a quantum electron gas is
an important issue for a variety of physical systems, such as
ordinary metals, semiconductors, and even astrophysical sys-
tems under extreme conditions �e.g., white dwarfs�. Although
some level of understanding can be achieved by considering
independent electrons, a more accurate description requires
the use of self-consistent models, where electron-electron in-
teractions are taken into account. As the treatment of the full
N-body problem is clearly out of reach, mean-field models
are usually adopted, of which the Hartree and Hartree-Fock
models are standard examples.1 In the Hartree approxima-
tion, each electron is described by a one-particle wave func-
tion �obeying Schrödinger’s equation�, and the electrostatic
force acting on it results from Poisson’s equation. �Fock’s
correction accounts for the parity of the N-particle wave
function for an ensemble of fermions, but this correction will
not be considered in this paper.�
The Hartree model can be written in a more compact, but

strictly equivalent, form by making use of Wigner functions.
The Wigner representation2 is a useful tool to express quan-
tum mechanics in a phase-space formalism �for reviews, see
Ref. 3�. In this representation, a quantum state �either pure or
mixed� is described by a Wigner function �i.e., a function of
the phase-space variables�, and the Wigner equation provides
an evolution equation that is similar to the Vlasov equation,
well known from classical plasma physics. We note that,
although the Wigner distribution satisfies most of the stan-
dard properties of probability distributions, it cannot be re-
garded as such, since it may take negative values. The result-
ing self-consistent model is called the Wigner-Poisson �WP�
system, and has been extensively used in the study of quan-
tum transport.4–6
Despite its considerable interest, the WP formulation pre-

sents some intrinsic drawbacks : �a� it is a nonlocal, integro-
differential system, and �b� its numerical treatment requires
the discretization of the whole phase space. Moreover, as is
often the case with kinetic models, the WP system gives
more information than one is really interested in. For these
reasons, it would be useful to obtain an accurate reduced
model that, though not providing the same detailed informa-
tion as the kinetic WP system, is still able to reproduce the
main features of the physical system under consideration.

After discussing the general validity of the WP model, we
will derive an effective Schrödinger-Poisson �SP� system,
which, in an appropriate limit, reproduces the results of the
kinetic WP formulation. A similar result was recently ob-
tained in the mathematical literature,7,8 although its physical
implications have not been fully analyzed. In this effective
SP model, the Schrödinger equation is nonlinear, as it in-
cludes an effective potential depending on the modulus of
the wave function. The exact form of this effective potential
depends on the specific physical system being studied. In
order to obtain the effective SP system, we will first derive a
system of reduced ‘‘fluid’’ equations by taking moments of
the WP system. It will be shown that the pressure term ap-
pearing in the fluid equations can be decomposed into a clas-
sical and a quantum part. With some reasonable hypotheses
on the pressure term, the fluid system can be closed. Finally,
the effective SP system will be applied to several physical
problems, including linear wave propagation, nonlinear sta-
tionary solutions, and the two-stream instability.

II. COUPLING PARAMETER FOR A QUANTUM PLASMA

A classical plasma can be said to be collisionless
�‘‘ideal’’� when long-range self-consistent interactions �de-
scribed by the Poisson equation� dominate over short-range
two-particle interactions �collisions�. This happens when the
potential energy of two electrons separated by an average
interparticle distance is small compared to the average ki-
netic energy. The potential energy is estimated as Epot
�e2n0

1/3/�0, while the average kinetic energy is simply given
by the temperature T �measured in energy units�. Here �e is
the electron charge, �0 the dielectric constant in vacuum, and
n0 the equilibrium particle density. One defines, therefore, a
classical coupling parameter,

�C�
Epot
Ekin

�
e2n0

1/3

�0T
, �1�

such that the collisionless approximation is valid when �C
�1. The classical coupling parameter can be written in a
different way, by introducing the plasma frequency, the ther-
mal velocity, and the Debye length,
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�p�� n0e2m�0
� 1/2, vT�� Tm � 1/2, �D�

vT
�p
, �2�

which are typical inverse time, velocity, and length scales for
a collisionless plasma. With these definitions, the coupling
parameter can be expressed as

�C
3/2�

1

n0�D
3 , �3�

which is the inverse of the number of electrons contained in
a Debye volume. When the condition �C�1 is satisfied,
two-body correlations �collisions� can be neglected, and the
N-particle Liouville equation can be reduced, via a
Bogolyubov-Born-Green-Kirkwood-Yvon �BBGKY� hierar-
chy, to the one-particle Vlasov equation. The Vlasov-Poisson
system is therefore the standard model to describe classical
electrostatic plasmas in the collisionless approximation.
Similarly, it is possible to define a quantum coupling pa-

rameter �Q . Let us consider the case of a completely degen-
erate electron gas. Now the average kinetic energy is given
by the Fermi temperature TF	
2n0

2/3/m �we neglect irrel-
evant dimensionless constants�, so that the quantum coupling
parameter becomes

�Q�
Epot
TF

�
e2m


2�0n0
1/3 . �4�

Notice that, according to Eq. �4�, a quantum electron gas is
more ideal at higher densities. Using the Fermi velocity vF
��TF /m , one can define a typical length scale for the quan-
tum, plasma

�F�
vF
�p
. �5�

The quantum coupling parameter can thus be expressed as
the inverse of the number of electrons contained in a Fermi
volume:

�Q
3/2�

1

n0�F
3 . �6�

Finally, another expression for the coupling parameter is the
following:

�Q
1/2�


�p

TF
, �7�

which is valid for any number of dimensions.
The quantum electron gas is collisionless when �Q�1. In

this case, the quantum N-body problem can be reduced to a
one-particle Wigner equation. The Wigner-Poisson system is
therefore capable of describing a quantum electrostatic
plasma in the collisionless approximation.
The previous results were derived in the limiting cases

T�TF �classical� and T�TF �quantum degenerate�. For in-
termediate temperatures, simple expressions for the coupling
parameters are not available, but one must expect a smooth
transition between the two regimes.

For electrons in metal, we have typically

n0�1029 m�3, vF�106 m s�1, �p�1016 s�1,

�F�10�10 m. �8�

These values yield a quantum coupling parameter of order
unity. Allowing for the dimensionless constants we have ne-
glected and the different properties of metals, we realize that
�Q can be both smaller and larger than unity for typical
metallic electrons.
The above values seem to indicate that, as �Q�1,

electron-electron (e-e) collisions cannot be neglected for
metals. If that were the case, one should abandon one-
particle models such as the Wigner or Hartree equations, and
resort to the full N-body problem. This is hardly a feasible
task. Fortunately, however, the exclusion principle comes to
the rescue by reducing the collision rate quite dramatically in
most cases of interest.1 This occurs when the electron distri-
bution is close to the Fermi-Dirac equilibrium at relatively
low temperatures. The fundamental point is that, when all
lower levels are occupied, the exclusion principle disallows a
vast number of transitions that would otherwise be possible.
In particular, at strictly zero temperature, all electrons have
energies below TF , and no transition is possible, simply be-
cause there are no available states for the electrons to oc-
cupy. At moderate temperatures, only electrons within a shell
of thickness T about the Fermi surface can undergo colli-
sions. The e-e collision rate �inverse of the lifetime �ee) for
such electrons is proportional to T/
 �this is a form of the
uncertainty principle, energy � time�const). The average
collision rate is obtained by multiplying the previous expres-
sion by the fraction of electrons present in the shell of thick-
ness T about the Fermi surface, which is 	T/TF . One ob-
tains

1
�ee

	
1



T2

TF
. �9�

At room temperature, �ee�10�10 s, which is much larger
than the typical collisionless time scale �p��p

�1�10�16 s.
Therefore, for times smaller than �ee , the effect of e-e col-
lisions can be safely neglected. In addition, it turns out that
the typical relaxation time scale is �r�10�14 s, which is
again significantly larger than �p . In summary, the ordering

�p��r��ee �10�

implies that a collisionless �Wigner� model is appropriate for
relatively short time scales.

III. DERIVATION OF THE FLUID MODEL

In one spatial dimension, the Wigner-Poisson system2,3
reads
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� f
�t �v

� f
�x�

iem
2
� � d� dv�eim(v�v�)�

���� x�
�


2 ���� x�
�


2 � � f �x ,v�,t ��0,

�11�

�2�

�x2
�
e
�0

� � f dv�n0 � , �12�

where f (x ,v ,t) is the Wigner distribution function, �(x ,t)
the electrostatic potential, �e and m the electron charge and
mass, �0 the vacuum dielectric constant, and n0 a back-
ground ionic charge. Notice that the one-particle Wigner
function used here actually represents an N-particle system.
Indeed, the above Wigner-Poisson system can be derived
from the full N-body problem via a BBGKY hierarchy, ne-
glecting two-body correlations and only keeping the mean
Coulomb field.9 Further, it is easy to see that, in the limit 

→0, one recovers the familiar Vlasov-Poisson system for
classical collisionless plasmas. For simplicity of notation,
only one-dimensional problems will be treated in the rest of
this paper, but the results can be readily extended to higher
dimensions.
In order to derive a fluid model, we take moments of Eq.

�11� by integrating over velocity space. Introducing the stan-
dard definitions of density, mean velocity, and pressure,

n�x ,t ��� f dv , u�x ,t ��
1
n� fv dv ,

P�x ,t ��m� � fv2dv�nu2 � , �13�

we obtain

�n
�t �

��nu �

�x �0, �14�

�u
�t �u

�u
�x �

e
m

��

�x �
1
mn

�P
�x . �15�

We immediately notice that Eqs. �14� and �15� do not
differ from the ordinary evolution equations for a classical
fluid. This may seem surprising, but in the following it will
appear that the quantum nature of this system is in fact hid-
den in the pressure term.
The pressure term may be decomposed into a classical

and a quantum part. This can be shown as follows. The
Wigner distribution for a quantum mixture of states ��(x ,t),
each characterized by an occupation probability p� , is writ-
ten as

f �x ,v ,t ��
m
2
 �

�
p�� d� ��*� x�

�

2 ,t �
���� x�

�

2 ,t � eimv�/
, �16�

where the sum extends over all possible states. The numbers
p� , representing probabilities, satisfy the relations p��0,
��p��1. Using the previous expression, one can compute
the pressure. After some algebra, one obtains

P�

2

4m �
�
p�� 2	���

�x 	
2

���*
�2��

�x2
���

�2��*

�x2 �
�


2

4mn ��
�
p�� ��*

���

�x ���

���*
�x � � 2. �17�

If we represent each state as

���x ,t ��A��x ,t �exp„iS��x ,t �/
…, �18�

where A� �amplitude� and S� �phase� are real functions, we
obtain P�PC�PQ, where the classical PC and quantum PQ
parts of the pressure are

PC�
1
2mn �

� ,�
p�p�A�

2A�
2 � �S�

�x �
�S�

�x � 2, �19�

PQ�

2

2m �
�
p�� � � A�

� x � 2�A�

�2A�

� x2 � . �20�

Notice that PQ only depends on the amplitudes A� , and that
for a pure state only PQ survives. It can be easily shown that
PC represents the standard pressure, resulting from the dis-
persion of velocities. To prove this, one has to remember that
the phases S� are related to the mean velocity u� of each
wave function through the relation mu���S� /�x �the u�’s
should not be confused with the global mean velocity u de-
fined in Eq. �13��. Thus, by expanding Eq. �19�, one obtains
after some algebra

PC�mn� ��p�A�
2u�
2

n �� �� p�A�
2u�

n
� 2� . �21�

With an appropriate definition of averages, we can rewrite
the above equation as PC�mn(�u�

2 ���u��2), which is the
standard expression for the pressure. The contribution PQ, on
the other hand, is a purely quantum pressure, with no classi-
cal counterpart.
In order to close the fluid system, some equation of state,

relating PC and PQ to the density n, must be used. In this
paper, we consider a statistical mixture in which all the am-
plitudes are equal �but not constant�, A�(x)�A(x). This
gives, using Eqs. �13� and �16�, n�A2. With the help of Eq.
�20�, the quantum pressure becomes

PQ�

2

2m � � �

�x
�n � 2��n

�2

�x2
�n� . �22�

For the classical part of the pressure, we make the standard
assumption that it is some function of the density, PC
�PC(n). With these hypotheses, the force equation �15� can
be written as
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�u
�t �u

�u
�x �

e
m

��

�x �
1
mn

�PC

�x �
1
mn

�PQ

�x . �23�

Defining the effective potential

W�n ���ndn�

n�

dPC�n��

dn�
, �24�

and using the identity

1
mn

�PQ

�x ��

2

2m2
�

�x � �2��n �/�x2

�n � , �25�

the force equation �23� reduces to

�u
�t �u

�u
�x �

e
m

��

�x �
1
m

�W
�x �


2

2m2
�

�x � �2��n �/�x2

�n � .
�26�

Now comes the crucial point: it is possible to combine
Eqs. �14� and �26� into an effective Schrödinger equation.
Indeed, let us define the effective wave function,

���n�x ,t �exp„iS�x ,t �/
…, �27�

with S(x ,t) defined according to mu(x ,t)��S(x ,t)/�x . We
obtain that �(x ,t) satisfies the equation

i

��

�t ��

2

2m
�2�

�x2
�e���W� . �28�

This is a nonlinear Schrödinger equation, as the effective
potential W depends on the wave function through Eq. �24�,
where n����2. Separating Eq. �28� into its real and imagi-
nary parts, we indeed find the continuity �14� and force �26�
equations. Finally, the complete effective SP system is com-
posed of Eq. �28� and the Poisson equation

�2�

�x2
�
e
�0

� ���2�n0�. �29�

To summarize what we have achieved so far, we notice
that, in general, the dynamics of a statistical mixture must be
treated with the full Wigner-Poisson system, or, equivalently,
with a set of Schrödinger equations, coupled by Poisson’s
equation �Hartree’s model�. In the present section, we have
shown that one can reduce the problem of quantum transport
to a single nonlinear Schrödinger equation plus Poisson’s
equation. Also, notice that the nature of the interaction �elec-
trostatic in our case� is not of essential importance. The main
result is that we can reduce the �phase-space� Wigner equa-
tion to a �real-space� nonlinear Schrödinger equation.
The two hypotheses used for this reduction are as follows:

�a� all states composing the mixture have the same amplitude
�which leads to Eq. �22� for the quantum pressure�, and �b�
the equation of state for the classical pressure is PC
�PC(n). Hypothesis �b� is the standard fluid closure, and
needs no further comment. Hypothesis �a� means that all
electrons are distributed in space according to the same prob-
ability distribution n(x)�A2(x). What distinguishes the

electrons from one another is their phase S� , and therefore
their velocity u� . This approximation can be viewed as a
first step beyond the standard homogeneous equilibrium of a
fermion gas, for which each state is represented by a plane
wave,

���x ,t ��A exp� imu�x/
�,

with the amplitude A and the velocity u� spatially constant.
In our approximation, both the amplitude and the velocity
can be spatially modulated, although we still restrict our-
selves to the case in which the amplitude is the same for all
states. This appears to be a reasonable closure assumption for
systems that are not too far from the Fermi-Dirac equilib-
rium.

IV. APPLICATIONS

As a relevant example of the above theory, we consider a
zero-temperature one-dimensional electron gas, with Fermi
velocity vF and equilibrium density n0. In this case, the clas-
sical pressure is

PC�
mvF

2

3n0
2 n

3. �30�

�Notice that the term ‘‘classical’’ is somewhat inappropriate
here, as PC will contain Planck’s constant through the Fermi
velocity.� We also note that the Fermi velocity in one spatial
dimension

vF�


2

n0
m �31�

is proportional to n0, whereas in three dimensions vF
�n0

1/3 .
Using Eq. �30�, the effective potential defined in Eq. �24�

turns out to be

W�
mvF

2

2n0
2 ���4. �32�

Notice that the effective potential is repulsive, and tends to
flatten the electron density. This is quite natural, as W derives
from the pressure PC, which in turn is a manifestation of the
dispersion of velocities in a fermion gas. When the gas is at
equilibrium, W	n2	 const, and this term has no effect.
We also point out that a similar nonlinear Schrödinger

equation with a ���4-dependent potential has recently been
derived in the study of low-dimensional Bose condensates.10
We stress, however, that such a boson-fermion duality only
applies to one-dimensional systems. For a D-dimensional
fermion system, the classical part of the pressure has the
form PC	n (D�2)/D, so that the effective potential becomes
W	n2/D.11

A. Linear wave propagation

As a first application, let us study wave propagation for
the effective SP system �28� and �29� with W given by Eq.
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�32�. Linearizing around the homogeneous equilibrium �
��n0, e��mvF

2 /2, we obtain the following dispersion re-
lation �for waves with frequency � and wave number k):

�2��p
2�k2vF

2�

2k4

4m2
. �33�

For vF�0, we recover the dispersion relation of the standard
SP system.6 Equation �33� can be written in dimensionless
units by using Eqs. �5� and �7�, which are valid both in one
and three spatial dimensions,

�2

�p
2 �1�k2�F

2�
k4�F

4

4 �Q . �34�

Note that quantum-mechanical effects �dispersion of the
wave packet� are first order in the coupling parameter �Q ,
whereas quantum-statistical effects �Fermi-Dirac distribu-
tion� appear at leading order.
We want to compare this dispersion relation to the one

obtained from the complete WP system �11� and �12�, which,
in the most general case, reads6,12

1�
�p
2

n0
� f 0�v �dv

���kv �2�
2k4/4m2
�0. �35�

In our case, f 0(v) is given by the Fermi-Dirac distribution
for a zero-temperature one-dimensional electron gas at equi-
librium, i.e., f 0(v)�n0/2vF if �v��vF and f 0(v)�0 if �v�
	vF . Substituting into Eq. �35�, one obtains �without any
further approximation�

�2

�p
2 �

�2

�p
2coth� �2

�p
2 � �k2�F

2�
k4�F

4

4 �Q , �36�

where

�2

�p
2 �


k3vF
m�p

2 �k3�F
3�Q

1/2 . �37�

Now we expand the first term on the right-hand side of
Eq. �36� in the long-wavelength �fluid� limit ���p . Using
the expansion x coth(x)�1�x2/3�x4/45�••• , one obtains

�2

�p
2 �1�k2�F

2�� k4�F44 �
k6�F

6

3 ��Q�
1
45 k

12�F
12�Q

2 �••• .
�38�

This is a double expansion in powers of the parameters
�Q and k�F . The collisionless regime is in principle charac-
terized by �Q�1, although, as was seen in Sec. II, electron-
electron interactions can be neglected even when �Q�1, as
is the case for metals. On the other hand, the fluid regime is
characterized by small wave numbers (���p). Indeed,
keeping terms to fourth order in k�F , Eq. �38� reduces to the
dispersion relation for the effective SP system, Eq. �34�. This

is a further indication that the effective SP system is a good
approximation to the complete WP system for long wave-
lengths.
We also note that for �Q→0, the dispersion relation re-

duces to

�2��p
2�k2vF

2 . �39�

This is exactly the dispersion relation obtained from the clas-
sical Vlasov-Poisson system with a zero-temperature Fermi-
Dirac equilibrium. In other words, when the quantum cou-
pling parameter is vanishingly small, a classical dynamical
equation can be used, as the only quantum effects come from
the Fermi-Dirac statistics. This situation may apply to ex-
tremely dense astrophysical systems such as white dwarfs.

B. Stationary solutions

As a second illustration, we use the present formalism to
describe the stationary states of the electron gas.13 This result
is more easily obtained by using the fluid version of our
model. In the time-independent case, the continuity equation
�14� and the force equation �26� possess the following first
integrals:

J�A2u , E�
mu2

2 �e��W�

2

2mA
d2A

dx2
, �40�

where A��n . The first integrals in Eq. �40� corresponds to
current �J� and energy �E� conservation. We can always
choose E�0 by a shift in the electrostatic potential. In this
way, we can reduce the description of the stationary states to
a set of second-order nonlinear ordinary differential equa-
tions for the amplitude A and the electrostatic potential � .
For a zero-temperature one-dimensional electron gas, the ef-
fective potential W is given by Eq. �32�; thus from Eqs. �40�
and �29� we get


2
d2A

dx2
�m� mJ2A3 �2eA��

mvF
2

n0
2 A

5� , �41�

d2�

dx2
�
e
�0

�A2�n0�. �42�

Notice that, if the amplitude A(x) is a slowly varying func-
tion of x, the second derivative on the left-hand side of Eq.
�41� can be neglected. With this assumption, Eq. �41� reduces
to an algebraic equation, which can be solved for A, and the
result plugged into Eq. �42�. This becomes a nonlinear dif-
ferential equation for the electrostatic potential, which is
merely the Thomas-Fermi approximation to our model.
It can be easily verified that the J�0 case cannot sustain

small-amplitude, periodic solutions. Hence, we assume J
�n0u0 with u0�0 and introduce the following rescaling:
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x̂�
�px
u0
, Â�

A
�n0

, �̂�
e�

mu0
2 , �43�

H�

�p

mu0
2 , VF�

vF
u0
.

We obtain, in the transformed variables �omitting the caret
for simplicity of notation�,

H2
d2A

dx2
��2� A�

1

A3
�VF

2A5, �44�

d2�

dx2
�A2�1, �45�

a system that only depends on the rescaled parameters H and
VF . Note that the quantum coupling parameter can be writ-
ten as �Q�H/VF

2 .
It is interesting to perform a linear stability analysis in

order to see in what conditions the system supports small-
amplitude spatially periodic solutions. Writing

A�1�A� exp� ikx �, ���1�VF
2 �/2��� exp� ikx �,

�46�

and retaining in Eqs. �44� and �45� only terms up to first
order in the primed variables, we obtain the relation

H2k4�4�1�VF
2 �k2�4�0. �47�

This second degree equation has solutions

k2�
2�1�VF

2 �
2��1�VF
2 �2�H2

H2
. �48�

Clearly, spatially oscillating solutions only exist when k2 is
real and positive, which yields the condition

VF
2�1�H , �49�

or equivalently

mu0
2	mvF

2�
�p . �50�

This expression sets a lower bound on the speed u0, below
which no oscillating stationary solution can exist.

C. Two-stream instability

A classical plasma composed of two counterstreaming
electronic populations with velocities 
u0 can give rise, for
certain wave numbers, to an instability. In a previous paper,13
we have shown that quantum effects modify the dispersion
relation, and give rise to a new instability branch. These
results were obtained by neglecting the effects of quantum
statistics, and are therefore valid in the limit vF�u0. Here,
we perform the same calculations for finite values of vF .
We consider two electronic populations, which are both

distributed according to a zero-temperature Fermi-Dirac
equilibrium, but with average velocities 
u0. The motion-

less ions provide a neutralizing background. The dispersion
relation for such a two-stream plasma can be found in the
following way. For a single stream propagating at velocity

u0, our fluid model yields the following dielectric constant
�thus valid for long wavelengths�:

�
�k ,���1�
�p
2

���ku0�2�k2vF
2�
2k4/4m2

. �51�

Setting �
(k ,�)�0 leads to the dispersion relation found
previously, Eq. �33�, with the appropriate Doppler shift. The
dielectric constant for the two-stream case is found by aver-
aging the contributions from each stream �(k ,�)�(��

���)/2. Using the normalization of Eqs. �43�, we obtain

��k ,���1�
1/2

���k �2�k2VF
2�H2k4/4

�
1/2

���k �2�k2VF
2�H2k4/4

. �52�

Setting �(k ,�)�0, we obtain the dispersion relation for
the two-stream plasma,

�4�� 1�2k2�1�VF
2 ��

H2k4

2 ��2�k2� 1�VF
2�
H2k2

4 �
�� 1��1�VF

2 �k2�
H2k4

4 ��0. �53�

Notice that for VF�0, we recover the dispersion relation
obtained in Ref. 13. Solving for �2, one obtains

�2�
1
2�k2� 1�VF

2�
H2k2

4 �


1
2 �1�8k2� 1�2k2VF

2�
H2k4

2 � �1/2. �54�

The solution for �2 has two branches, one of which is
always positive and gives stable oscillations. The other solu-
tion is negative (�2�0) provided that

�H2k2�4�1�VF
2 ���H2k4�4�1�VF

2 �k2�4��0. �55�

We immediately notice that, if VF�1, Eq. �55� is never
verified, and therefore there is no instability. This is a quite
natural result. Indeed, mathematically, the instability is due
to the fact that the two-stream velocity distribution has a
‘‘hole’’ around v�0. When VF�1, the hole is filled up, and
no instability can occur. To put it differently, there can be
instability only when the equilibrium distribution is a non-
monotonic function of the energy, which ceases to be true
when VF�1.
When VF�1, Eq. �55� bifurcates for H�1�VF

2 . If H
�1�VF

2 , the second factor is always positive, and instabil-
ity occurs for H2k2�4(1�VF

2 ). If H�1�VF
2 , there is in-

stability if either
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0�H2k2�2�1�VF
2 ��2��1�VF

2 �2�H2 �56�

or

2�1�VF
2 ��2��1�VF

2 �2�H2�H2k2�4�1�VF
2 �.

�57�

This yields the stability diagram plotted in Fig. 1, which is
similar to the one obtained in the limiting case VF�0. The
presence of a finite Fermi velocity has the effect of reducing
the region of instability. Numerical simulations yield similar
results to those observed in the VF�0 case, which are re-
ported in Ref. 13.

V. CONCLUSION

In this paper, we have first established the conditions of
validity of the Wigner-Poisson system. Subsequently, by tak-
ing moments of the Wigner equation, we have derived an

effective Schrödinger-Poisson system that captures the es-
sential features of a quantum electron gas. In the long-
wavelength limit, this model correctly reproduces the results
of the linear analysis of the Wigner-Poisson system. The ad-
vantages of the effective SP model are manifold: it is local in
space �compared to the nonlocal WP system�; it is cast into
the ordinary space, rather than the phase space; and it has a
straightforward interpretation in terms of fluid quantities.
Furthermore, it is easily amenable to numerical studies,
given the abundance of accurate numerical techniques for the
Schrödinger equation �in comparison, numerical methods for
the Wigner equation12 are much scarcer and more cumber-
some to implement�. The crucial points in the derivation of
the model are �a� the decomposition of the pressure into a
classical and a quantum contribution, and �b� the restriction
to an appropriate class of statistical mixtures �composed of
states with the same amplitude but different phases�. We be-
lieve that this class is wide enough to describe a significant
range of relevant physical systems.
For the case of a completely degenerate electron gas, the

effective SP model can be put in a particularly simple form,
in which the Schrödinger equation exhibits a ��� 4 nonlin-
earity. This model has been applied to the study of linear
wave propagation, nonlinear stationary solutions, and the
two-stream instability. The simplicity of the resulting system
of equations makes it a useful tool for the study of quantum
transport in solid-state plasmas.
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