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Africa and the East African Rift

Present-day plate velocities with respect to Nubia

• Africa
- continental mass breaking up
- mostly surrounded by ridges

• East African Rift
- 5000 km long
- Moderate seismicity
- High topography

• Intraplate stress field
- buoyancy forces
- mantle tractions

• Open questions:
- Kinematics?
- Forces?
- Role of melt?



• extensional state of stress                          
Coblentz and Sandiford (1994)

- geoid constrained lithospheric density structure

- stress indicators from World Stress Map

• dynamic uplift + thermal erosion  = rupture                     
Davis and Slack (2002)

- ex. Kenya dome

- long-wavelength gravity and topography

- tomography

- small-scale convection

• Problems
- cratonic rifts?

Role of lithospheric buoyancy forces?

Davis and Slack (2002)

Coblenz and Sandiford (1994)

Slack and Davis (2002)



Role of mantle tractions?

Behn et al., 2004; Ritsema et al., 1999

• The African Superplume
- positive shear velocity anomaly
- divergent mantle flow
- consistent with surface motions

• Problems:
- Is the African Superplume buoyant?
- Coupling?



Role of melt?
• Tectonic vs. Magmatic Stretching

• East African Rift:
- Seismic tomography 

melt conditions are present                  
(e.g. Keranen et al. 2006)

- Seismic anisotropy 
consistent with melt lenses                        
(e.g. Kendall et al., 2006)

- Recent diking event (2007)                        
youthful and barely extended Natron rift    
(Calais et al., 2008)

• Problems:
- Not all rifts are very magmatic early on   

Western Branchafter Buck (2004)



Kinematics



Previous kinematic models

Hartnady, 2002: 4 rigid 
plates embedded within 

Nubia-Somalia plate 
boundary

Gordon and Stein, 1991: 
a diffuse plate boundary

Chorowicz, 2005: oblique 
NW-SE rifting



Calais et al., 2006:
• GPS + slip vectors
• Somalia-Nubia plate motion
• 2 additional plates: Victoria (quantified) and 

Rovuma (not quantified)

Horner-Johnson et al., 2007:
• 3.2 Ma average spreading rates and transform 

azimuths
• Somalia-Nubia plate motion
• 1 additional plate: Lwandle

Two more recent models

Lwandle

Victoria

Rovuma



1. Three data sets 
processed 
independently →
position/velocity 
solution

2. Independent solutions 
combined (14-
parameter 
transformation into 
ITRF2005) →
position and velocities 
in ITRF2005

3. Velocities 
transformed into 
Nubia-fixed frame 
using “best-fit” 14 
sites on Nubia:
– Reduced chi2 = 1.5
– RMS = 0.7 mm/yr
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• Model:
- rigid plate motions 
- Nubia, Somalia, Victoria, Rovuma, Lwandle

• Data:
– GPS velocities, assigned to a plate

(+ 12 GPS velocities on Antarctic plate)
– Earthquake slip vector directions, 

assigned to a plate boundary
– 3.2 My average data on the SWIR = 

transform fault azimuths + spreading 
rates.

• Solve for block angular velocities by joint 
inversion of GPS, ESV, and SR data.

• Use F-test statistics to quantify 
significance of chi2 difference between 
various scenarios



• Final model: 3 plates embedded 
in EAR
– Reduced chi2 = 1.4
– GPS RMS = 0.8 mm/yr
– ESV RMS = 14 degrees
– Spreading rates RMS = 0.6 

mm/yr

• Predicted extension rates
– increase from S to N
– up to ~6.5 mm/yr in the 

northern MER
– qualitatively consistent with 

expression of faulting
(incl. Mad. Ridge)

• Extension directions ~E-W but 
vary slightly as a function of the 
plates involved.

• Spatial density of geodetic sites 
still very low.

Virunga:
2.5 mm/yr

Stamps, D.S., et al. (2008), A kinematic model for the East African
Rift, Geophys. Res. Lett., 35, L05304, doi:10.1029/ 2007GL032781.



Dynamics



• Known/Observations
– Buoyancy stresses: from 

lateral gradients in density
– Strain rate: from GPS 

measurements + 
earthquakes

• We solve for the buoyancy 
stresses such that the total 
deviatoric stress field best 
matches the observed strain 
rates

• Africa surrounded by oceanic 
ridges:
– Minimal role of traction 

along plate sides
– Boundary stresses = should 

mostly reflect mantle 
tractions

Buoyancy 
stresses

(~10 MPa)

Observations
(strain rates,
~5x10-8/yr)

+ =
Total 

deviatoric
stress 
field

Boundary
stresses

(side + basal 
tractions)

=>

? best fit to 
observations

+ = =>

Question: What forces drive the observed kinematics?



Strain Rate Field

STEP 1 : 
convert velocities to strain rates

• Data:
• GPS-derived model velocities                       

(Stamps et al., 2008; Sella et al., 2002)

• Earthquake moment tensors   CMT 
catalog (M>3.5)

• Results:
• localized deformation
• low strain in EAR
• high strain along ridges 
• high strain at subduction zone 

Strain 10^8/yr



GPE stresses
STEP 2: 

compute deviatoric stresses 
associated with lateral 
gradients in GPE

• Method:

– Thin-viscous sheet 
approximation (Flesch et al, 2001)

– Crust 2.0 (Bassin et al., 2000)

– Estimate gravitational potential 
energy

– Lateral gradients in GPE drive 
the lateral gradients in deviatoric 
stress

σ zz =
1
L

ρ( ′ z )gd ′ z dz
0

′ z 

∫
0

L

∫



STEP 3:
quantitative comparison 
between GPE stresses and 
strain rates

• Misfit function compares 
principal directions and 
“style” of strain and stress:

• Result:
– Poor fit overall
– Better in areas with strain data
– Worse in areas w/o strain data

GPE Stresses vs. Strain Rates
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Misfit



Buoyancy 
forces

(~10 MPa)

Observations
(strain rates,
~5x10-8/yr)

+ =
Total 

deviatoric
stress field

Boundary
forces

(side + basal 
tractions)

=>

?

best fit to 
observations

Stress Field Boundary Conditions

+ = =>

STEP 4



Stress Field Boundary Condition
RESULTS

• Extensional boundary 
stresses

• Magnitude ~1-10 MPa: 
smaller, but comparable to 
GPE stresses

• Source of these stresses:
– relative plate motions? 

• minimal due to ridges
– response of mantle tractions

MPa



Comparison with a Mantle Flow Model

MPaMPa



Total Deviatoric Stress Field

• Combination of buoyancy and 
boundary forces

• Results:
– Up to ~20 MPa in East Africa
– E-W tension over most of Africa
– Largest stresses in MER
– Higher stresses correlate with trace 

of the EAR, with magnitudes 
decreasing southward. 

– Stress magnitudes high outside of 
the EAR in southern Africa: may 
explain off-rift seismicity? 

Total Deviatoric Stress Field
MPa



Total Stresses vs. Strain Rates

• Result:
– Improved fit overall
– Better in areas with strain data
– Worse in areas w/o strain data
– E-W extension improves fit 

across EAR and ridges
– Large misfit in southern EAR

Misfit



Comparison with World Stress Map
→ World Stress Map (2008)

• SH_max - maximum
horizontal compressive
component

→ Red =   WSM AB normal faulting
→ Black = WSM AB undefined
→ Purple = this work

• Style and directions of deviatoric 
stresses consistent with focal 
mechanisms and SHmax
direction

Stamps et al., (in review) Lithospheric buoyancy forces in Africa 
from a thin sheet approach, International Journal of Earth Sciences 
special edition on Continental Rifting



Heat flow: Nyblade et al. 1990
Crustal rheology: Albaric et al., 2008
Strain rate: Stamps et al., 2008
Mantle = wet olivine

Comparison with Lithospheric Strength

• GPE Stresses ~10 MPa in EAR
~1.5 TN/m 150 km lithosphere
~1.0 TN/m 100 km lithosphere

• Total Stresses ~15 MPa in EAR
~2.3 TN/m 150 km lithosphere
~1.5 TN/m 100 km lithosphere

• Integrated lithospheric strength
• Bogoria segment (warm) ~4 TN/m
• Balangida segment (cold) ~9 TN/m

• Buoyancy + boundary stresses
• Not sufficient to rupture cold EAR
• Sufficient if mantle lithosphere 

“removed”



• A first-order kinematic model for the EAR consistent with: 
– 3 plates between Nubia and Somalia: Victoria, Rovuma, Lwandle
– EAR motions consistent over past 3.2 Ma
– Localized strain along narrow rift structures that isolate large, mechanically 

strong, lithospheric blocks.
– Requires confirmation from more detailed geodetic studies.

• A new total deviatoric stress field for Africa:
– Dominated by GPE, with ~30% contribution from mantle flow
– Tensional, ~E-W over most of Africa, ~15 MPa in EAR
– Good agreement with independent stress and strain observations
– GPE + mantle flow not sufficient to rupture cold lithosphere in East Africa…

• Additional contribution from magma buoyancy (+ heat advection), cf. 
Buck, 2002?

Conclusions



Differences in Misfits

• Improved fit:
1. western branch
2. eastern branch
3. Congo basin
4. Main Ethiopian Rift

• Better in areas with strain data
• Worse in areas w/o strain data
• E-W extension improves fit 

across EAR and ridges


