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Overview:

- Friction phenomenology

- Rate-and-state equations

- How “structural relaxation” produces 
non-trivial, realistic friction



Friction phenomenology in geologicaly relevant materials:

-Friction coefficient depends on velocity.
-Friction coefficient decreases with velocity (velocity weakening) 



Friction phenomenology in geologicaly relevant materials:

-Friction is history dependent



Friction phenomenology in geologicaly relevant materials:

-Phenomenological modeling:
The rate and state equations: Dieterich (1979), Rice&Ruina (1983)
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Gutenberg-Richter
law:

N(M)~10-bM

Omori-Utzu
law of aftershocks:

N(t) ~ 1/(t+t0)
p

Rate-and-state
equations

Dieterich (1995) 
Ziv and Rubin (2003) 

Realistic b?
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Dieterich and Kilgore, 1994



Is Structural relaxation compatible with time increase of contact area?

Yes, it is





1+A ln (R(t+t0))



Gutenberg-Richter
law:

N(M)~10-bM

Omori-Utzu
law of aftershocks:

N(t) ~ 1/(t+t0)
p

Rate-and-state
equations

Spring-block model plus
Structural Relaxation

Frictional behavior
compatible with

Robust b, around 1.1 'p' a bit large (~1-1.5) 
It can be improved 
(no long range elasticity
included up to now) 

Very good agreement 
with the phenomenology.
Model can be adapted 
to show logarithmic 
time increase of the
contact area



Thank you!
Hope to see you 
in Bariloche



, , , /,

A mechanism for spatial and temporal earthquake clustering

E. A. Jagla and A. B. Kolton
Centro Atómico Bariloche, Comisión Nacional de Enerǵıa Atómica, 8400 Bariloche, Argentina

Abstract. The Gutenberg-Richter law states that the number of earthquakes as a func-
tion of magnitude decays as a power law. This trend is usually justified using spring-
block models, where slips with the appropriate statistics of sizes have been numerically
observed. However, prominent spatial and temporal clustering features of earthquakes,
as those implied by the Omori law of aftershocks are not accounted for by this kind of
models unless they are complemented with ad hoc assumptions, such as stress recovery
laws after slip events, or the phenomenological rate-and-state equations to describe fric-
tion. We show that when an appropriate mechanism of structural relaxation is incorpo-
rated into a spring-block model, realistic earthquake patterns following in particular the
Gutenberg-Richter and Omori laws are obtained. Moreover, velocity weakening and other
features well known from laboratory friction experiments appear as a consequence of the
relaxational mechanism as well, without making any a priori assumptions on the veloc-
ity dependence of the friction force in the model. In this way, our model shows that a
single physical mechanism may be a unifying concept behind the Gutenberg-Richter and
Omori laws, and the rate-and-state equations of rock friction.

1. Introduction

The distribution of earthquakes in nature follows non-
trivial patterns, some of which are captured by two well
known empirical laws, namely the Gutenberg-Richter law
[Gutenberg and Richter, 1956], and the Omori (or Omori-
Utsu) [Omori, 1894, Utsu et al., 1995] law [Scholz, 2002;
Ben-Zion, 2008]. The Gutenberg-Richter (GR) law states
(in its cumulative form) that the number of earthquakes
N(M) with magnitude larger than M decreases as N(M) ∼
10−bM . The exponent b has some regional variation, and it is
typically found to be in the range 0.7-1.3 [e.g., Frohlich and
Davis, 1993, Utsu, 1999, Wiemer and Wyss, 2002]. A power
law distribution of earthquakes, as indicated by the GR law
can be understood as originated in a state of (at least par-
tial) self organized criticality of the system [Bak et al., 1987;
Bak and Tang, 1989; Carlson et al., 1994], in which a power
law distribution of events exists for a broad range of pa-
rameters. A number of statistical models generate a power
law distribution of earthquakes. Among them, the pioneer
is the model of Burridge and Knopoff [1967], that describes
a collection of blocks (modeling small patches of a tectonic
plate) connected elastically between nearest neighbors, and
sliding on top of a rigid surface. The blocks are uniformly
driven, simulating tectonic loading. The model assumes the
knowledge of a prescribed friction law between blocks and
substrate. A power law decay of number of earthquakes with
magnitude (in a limited magnitude range) is obtained in the
case in which the friction law displays velocity weakening
(i.e., the friction force decreases with the relative velocity of
the sliding elements [Scholz, 2002]). Other models, obtained
as limiting cases of the BK model, or inspired on it, have
been proposed that generate a GR power law distribution.
Particular interest has been paid to the model by Olami,
Feder, and Christensen [1992] (OFC), specially because of
its simplicity, both in description and in numerical treat-
ment. In this model, instead of the positions of the blocks,
the variables are the values of the local friction forces for all
spatial positions. These forces are evolved in time with the
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requirement that they must be lower than some maximum
friction force, or threshold, otherwise a stress redistribution
representing an earthquake occurs in the system. In most
of these models, obtaining a realistic value of the decaying
exponent b requires the adjustment of some parameter, i.e.,
a realistic value of b does not emerge as a robust feature.

The Omori law is the second quantitative law about dis-
tribution of earthquakes we consider. It refers to the tempo-
ral distribution of aftershocks, namely the temporal cluster-
ing of earthquakes following a large one, usually called the
main shock. This law states that the number of aftershocks
per unit of time decays as ∼ (t + c)−p with the time t from
the main shock. The exponent p is usually found to be close
to 1, although other values and even other functional forms
have been observed [Ben-Zion, 2008], and c is a time con-
stant that depends on the low magnitude cutoff used, and
that can vary between minutes and days. Aftershocks occur
mainly close or within the spatial region where the rupture
of the main shock took place. The origin of aftershocks
has been controversial for very long time and many mecha-
nisms have been considered in its explanation. Some of the
physical processes invoked have included fluid flow follow-
ing the main rupture [Nur and Booker, 1972], visco-elastic
response [Mikumo and Miyatake, 1979], dynamic stress trig-
gering [Felzer and Brodsky, 2006; Gomberg et al., 1998], af-
terslip [Perfettini and Avouac, 2004; Helmstetter and Shaw,
2009], damage rheology [Ben-Zion and Lyakhovsky, 2006],
and sub-critical crack growth [Das and Scholz, 1981; Shaw,
1993].

In a seminal work, Dieterich [1994] described aftershocks
as a combination of static stress redistribution caused by the
main shock, followed by failure under nearly constant stress
conditions [Scholz, 1968; Narteau et al., 2002]. The main
idea of this line of thought is that after a main shock, parts
of the fault close to the main rupture region are loaded to
stresses that can be higher than its long-term strength, and
thus this sector will fail in a finite time according to the laws
of static fatigue processes. Assuming standard fatigue laws
to hold, a prediction of a rate of aftershocks according to
the Omori law has been obtained by different authors [Di-
eterich, 1994; Marcellini, 1997; Helmstetter and Shaw, 2006;
Zoller et al., 2005].

The failure by static fatigue is compatible with the de-
scription of the fault using the rate-and-state equations [Di-
eterich, 1979; Ruina, 1983] which in particular incorporate
the process of velocity weakening.
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The description of the GR and the Omori laws in a uni-
fied framework has been, however, problematic. The statis-
tical models that provide a reasonable justification for the
GR law rarely show aftershocks, or other type of spatial or
temporal correlation between events. It must be mentioned
that the OFC model in its original form does display after-
shocks [Hergarten and Neugebauer, 2002] but in our view
these aftershocks are peculiar to details of the model, and
do not account for actual aftershocks. In fact, aftershocks
in the OFC model depend exclusively on tectonic loading,
and stop immediately if this is halted. Although it is not
possible experimentally to stop tectonic loading to see if
aftershock cease, there is consensus [Scholz, 2002] that af-
tershocks should continue for same time under this hypo-
thetical condition, indicating that they are dependent on
some internal non stationary effect within the fault. In ad-
dition, we have found that aftershocks in the OFC model
completely disappear if the threshold values, instead of be-
ing taken as uniform, are allowed to have spatial variations
in a range as low as about 5 %. This points out to the fact
that aftershocks are not a robust feature of the OFC model.

Ito and Matsuzaki [1990] were able to obtain aftershocks
in a statistical model assuming fault strengthening or weak-
ening after a block slips. An interesting attempt to obtain
a statistical model that describes aftershocks in a realistic
way has been made by Hainzl et al. [1999; 2000]. They used
the OFC model incorporating partial stress recovery due to
transient creep after the occurrence of events, following a
prescribed function of time. In this way they are able to
obtain aftershocks with many realistic properties. However,
realistic values of the b decaying exponent of the GR law are
obtained only after fine tuning of a parameter in the model.

The numerical description of a planar fault by a collec-
tion of pieces described by the rate-and-state equations was
initiated by Dieterich [1995], and followed by Ziv and Rubin
[Ziv, 2003; Ziv and Rubin, 2003]. They have shown that a
collection of elements described by the rate-and-state equa-
tions with appropriate parameters can in principle describe
both the GR law and the Omori law. Yet in this simulations
the use of rate-and-state equations remains phenomenologi-
cal, as the physics described by these equations has not been
obtained up to now as a robust output of a statistical model
with well defined microscopic laws. This is precisely what
we do here.

We present a spring block type model that is inspired in
the BK and the OFC models. The model is of Hamiltonian
nature, namely, we define the energy of the model and evolve
the variables according to a dynamics of the overdamped
type. In particular, we do not need to introduce any ad
hoc form of the friction law between blocks and substrate.
We complement the model with an appropriate relaxational
term as discussed below, intended to describe aging effects in
the sliding bodies. With these ingredients we simultaneously
obtain: 1) earthquake distributions and in particular after-
shock sequences quantitatively comparable with real ones,
2) a velocity weakening friction law, and in general, agree-
ment with the available experimental results in rock friction
and 3) a power law decay for the number of earthquakes
with magnitude compatible with the GR law, with an ex-
ponent b that compares well with actual values without fine
tuning of parameters.

2. Model in the absence of relaxation

Our modeling is inspired in the BK model [Burridge
and Knopoff, 1967], and also in the description of elas-
tic manifolds driven on top of disordered media [Fisher,
1998]. A two-dimensional square arrangement of elements,
or “blocks” (with periodic boundary conditions) is consid-
ered. A coordinate ui,j , measuring the local displacement
between block and substrate is assigned to one each ele-
ment. Nearest neighbor blocks are connected by springs

with spring constant k0. The variables ui,j are driven ex-
ternally through a spring of stiffness constant k1 (see Fig.
1a). In addition, the cohesion between blocks and substrate
is modeled by the use of a potential energy function Wi,j(u)
(specified below) that incorporates disorder, or “roughness”,
and that is chosen independently for each block label i, j. In
this way, the energy E of the system reads

E =
X

i,j;i′,j′

k0

2
(ui,j − ui′,j′)

2+
X

i,j

k1

2
(U(t)−ui,j)

2+
X

i,j

Wi,j(ui,j)

(1)
where we note by i′, j′ a neighbor site to the i, j site,
and U(t) is the driving variable (usually we will choose
U(t) = V t, we will refer also to U(t) and to k1(U(t)− ui,j)
as the strain and local stress in the system, respectively).

One may think that in a more realistic description of
sliding on a planar fault, the potential energy functions W
should be considered to be correlated in some way. Several
arguments point however against the existence of long-range
correlations in W that might qualitatively alter the results
obtained in the absence of correlations. A periodic array of
elastically coupled blocks on top of a disordered substrate
can display long-range periodic correlations and anisotropic
response due to the discrete translation symmetry of the pe-
riodic system. This situation is however unstable under the
presence of inhomogeneities in the elastic coupling constants
[Cule and Hwa, 1996] and thus unlikely for the case of faults.
Formally, this means that in our model, the sliding direction
(i.e. along the “u” axis) does not correspond to any partic-
ular direction in the plane of the fault, but must be consid-
ered as a sort of independent direction. Also, from a purely
practical point of view, the potential landscape is expected
to irreversibly change after an earthquake, and correlations
to be destroyed. We therefore take a disordered average pin-
ning force correlator Wi,j(u)Wi′,j′(u′) ∼ δi,j;i′,j′Δ(u − u′)
with Δ(u) a short-ranged function. This makes the model
based on Eq. (1) belong to the so-called random-manifold
depinning universality class [Chauve et. al., 2000; Rosso et
al., 2007] and thus to share universal critical exponents with
other systems such as magnetic domain walls, as we will see
below.

The time evolution of the variables ui,j are derived from
the previous energy assuming an overdamped dissipative dy-
namics, i.e., neglecting inertia effects. Namely, we must
solve the equations:

dui,j

dt
= −λ

δE

δui,j
(2)

Once we specify the cohesive potentials between blocks and
substrate Wi,j(u), the previous equations allow to obtain the
exact temporal evolution of ui,j . We will work in the limit in
which the relaxation time of Eq. (2) (proportional to λ−1)
is smaller than any other time scale in the system. We can
consider formally that λ → ∞. In this case the dynamics
of the system has two qualitatively different parts. One of
them consists in a quasistatic evolution of the variables, in
which Eq. (2) is satisfied with a vanishing left hand side, i.e
(from Eqs. (2 and 1)),

X

i,j

k0(∇2u)i,j +
X

i,j

k1(U(t)− ui,j) =
X

i,j

dWi,j

dui,j
(3)

(∇2 is the discrete Laplacian operator on the lattice, we
will take the lattice constant as the unit of length). This
equation states that the force onto each block exerted by all
springs to which it is attached, has to be balanced by the
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pinning force made by the substrate. The second mode of
evolution occurs when, upon a slight increase of the external
driving, Eq. (3) cannot be satisfied by a small rearrange-
ment of the u’s. In this case an abrupt rearrangement of
the variables occurs, until Eq. (3) is satisfied again (see Fig.
1). These rearrangements correspond to the earthquakes
(we call them also “events”) in the system. In view of our
choice λ → ∞, we see that earthquakes, once triggered,
occur instantaneously. The size of an earthquake is charac-
terized by the sum of the individual increases Δui,j of all
the variables during the rearrangement process, namely

S =
X

i,j

Δui,j . (4)

The quantity S is the analog in our model of the seismic mo-
ment. We can thus appropriately define the magnitude M
of an earthquake as M = 2/3 log10 S to match the modified
Richter scale up to an additive constant.

The model as stated has received a lot of attention to
describe the collective jerky motion observed in many dif-
ferent systems such as Barkhausen noise in magnets [Durin
and Zapperi, 2006], jumps in the creep motion of magnetic
domain walls [Lemerle et al., 1998, Repain et al. 2004],
avalanches in the depinning of a contact-line of a fluid
[Moulinet et al., 2004], and dislocation or crack propagation
[Moretti et al., 2004, Bonamy et al., 2008].

The model in its present form is known to generate events
with a Gutenberg-Richter like decay. The value obtained for
b is a robust universal result, independent of the details of
the functions W (provided they are short-range correlated)
and the values of spring constants. However, the numeri-
cal value turns out to be b � 0.4 [Rosso et al., 2009] well
different from the value b � 1 observed in actual seismicity.
In this respect, Narayan and Fisher [1993] predicted (un-
der some assumptions that were proved very recently using
Functional Renormalization Group and numerical calcula-
tions [Rosso et al., 2009]) the general scaling relation,

b =
3

2
− 3

d + ζ
, (5)

relating the analog of the GR exponent characterizing the
scale invariant part of the distribution of avalanches, with
the internal dimension d of the elastic manifold (d = 2 in our
case of faults) and ζ the roughness exponent of the interface
at the length scale where avalanches are produced. In other
words, the size of an avalanche of linear size L scales as
S ∼ Ld+ζ . For d = 2 the roughness exponent corresponding
to the universality class of our model is found to be ζ ≈ 0.75
[Rosso et al., 2003], yielding b ≈ 0.4 in good agreement with
recent numerical results [Rosso et al., 2009].

2.1. Simplified treatment

In its present form the numerical simulation of the model
is rather time consuming. In addition, in the next section
we will incorporate additional degrees of freedom that fur-
ther increase the simulation time. It is thus very convenient
to have a limiting version of the model that adapts better
to efficient numerical simulation without changing the basic
properties of the original model. We will see that the deriva-
tion and the final version of the model shares many features
with the model of Olami et al. [1992]. We describe now this
version. We first note that the essence of Eq. (3) is to find
values of the u’s that correspond to mechanical equilibrium,
i.e., in which to total force on each block vanishes. This
means that for each block the substrate force f = −dW/du
has to balance the force from neighbors plus the force from
driving. The friction force f has maxima as a function of

u that are typically separated some distance δu that we as-
sociate with the slip distance of more phenomenological ap-
proaches [Scholz, 2002]. We will make a simplification by
replacing the actual form of the local friction force by a set
of “spikes” at the values of u corresponding to the maxima
of f , and with the corresponding height (see Fig. 1b). In
this way, given a fixed value of neighbors-plus-driving force,
we will determine a value of u that has some error with
respect to the correct value, the error being of order δu.
Now we can see that if we maintain the spring constants
k1, and k0 being much smaller than F0/δu (with F0 being
the typical height of the force maxima), then this error δu
produces onto the neighbors a corresponding modification
of the force and equilibrium positions that are of higher or-
der in k1,0δu/F0, and can thus be ignored. This means that
we can replace the true force from the substrate by a set of
discrete values located at discrete positions, as indicated in
Fig. 1b, if we accept inaccuracies of order δu in the values
of ui,j . These inaccuracies will in fact be acceptable for our
analysis since reasonably large earthquakes will involve local
re-arrangements of the variables that are much larger than
δu, and then the previous definition of size S for the earth-
quakes still makes sense. We will set units such that F0 = 1,
and δu = 1. This means that the limit we are analyzing cor-
responds to k1 � 1 and k0 � 1. In the literature of elastic
manifolds on random potentials, this limit where each block
of the elastic object can be localized and individually pinned
can be viewed as a strong zero-dimensional (i.e. point disor-
der) pinning. Interestingly, the modified model we propose
here can be considered as the two dimensional generalization
of the zero dimensional discrete model recently proposed by
Le Doussal and Wiese [2009], with the difference that in our
model the force spikes are randomly located (as it would be
in a more realistic situation of strong pinning), instead of be-
ing located at all integers. In the next section we will show
that our simplified model is in the same universality class
of the original model derived from the energy functional of
Equation 1. This imply that large scale properties, such as
the avalanche or earthquake distributions, are not modified
by our approximations.

This simplified form of the model admits a closed descrip-
tion in which we only focus attention on the local values of
the friction force between block and substrate fi,j , instead
of on the values of ui,j . In fact, given an initial set of values
fi,j , upon the application of the external driving the val-
ues of fi,j all increase at the same rate k1V . The system
remains stable as long as all fi,j are lower than the corre-
sponding maximum static friction force Fi,j (the height of
the spikes in Fig. 1b) that the block-substrate cohesion is
able to sustain locally. When this maximum is overcome
at some position, the block jumps to a new equilibrium po-
sition and the forces onto the neighbor sites are updated.
Note that we do not need to generate the full sequence of
force maxima and positions from the beginning. It is more
efficient to generate them on the fly, as they are explored by
the system.

In order to state the model to be simulated in the clear-
est terms, we rephrase the main dynamics as a sequence of
rules:

1. Choose the threshold forces Fi,j from a random Gaus-
sian distribution with mean 1 and deviation σf .

2. Set all forces fi,j to zero at time t = 0 (dependence on
initial conditions vanish after some transient period).

3. Increase all fi,j uniformly a small step k1V δt. Set
t = t + δt. Repeat until fi0,j0 > Fi0,j0 at some site i0,
j0.

4. Set S=0 and (ie, je) = (i0, j0) as the epicenter location.

5. Choose Δu from a random Gaussian distribution with
mean 1 and deviation σx. Choose the new value of Fi0,j0
from a random Gaussian distribution with mean 1 and de-
viation σf .



Q

6. Decrease fi0,j0 to fi0,j0 − (4k0 + k1)Δu. Increase f on
neighbor blocks in a quantity k0Δu.

7. Set S=S+Δu.

8. Check if fi0,j0 > Fi0,j0 for some i0, j0. If yes, go to
step 5. If not, declare that an event of size S at time t with
epicenter (ie, je) has occurred, and resume from step 3.

In this way, in step 3 a local instability of a given
metastable state is fully developed by accumulation of stress,
which can then trigger a global one (i.e. a cascade of instabil-
ities or earthquake) which is fully developed from steps 4 to
8, until the system is in a more relaxed and new metastable
state. Note that the choice of Gaussian distributions is just
an approximation to more realistic distributions. In view of
the independence of the results on the values of σf and σx

(see results below) we do not expect any important depen-
dence if other distributions with finite dispersion are chosen
instead of the Gaussian, representing different short-ranged
correlated random force fields. In this respect it is also worth
pointing out here that the detailed form of the random force
field, which can yield either a short-range (such as random-
bond disorder in a magnet) or long-range correlated random
potential (such as random-field disorder in a magnet), is ir-
relevant, since they belong to the same depinning universal-
ity class [Chauve et al., 2000] (i.e. the two types of disorder
yield the same dynamical critical fluctuations at vanishing
velocities), at variance with the equilibrium problem where
avalanches do in principle depend on the type of disorder
(random-bond or random-field) [Le Doussal et al., 2008].

Obvious additions to the previous algorithm can be im-
plemented to calculate other quantities as needed. We want
to emphasize the similarity of this approach to the one of
Olami et. al. [1992]. It is important to make clear however,
that although stated in a form that is typical of a system
automaton, the previous sequence of rules solves the dy-
namical evolution Equations (1) and (2) in the quasistatic
limit (λ → ∞), with the only constraint that k1, k0 � 1.
Moreover, we show below that our rules conduce to the well
known critical properties of the model described by Equa-
tion 1.

The parameters of the model are the values of k0 and
k1, and the dispersions σf and σx in the amplitudes and
positions of the maximum local friction forces. Note in par-
ticular that the quantity k0/(4k0 + k1) corresponds to what
in the OFC model is usually called α, varying between 0
and 0.25. We see that the derivation starting from a sys-
tem with random local friction justifies immediately the use
of a disordered distribution of maximum friction forces, or
thresholds, Fi,j . This in turn produces remarkable differ-
ences of the results obtained compared to those obtained
with the OFC model, as we will see below.

2.2. Results

We show now the results obtained by implementing the
model presented above, in the limit corresponding to the set
of rules stated at the end of the previous section. We will
show results in our model for magnitudes larger than some
cutoff M0. We choose M0 = 0.7 that corresponds to disre-
gard events in which less than about 10 sites have partici-
pated, since these small events are strongly influenced from
the numerical mesh we are using. In Fig. 2a we show the
results for the distribution of events as a function of magni-
tude. We observe a power law with exponent b ≈ 0.4, which
is consistent with the expected results from the full imple-
mentation of a two dimensional elastic interface [Rosso et al.,
2009]. This shows that the simplified version of the model
is in the same universality class than the original model of
Equation 1. The value of the exponent is however well dif-
ferent from the b � 1 observed for actual earthquakes. An
exponential cut-off for large event size exists due to confine-
ment, or in other words to the existence of a characteristic
length-scale L1 ∼ 1/

√
k1 associated with the drive which

breaks the scale invariance for events with a linear size larger
than L1. This cut-off is controlled by the ratio k1/k0 of the
driving spring to the spring between neighbors and occurs
when the spatial extent of the events in the direction of the
displacements is of order Lζ

1 ≈ k
−ζ/2

1 , with ζ the interface
roughness exponent at low velocities. The crossover to the
exponential behavior thus moves to larger magnitudes as
k1 is decreased [Zapperi et al., 1998; Lacombe et al., 2001;
Rosso et al., 2007; Le Doussal et al., 2008] . In Fig. 2b
we show a time-magnitude plot of all events occurring in
a particular time interval. It is apparent that no obvious
temporal correlations occur in this case. This is confirmed
by an analysis of the time intervals between events of mag-
nitude larger than some M0, showing that the distribution
of time intervals is essentially exponential, and independent
of the precise value of the cut off M0. This behavior was
also recently found for static avalanches by Le Doussal et
al. [2008]. We also mention that spatial correlations are
neither observed in this case.

The present model generates a non-vanishing mean fric-
tion force that originates in the instabilities (earthquakes)
that dissipate energy in the system. The mechanism is to-
tally analog to that accounted for by the Tomlinson model,
[Braun, 2004] which is one of the simplest examples where a
finite friction force at a vanishing driving velocity is obtained
due to slip weakening. In essence, although our dynamics
is overdamped, and then dissipation vanishes for zero rela-
tive velocity between blocks an substrate, even a very small
value of V produces abrupt rearrangements (earthquakes)
that dissipate an amount of energy that does not vanish in
the V → 0 limit. It can be rigorously shown indeed, that
due precisely to the presence of shocks or earthquakes, the
average work done by the drive on a long distance is di-
rectly proportional to the critical depinning force [eg. Rosso
et al., 2007], which can only vanish for a very stiff interface
k1 → ∞, or in the absence of disorder (i.e. the critical de-
pinning force only depends on elasticity and disorder). In
addition, the use of a rapid elastic relaxation (λ → ∞) im-
plies also that the actual value of external velocity V plays
no role, and then the average friction force is constant and
independent of V . In this sense, we can say that the fric-
tional properties of the model in its present form are rather
trivial. Note that in the case in which we use a finite value
of λ, the friction force would get a contribution that is an
increasing function of V . This would be the “direct effect”
that is usually referred to in analysis based on rate-and-state
equations [Scholz, 2002] which is not present in our case in
which λ → ∞. Since this part of the friction force comes
from effective “viscous” forces that are not linked with in-
stabilities but with the flow itself, our approximation cannot
change the earthquake statistics in the limit of vanishing ve-
locity.

3. Model in the presence of relaxation

In the present form, the model does not display earth-
quake clustering, and although it is explicitly constructed
to have slip weakening, it does not display velocity weak-
ening. Also, the decaying exponent in the GR law is not
realistic. However, the inclusion of a simple additional in-
gredient changes this scenario drastically. This ingredient
turns out to be what we have called structural relaxation
[Jagla, 2007]. The primary physical justification of its inclu-
sion is the following. It is known that in solid friction the
static friction coefficient increases with the time the surfaces
have been in contact [Marone, 1998b; Persson, 2000]. This
means that the contact between surfaces strengthens as the
contact time increases, and this has to be originated in some
kind of time-dependent mechanism within the materials.
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One simple form to introduce this effect in the kind of
model we are studying, is to incorporate additional degrees
of freedom that evolve through a slow relaxational dynamics
controlled by the mechanical energy of the system. Consider
a situation in which V = 0. In the model of the previous
section, once Eq. (3) is satisfied (this occurs in a very short
time scale) the energy of the system (Eq. (1)) stays con-
stant. But if additional degrees of freedom exist, their evo-
lution will make the energy of the system slowly decrease
with time. This is a stabilization mechanism that in partic-
ular will strengthen effectively the cohesion between blocks
and substrate as a function of time.

Let us see how this generic description can be imple-
mented in concrete in our model. We will include for each
position i, j an additional variable u0

i,j that corresponds to
a global shift of the cohesive energy Wi,j . Concretely, the
last term of Eq. (1) will be replaced according to

X

i,j

Wi,j(ui,j)→
X

i,j

Wi,j(ui,j − u0
i,j) (6)

Evolution of the u variables (Eq. (2)) stays formally the
same as before. But now we give the substrate the possibility
to react to the friction force by allowing a slow modification
of the u0 variables according to

du0
i,j

dt
= R∇2 δE

δu0
i,j

(7)

This dynamical evolution of the relative shift of the cohesive
potential at different positions (see Fig. 1c) is a generic way
to introduce the back effect of the sliding blocks onto the
substrate. The coefficient R is a measure of the intensity or
rate of relaxation, and can thus be related to experimental
relaxation times. Since the variation of energy with respect
to u0 is simply the local friction force fi,j , we see that Equa-
tion (7) generates a tendency for the forces fi,j to become
uniform across the system, generating a stronger cohesion
between the elastic surface and substrate. This relaxational
effect competes with the driving, which forces the movement
of the blocks onto the substrate at a fixed average velocity
V and tends to de-correlate the values of fi,j at different
spatial positions. Thus the relevant parameter that mea-
sures the competition between the two effects is the ratio
R/V . We will show in the following that this relaxation
mechanism produces the appearance of a robust sequence
of aftershocks, and the occurrence of a velocity weakening
friction law. Our structural relaxation mechanism is what
in other contexts is called the aging of the material [e.g.
Cugliandolo, 2002].

We want to point out that the use of the Laplacian in the
right hand side of Eq. 7, instead of a purely local relaxation
(in which the right hand side of Eq. 7 would be of the form
∼ −RδE/δu0) cannot be completely justified a priori. Let
us say that this is the choice that gives the physical output
we are searching for. Also, the use of the Laplacian implies
(see results below) that if V is set to zero at some moment,
the stresses in the system do not decay to zero with time
(because the spatial mean value of u0 does not evolve), a re-
sult that is consistent with what is observed for instance in
rock friction stop-and-go experiments [Marone, 1998b], and
that is not obtained if we use purely local relaxation.

In order to have a description in terms of the forces fi,j

only, and a set of rules like those at the end of the previous
section also in the presence of relaxation, we have to trans-
late Eq. (7) to an evolution law for the forces fi,j . This can
be done easily in the approximation of the “spikes” already
discussed. The result can be obtained by noticing that upon
changes δui,j of the variables, the forces change as

δfi,j = (4k0 + k1)δui,j − k0

X

i′,j′

δui′,j′ (8)

where again i′, j′ are sites neighbors to the site i, j. Com-
bined with Eq. (7) and taking into account that in the spike
approximation changes in u0 imply the same changes in u,
we obtain

dfi,j

dt
= k1R(∇2f)i,j − k0R(∇4f)i,j (9)

In this way, the only modification we need to add to the list
of rules of the previous section to take account of relaxation
is:

3’- Modify all fi,j to the new values fi,j + k1V δt +
(dfi,j/dt)δt, where dfi,j/dt is calculated from Eq. (9). Set
t = t + δt. Repeat until fi0,j0 > Fi0,j0 at some site i0, j0.

3.1. Results and comparison with an actual earthquake

sequence

Before showing the results we have obtained, it is nec-
essary to mention that a quantitative detailed comparison
between our results and those of actual seismic catalogs is
not totally straightforward. The first reason is that actual
earthquake catalogs do not correspond typically to a single
planar fault. But beyond this obvious fact, although ro-
bust quantitative features like the GR, or Omori law can
be tested with reasonable confidence, the analysis of other
type of correlations between events, distributions of time in-
terval among them, etc., have not found a unique way to be
done on actual catalogs. Then although we are aware of few
different attempts to characterize actual seismic sequences
[Corral, 2004, 2005; Baiesi and Paczusky, 2004, 2005; Zali-
apin et al., 2008], at present we will not try to do a detailed
comparison with these approaches, and focus only on some
qualitative comparisons, and on the two robust quantitative
features that are accepted by the community, namely the
GR and Omori laws.
3.1.1. Some qualitative comparisons

In Fig. 3a we show a magnitude-time plot of events in a
simulation of a system of 200×200 sites, in the presence of
relaxation (R/V = 5). The changes with respect to the case
without relaxation (Fig. 2b) are notorious. There is now an
apparent temporal clustering of earthquakes following the
largest ones. These largest events do not occur with any
obvious periodicity, but seem to be more or less randomly
located in time. For comparison, the equivalent plot for
the earthquakes in the California area [NCDEC and ANSS,
2008] in which only events with M > 2 are considered, is
presented as Fig. 3b. The visual similarity is striking.

The reason for the appearance of aftershocks in the pres-
ence of relaxation can be qualitatively understood in the
following way. An event in the system is triggered each
time the local friction force fi,j becomes larger than the lo-
cal strength Fi,j . According to rule 3’, fi,j can increase and
trigger an event because of two reasons: the first one is the
direct triggering produced by the term k1V δt. This is the
triggering mechanism that exists in the model without re-
laxation. The second mechanism is triggering by the term
(dfi,j/dt)δt, which exists only in the presence of structural
relaxation. In fact, if fi,j fluctuates spatially, this term may
produce the increase of fi,j at some points, eventually over-
passing the local strength and triggering an event. These
are aftershocks. Note that if relaxation has acted for a long
time, fi,j will be rather uniform spatially, and aftershocks
will be much less abundant. This internal aging mechanism
justifies the observation that aftershock rate decreases pro-
gressively after the main shock in the model.

Figure 4 shows plots of cumulated number of events and
seismic moment corresponding to the sequences presented
in Fig. 3, and Fig. 5 is a detail after the events indicated by
vertical arrows in Fig. 4. In Fig. 5 the cumulative number
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of events after the large event is compared with a cumulative
Omori law, with p = 1. The evolution of the accumulated
seismic moment is also qualitatively similar in both cases,
with the main shock accounting for most of the released
seismic moment of the whole sequence.
3.1.2. Gutenberg-Richter behavior

The inclusion of relaxation produces a change in the de-
caying exponent b of the GR law. In Fig. 6 we see that in
the presence of relaxation, the b value is substantially larger
than the one corresponding to no relaxation. More than
that, there seems to be a convergence to a well defined ex-
ponent b∗ once a minimum value of relaxation has been over
passed (about R/V ∼ 1). Remarkably, we obtain that b∗ is
approximately 1.1, quite independently of the parameters
k1, k0, σf , σx, i.e., in the range of experimentally observed
values. The GR law in the presence of relaxation continues
to have a cut off for large event sizes that is mainly depen-
dent on the ratio k1/k0. The smaller this value, the larger
is the cut-off, as can be seen in Fig. 6a.

The fact that the b exponent converges to the b∗ value
for large relaxation, independently of other model parame-
ters seems to indicate that relaxation is a relevant variable
(in the language of renormalization group) and takes the
system out of its original universality class with b � 0.4,
characterizing the avalanches of two dimensional interfaces
with short-range elasticity in an uncorrelated quenched ran-
dom potential, to a new one with b = b∗. The fact that b∗

is compatible with actual values from real seismicity is an
indication that we are probably capturing essential (large-
scale) features of the seismic process with the inclusion of
the relaxation mechanism.
3.1.3. Omori law

The apparent existence of aftershocks observed in the nu-
merical results in Fig. 3 can be put on more quantitative
bases by fitting it to the Omori law. In Fig. 7 we plot
an histogram with the number of events after main shocks
as a function of time. In the simulations, we average over
450 large events with M > 3 in a single simulation of size
200×200, and count only events larger than the threshold
magnitude M0 = 1.5. For comparison the same plot for
earthquakes in the California area is also shown (lower cut-
off magnitude M0 = 2). The continuous lines correspond to
an Omori laws of the form N(t) = A/(t + c)p + N0, where t
is the time since the main shock and N0 is the value of back-
ground seismicity. We find for our results that typically the
best fitting is obtained with values of p around 1.5, which
corresponds approximately to the maximum values that are
experimentally observed [Utsu et al., 1995].

In the model, the main factor that controls the produc-
tion of aftershocks is the value of R/V . For R/V � 1 almost
no aftershocks are observed (note that this value was also
mentioned as the value for which the GR law has acquired
its asymptotic form, with a decaying exponent b∗). On the
other hand, going to very large values of R/V produces an
over-abundance of aftershocks, since in this case the time
interval between main shocks (depending inversely on the
small V value) becomes extremely large. There must be no-
ticed also that the apparent rate of aftershock production
in the model and also in actual seismicity depends on two
additional variables. One is the spatial extent of the region
considered, in our case, on system size. This is clear because
in a larger system with same parameters the aftershocks will
occur on top of a background seismicity rate that is propor-
tionally larger. The second variable is the lower magnitude
cutoff M0 used in counting aftershocks. Typically, a larger
value of M0 leads to a greater relative abundance of after-
shocks, compared with background seismicity, both in our
model and for actual seismic data. The parameters in Fig. 7
were chosen to produce approximately the same abundance
of aftershocks in our running and in the California database.

The spatial location of aftershocks epicenters in the model
is strongly correlated with the slip surface of the associated

main shock. In Fig. 8 we show the regions that slip before,
at, an after a particular large event in the simulations, to-
gether with the epicenters of all events contributing to slip.
Aftershocks in our model occur typically at the surface of
previous slip, and only few of them in the adjacent region.
However, aftershocks can have epicenters in the slip region
of other previous aftershocks, and in this way the slip re-
gion can increase along the sequence, as it is particularly
observed in Fig. 8(c-d). Actual aftershocks are known to
occur both at, and near the main slip surface, probably with
a larger fraction of events outside the main slip surface than
in our model [Scholz, 2002]. We think the difference is due
to the fact that we have not considered realistic (long range)
elastic interactions in the model, that are responsible for re-
mote stress increase after the main slip. Instead, our model
only has nearest neighbors interactions and in this way af-
tershocks are not expected to occur away of the previous
slip surface.
3.1.4. Stress drop

An experimental plot of seismic moment as a function of
linear dimensions of the broken region, is known to follow
a linear regression in logarithmic scale [Scholz, 2002]. The
slope is found to be close to 3, and this is interpreted as
an indication of a constant stress drop, independent of the
earthquake magnitude. The plot made for our results (an
example is contained in Fig. 9) shows also the same linear
regression in logarithmic scale. A power law fitting gives
values of the exponent between 2.5 and 3, which is just a
bit smaller than actual values. It is interesting to interpret
these results from a geometrical point of view. If the succes-
sive metastable states of the elastic surface have a self-affine
structure, as it does in the absence of structural relaxation
[Rosso et al. 2007], the seismic moment or volume S of
an earthquake can be written in terms of the linear size of
rupture L as,

S ∼ L2+ζ (10)

with ζ the corresponding roughness exponent. In this con-
text the constant stress drop interpretation is related with
the self-affinity, or to the absence of a characteristic length-
scale (besides the cut-off controlled by k1). Interestingly, in
the absence of structural relaxation we have ζ ≈ 0.75, [Rosso
et al., 2003] and thus S = L2.75 which is very close to the
result of Fig. 9. This indicates that although structural re-
laxation is essential to obtain a more realistic GR law and
to produce aftershocks described by the Omori law, it does
not change appreciable the scaling of the seismic moment
with the linear rupture size, seemingly suggesting that the
effective roughness exponent remains unchanged under the
relaxational mechanism. One could also ask whether the
Eq. 5 relating ζ with the GR exponent b, conjectured and
proved in the absence of structural relaxation, is still valid in
the presence of it. At this point these issues remain unclear.
The additional problem being here that in the presence of
structural relaxation there exists a characteristic length (i.e.,
the length scale of the relaxed region between jumps) con-
trolled by the ratio R/V unlike the case without relaxation.
A detailed geometrical analysis of the sliding surface, par-
ticularly regarding the possible crossovers as a function of
length-scale is thus needed and remains as a future prospect.

4. Frictional properties

In addition to the finding of earthquake clustering and
a realistic GR behavior, a fundamental part of our work is
to show that structural relaxation produces non trivial fric-
tional properties in the system. First of all we recall that in
the model without relaxation the average stress σ is inde-
pendent of the strain rate, since the internal time scale of the
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model is very rapid (λ → ∞). The inclusion of relaxation
introduces a new time scale (set by the parameter R in Eq.
(7)) and now the average stress in the system depends on the
ratio R/V . When R/V is small, the effect of relaxation is
negligible, and the stress is similar to that in the absence of
relaxation. However, if R/V is high enough, relaxation will
act by effectively enhancing the cohesion between the set of
sliding blocks and the substrate producing a larger average
stress in the system. We then expect that the larger is R/V
the larger will be the average stress. In other words, the
model will display velocity weakening. In Fig. 10a we show
a plot of the stress in the system as a function of strain rate
where this weakening is clearly observed. For large strain
rates the stress converges to the value corresponding to no
relaxation, whereas the behavior for very small strain shows
a saturation at a larger value. The transition between these
two values is logarithmic and spans about a factor of 100
of strain rate. Note that the values reported above as nec-
essary to observe aftershocks (R/V � 1) correspond to the
limit of small velocity in this plot, where the average stress
has already reached its asymptotic value. This is not con-
tradictory with experiments [Baumberger and Caroli, 2006;
Marone, 1998a, 1998b], where velocity weakening is typically
observed in the range of V between approximately 10−2 to
102 μm/s, whereas tectonic loading is typically in the range
of 10−4-10−5 μm/s. A closer examination of the instan-
taneous stress-strain relation in the model (in Fig. 10a)
reveals that the lower the strain rate, the more pronounced
the fluctuations in the instantaneous stress.

Additional information on the frictional behavior is ob-
tained by studying the system response to abrupt changes
of the strain rate. We show in Fig. 10b in particular, the
stress on a system in which driving is stopped during some
time interval (the hold time) and then is re-initiated. First
of all, a logarithmic decrease of stress during the hold time is
observed. This occurs because the system continues to relax
during the hold time and some instability events continue to
occur for some time. This is related to our previous state-
ment that aftershocks also occur if driving is stopped after
a main shock. Despite the stress reduction during the hold
time, a stress peak occurs after re-initiation of sliding. The
height of this peak increases logarithmically with the hold
time. This peak is a consequence of the more stable con-
figuration that the system reached due to relaxation during
the hold time. The phenomenon is similar to the one ob-
served in glass forming materials [Ho Huu and Vu-Khanh,
2003; Govaert et al., 2001; Johnson et al., 2002], where it
has been explained using the same ideas [Jagla, 2007]. These
results are in remarkable agreement with those obtained in
laboratory measurements [Marone, 1998a, 1998b]. In partic-
ular, the experimental finding of a logarithmic dependence
of the dynamic friction coefficient on sliding velocity, and of
the static friction coefficient on hold time are the base on
which the phenomenological rate-and-state equations have
been constructed. Here, these logarithmic dependences ap-
pear as a consequence of the “microscopic” (i.e. at the level
of description of individual blocks) mechanism of structural
relaxation. Also, the typical experimental values for the
change of static (or dynamic) friction coefficient per order
of magnitude of hold time (or relative velocity), is systemat-
ically found to be in the range of a few percents per decade
[Baumberger and Caroli, 2006]. Remarkably, this is also the
variation range that is observed in our results in Fig. 10.

5. Summary and Conclusions

In the present paper we have presented a modeling that
combines a spring-block type system in the spirit of the BK
and OFC models, ideas from the universal dynamics of elas-
tic manifolds driven on disordered potentials, and a rather
generic implementation of aging effects within the sliding

materials. The motivation for this approach was to intro-
duce, in a statistical model of solid friction and seismicity, a
single mechanism that generates (and not merely assumes)
non trivial frictional effects and at the same time produce
realistic temporal and spatial clustering of earthquakes. Our
model allows to obtain a temporal sequence of events that
globally follow the GR law with a b � 1.1 exponent, and
at the same time non-trivial spatial and temporal correla-
tions which are compatible, in particular, with the Omori
law. In addition we have shown that frictional properties of
the model compare very well with laboratory results. The
consideration of the relaxation mechanism has thus allowed
us to obtain a unified and comprehensive physical picture
of these phenomena and also to make a definite connection
with the physics of different disordered elastic systems which
are common in condensed matter.

Beyond the interest the model may have based on the phe-
nomenology it is able to reproduce, the unifying concepts we
propose can be further tested by predicting with our model
other interesting seismic properties. In particular it would
be interesting to study to what extent the appearance of
large events in the model can be anticipated assuming only
partial knowledge about the state of the system. Whether
the generic structural relaxational mechanism we describe
here plays also a central role in other driven systems dis-
playing jerky motion is another interesting open issue.
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Figure 1. (a) One dimensional sketch of the model.
The form of local (random) cohesive energies are shown
for four different positions on the substrate, on which
blocks (represented by the circles) slide. Driving through
springs with stiffness constant k1 pulls uniformly onto
the blocks from the right. A locally stable configuration
is shown with dotted lines, and the configuration after
an event (an earthquake) induced by a small increase
of the driving is shown in black. (b) Simplified form of
the substrate interaction, in which the full force corre-
sponding to a potential energy W is replaced by a set
of spikes (of typical height F0, and separated a typical
distance δu) occurring at the places where the force is
maximum. A given external force f0 (horizontal dotted
line) produces an equilibrium value of u using the sim-
plified force, that differs by an amount of order δu from
that using the correct force. (c) Effect of the relaxation
mechanism. The global position of the cohesive potential
at different points slowly accommodated (the individual
shifts are indicated by the small arrows on the right) with
respect to the configuration in (a) in order to reduce the
total energy of the system, generating a more stable con-
figuration.
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Figure 2. Results without relaxation. (a) Magnitude
histogram for systems of 200×200 sites, with the values
of k1 as indicated, and with k0 = 0.1, σf = 0.8, σx = 0.8.
The thin straight line has a slope b = 0.4. (b) Magnitude-
time plot corresponding to the case k1 = 10−4 in (a).

Figure 3. (a)Magnitude-time plot for a 200×200 sys-
tem in the presence of relaxation (k1 = 0.005, k0 = 0.1,
σf = 0.8, σx = 0.8, R/V = 5). (b) Actual earthquakes
in the California area from years 1980-to-2008 [NCDEC
and ANSS, 2008].

Figure 4. Cumulative number of events and cumulative
seismic moment for the sequences presented in Fig. 3.
The lower cutoff values of magnitude are M0 = 0.7 for
our data, and M0 = 2 for the California data.

Figure 5. Detail to Fig. 4. Cumulative number of
events and cumulative seismic moment (taken as zero just
before the main shock), following the events indicated by
vertical arrows in Fig. 4. In both cases, continuous lines
correspond to a cumulative Omori law with p = 1.
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Figure 6. Building of a robust GR law in the presence
of relaxation. (a) Dependence of the large size cutoff on
the value of k1. (b) Convergence of the decaying law to
a well defined limit when increasing relaxation. (c) Inde-
pendence of the results on other parameters of the model.
In all cases the system size is large enough to avoid finite
size effects for all set of parameters (sizes from 200×200
to 600×600 are used). Events with M < 0.7 are not dis-
played since spurious mesh dependences are expected in
this range (see text).

Figure 7. Number of events after main shocks in our
model (full symbols) for parameters and system size as
in Fig. 3a, normalized to the background seismicity (i.e.,
N(t → ∞) = 1). We stacked the events after about
450 main shocks with M > 3, and the lower magnitude
cut off used to count aftershocks is M0 = 1.5. For com-
parison, the same analysis for data in the California re-
gion is presented with open symbols. In this case we
sum over 7 events of magnitude larger than 6.0. For this
case M0 = 2.0. For reference, the continuous lines corre-
spond to decays following the Omori law, with exponents
p = 1.0, and p = 1.5.
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Figure 8. Distribution of events before and after a main
shock. All panels depict the same portion of size 160×160
of a system with parameters as in Fig. 3a. In gray we
show the portion of the system that has experienced slip
in the corresponding time interval, and with small circles
we indicate the epicenters of all independent events that
contributed to this slip. Panel (a) shows the events in
a time interval Δt = 1 before the main shock, which is
depicted in panel (b). Panels (c) and (d) show respec-
tively aftershocks in the time interval Δt = 0.0177 (c),
and in a subsequent interval Δt = 5 (d) (the contour of
the slip region of the main shock is highlighted for better
comparison). Note the difference between the time in-
tervals considered. Only events of magnitude larger than
M0 = 0.7 are considered.

Figure 9. Seismic moment S as a function of square root
of the number of blocks that participate in each earth-
quake. An almost univocous relation exists between these
two quantities, that follows approximately a power law
with an exponent between 2.5 and 3. The continuous
lines have slopes 2.5, and 3, for reference (parameters as
in Fig. 3a).

Figure 10. Frictional properties of the model. (a) Mean
stress in a system of 200×200 as a function of relative ve-
locity. Bars indicate the standard deviation of the data.
A detail of the temporal dependence of stress is given for
two points, emphasizing the larger fluctuations that ap-
pear when relative velocity is lower. (b) Time evolution
of stress in a system in which velocity is changed from
V/R = 0 in the hold periods, to V/R = 200 in the rest
of time (results shown correspond to an average over ten
realizations). Inset: The value of the stress peak is seen
to increase logarithmically with the hold time.




